/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 49 by guez, Wed Aug 24 11:43:14 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 180 by guez, Tue Mar 15 17:07:47 2016 UTC
# Line 1  Line 1 
1  !  module cv_driver_m
 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_driver.F,v 1.3 2005/04/15 12:36:17 lmdzadmin Exp $  
 !  
       SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con, &  
                          t1,q1,qs1,u1,v1,tra1, &  
                          p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1, &  
                          precip1,VPrecip1, &  
                          cbmf1,sig1,w01, &  
                          icb1,inb1, &  
                          delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1, &  
                          da1,phi1,mp1)  
 !  
       use dimens_m  
       use dimphy  
       implicit none  
 !  
 !.............................START PROLOGUE............................  
 !  
 ! PARAMETERS:  
 !      Name            Type         Usage            Description  
 !   ----------      ----------     -------  ----------------------------  
 !  
 !      len           Integer        Input        first (i) dimension  
 !      nd            Integer        Input        vertical (k) dimension  
 !      ndp1          Integer        Input        nd + 1  
 !      ntra          Integer        Input        number of tracors  
 !      iflag_con     Integer        Input        version of convect (3/4)  
 !      t1            Real           Input        temperature  
 !      q1            Real           Input        specific hum  
 !      qs1           Real           Input        sat specific hum  
 !      u1            Real           Input        u-wind  
 !      v1            Real           Input        v-wind  
 !      tra1          Real           Input        tracors  
 !      p1            Real           Input        full level pressure  
 !      ph1           Real           Input        half level pressure  
 !      iflag1        Integer        Output       flag for Emanuel conditions  
 !      ft1           Real           Output       temp tend  
 !      fq1           Real           Output       spec hum tend  
 !      fu1           Real           Output       u-wind tend  
 !      fv1           Real           Output       v-wind tend  
 !      ftra1         Real           Output       tracor tend  
 !      precip1       Real           Output       precipitation  
 !      VPrecip1      Real           Output       vertical profile of precipitations  
 !      cbmf1         Real           Output       cloud base mass flux  
 !      sig1          Real           In/Out       section adiabatic updraft  
 !      w01           Real           In/Out       vertical velocity within adiab updraft  
 !      delt          Real           Input        time step  
 !      Ma1           Real           Output       mass flux adiabatic updraft  
 !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
 !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
 !      dnwd01        Real           Output       unsaturated downward mass flux  
 !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
 !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
 !      cape1         Real           Output       CAPE  
 !  
 ! S. Bony, Mar 2002:  
 !     * Several modules corresponding to different physical processes  
 !     * Several versions of convect may be used:  
 !        - iflag_con=3: version lmd  (previously named convect3)  
 !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
 !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
 ! S. Bony, Oct 2002:  
 !     * Vectorization of convect3 (ie version lmd)  
 !  
 !..............................END PROLOGUE.............................  
 !  
 !  
   
       integer len  
       integer nd  
       integer ndp1  
       integer noff  
       integer, intent(in):: iflag_con  
       integer ntra  
       real t1(len,nd)  
       real q1(len,nd)  
       real qs1(len,nd)  
       real u1(len,nd)  
       real v1(len,nd)  
       real p1(len,nd)  
       real ph1(len,ndp1)  
       integer iflag1(len)  
       real ft1(len,nd)  
       real fq1(len,nd)  
       real fu1(len,nd)  
       real fv1(len,nd)  
       real precip1(len)  
       real cbmf1(len)  
       real VPrecip1(len,nd+1)  
       real Ma1(len,nd)  
       real upwd1(len,nd)  
       real dnwd1(len,nd)  
       real dnwd01(len,nd)  
   
       real qcondc1(len,nd)     ! cld  
       real wd1(len)            ! gust  
       real cape1(len)  
   
       real da1(len,nd),phi1(len,nd,nd),mp1(len,nd)  
       real da(len,nd),phi(len,nd,nd),mp(len,nd)  
       real, intent(in):: tra1(len,nd,ntra)  
       real ftra1(len,nd,ntra)  
   
       real, intent(in):: delt  
   
 !-------------------------------------------------------------------  
 ! --- ARGUMENTS  
 !-------------------------------------------------------------------  
 ! --- On input:  
 !  
 !  t:   Array of absolute temperature (K) of dimension ND, with first  
 !       index corresponding to lowest model level. Note that this array  
 !       will be altered by the subroutine if dry convective adjustment  
 !       occurs and if IPBL is not equal to 0.  
 !  
 !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  qs:  Array of saturation specific humidity of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
 !       index corresponding with the lowest model level. Defined at  
 !       same levels as T. Note that this array will be altered if  
 !       dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  v:   Same as u but for meridional velocity.  
 !  
 !  tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA),  
 !       where NTRA is the number of different tracers. If no  
 !       convective tracer transport is needed, define a dummy  
 !       input array of dimension (ND,1). Tracers are defined at  
 !       same vertical levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  p:   Array of pressure (mb) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T.  
 !  
 !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
 !       corresponding to lowest level. These pressures are defined at  
 !       levels intermediate between those of P, T, Q and QS. The first  
 !       value of PH should be greater than (i.e. at a lower level than)  
 !       the first value of the array P.  
 !  
 !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
 !       NL MUST be less than or equal to ND-1.  
 !  
 !  delt: The model time step (sec) between calls to CONVECT  
 !  
 !----------------------------------------------------------------------------  
 ! ---   On Output:  
 !  
 !  iflag: An output integer whose value denotes the following:  
 !       VALUE   INTERPRETATION  
 !       -----   --------------  
 !         0     Moist convection occurs.  
 !         1     Moist convection occurs, but a CFL condition  
 !               on the subsidence warming is violated. This  
 !               does not cause the scheme to terminate.  
 !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
 !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
 !         4     No moist convection; atmosphere is not  
 !               unstable  
 !         6     No moist convection because ihmin le minorig.  
 !         7     No moist convection because unreasonable  
 !               parcel level temperature or specific humidity.  
 !         8     No moist convection: lifted condensation  
 !               level is above the 200 mb level.  
 !         9     No moist convection: cloud base is higher  
 !               then the level NL-1.  
 !  
 !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
 !        grid levels as T, Q, QS and P.  
 !  
 !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
 !        defined at same grid levels as T, Q, QS and P.  
 !  
 !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
 !        defined at same grid levels as T.  
 !  
 !  fv:   Same as FU, but for forcing of meridional velocity.  
 !  
 !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
 !        second, defined at same levels as T. Dimensioned (ND,NTRA).  
 !  
 !  precip: Scalar convective precipitation rate (mm/day).  
 !  
 !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
 !  
 !  wd:   A convective downdraft velocity scale. For use in surface  
 !        flux parameterizations. See convect.ps file for details.  
 !  
 !  tprime: A convective downdraft temperature perturbation scale (K).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  qprime: A convective downdraft specific humidity  
 !          perturbation scale (gm/gm).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
 !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
 !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
 !        by the calling program between calls to CONVECT.  
 !  
 !  det:   Array of detrainment mass flux of dimension ND.  
 !  
 !-------------------------------------------------------------------  
 !  
 !  Local arrays  
 !  
   
       integer i,k,n,il,j  
       integer icbmax  
       integer nk1(klon)  
       integer icb1(klon)  
       integer inb1(klon)  
       integer icbs1(klon)  
   
       real plcl1(klon)  
       real tnk1(klon)  
       real qnk1(klon)  
       real gznk1(klon)  
       real pnk1(klon)  
       real qsnk1(klon)  
       real pbase1(klon)  
       real buoybase1(klon)  
   
       real lv1(klon,klev)  
       real cpn1(klon,klev)  
       real tv1(klon,klev)  
       real gz1(klon,klev)  
       real hm1(klon,klev)  
       real h1(klon,klev)  
       real tp1(klon,klev)  
       real tvp1(klon,klev)  
       real clw1(klon,klev)  
       real sig1(klon,klev)  
       real w01(klon,klev)  
       real th1(klon,klev)  
 !  
       integer ncum  
 !  
 ! (local) compressed fields:  
 !  
       integer nloc  
       parameter (nloc=klon) ! pour l'instant  
   
       integer idcum(nloc)  
       integer iflag(nloc),nk(nloc),icb(nloc)  
       integer nent(nloc,klev)  
       integer icbs(nloc)  
       integer inb(nloc), inbis(nloc)  
   
       real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc)  
       real t(nloc,klev),q(nloc,klev),qs(nloc,klev)  
       real u(nloc,klev),v(nloc,klev)  
       real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev)  
       real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev)  
       real clw(nloc,klev)  
       real dph(nloc,klev)  
       real pbase(nloc), buoybase(nloc), th(nloc,klev)  
       real tvp(nloc,klev)  
       real sig(nloc,klev), w0(nloc,klev)  
       real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev)  
       real frac(nloc), buoy(nloc,klev)  
       real cape(nloc)  
       real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev)  
       real uent(nloc,klev,klev), vent(nloc,klev,klev)  
       real ments(nloc,klev,klev), qents(nloc,klev,klev)  
       real sij(nloc,klev,klev), elij(nloc,klev,klev)  
       real qp(nloc,klev), up(nloc,klev), vp(nloc,klev)  
       real wt(nloc,klev), water(nloc,klev), evap(nloc,klev)  
       real b(nloc,klev), ft(nloc,klev), fq(nloc,klev)  
       real fu(nloc,klev), fv(nloc,klev)  
       real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev)  
       real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev)  
       real tps(nloc,klev), qprime(nloc), tprime(nloc)  
       real precip(nloc)  
       real VPrecip(nloc,klev+1)  
       real tra(nloc,klev,ntra), trap(nloc,klev,ntra)  
       real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra)  
       real qcondc(nloc,klev)  ! cld  
       real wd(nloc)           ! gust  
   
 !-------------------------------------------------------------------  
 ! --- SET CONSTANTS AND PARAMETERS  
 !-------------------------------------------------------------------  
   
 ! -- set simulation flags:  
 !   (common cvflag)  
   
        CALL cv_flag  
   
 ! -- set thermodynamical constants:  
 !     (common cvthermo)  
   
        CALL cv_thermo(iflag_con)  
   
 ! -- set convect parameters  
 !  
 !     includes microphysical parameters and parameters that  
 !     control the rate of approach to quasi-equilibrium)  
 !     (common cvparam)  
   
       if (iflag_con.eq.3) then  
        CALL cv3_param(nd,delt)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
       endif  
   
 !---------------------------------------------------------------------  
 ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
 !---------------------------------------------------------------------  
   
       do 20 k=1,nd  
         do 10 i=1,len  
          ft1(i,k)=0.0  
          fq1(i,k)=0.0  
          fu1(i,k)=0.0  
          fv1(i,k)=0.0  
          tvp1(i,k)=0.0  
          tp1(i,k)=0.0  
          clw1(i,k)=0.0  
 !ym  
          clw(i,k)=0.0  
          gz1(i,k) = 0.  
          VPrecip1(i,k) = 0.  
          Ma1(i,k)=0.0  
          upwd1(i,k)=0.0  
          dnwd1(i,k)=0.0  
          dnwd01(i,k)=0.0  
          qcondc1(i,k)=0.0  
  10     continue  
  20   continue  
   
       do 30 j=1,ntra  
        do 31 k=1,nd  
         do 32 i=1,len  
          ftra1(i,k,j)=0.0  
  32     continue  
  31    continue  
  30   continue  
   
       do 60 i=1,len  
         precip1(i)=0.0  
         iflag1(i)=0  
         wd1(i)=0.0  
         cape1(i)=0.0  
         VPrecip1(i,nd+1)=0.0  
  60   continue  
   
       if (iflag_con.eq.3) then  
         do il=1,len  
          sig1(il,nd)=sig1(il,nd)+1.  
          sig1(il,nd)=amin1(sig1(il,nd),12.1)  
         enddo  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_prelim(len,nd,ndp1,t1,q1,p1,ph1             &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1,th1)! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1 &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CONVECTIVE FEED  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1            &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1 &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
 ! (up through ICB for convect4, up through ICB+1 for convect3)  
 !     Calculates the lifted parcel virtual temperature at nk, the  
 !     actual temperature, and the adiabatic liquid water content.  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1   &  
                               ,tp1,tvp1,clw1,icbs1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax &  
                               ,tp1,tvp1,clw1)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- TRIGGERING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1       &  
                        ,pbase1,buoybase1,iflag1,sig1,w01) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1)  
       endif  
   
 !=====================================================================  
 ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
 !=====================================================================  
   
       ncum=0  
       do 400 i=1,len  
         if(iflag1(i).eq.0)then  
            ncum=ncum+1  
            idcum(ncum)=i  
         endif  
  400  continue  
   
 !       print*,'klon, ncum = ',len,ncum  
   
       IF (ncum.gt.0) THEN  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- COMPRESS THE FIELDS  
 !        (-> vectorization over convective gridpoints)  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_compress( len,nloc,ncum,nd,ntra &  
           ,iflag1,nk1,icb1,icbs1 &  
           ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 &  
           ,t1,q1,qs1,u1,v1,gz1,th1 &  
           ,tra1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  &  
           ,sig1,w01 &  
           ,iflag,nk,icb,icbs &  
           ,plcl,tnk,qnk,gznk,pbase,buoybase &  
           ,t,q,qs,u,v,gz,th &  
           ,tra &  
           ,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,sig,w0  )  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_compress( len,nloc,ncum,nd &  
           ,iflag1,nk1,icb1 &  
           ,cbmf1,plcl1,tnk1,qnk1,gznk1 &  
           ,t1,q1,qs1,u1,v1,gz1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 &  
           ,iflag,nk,icb &  
           ,cbmf,plcl,tnk,qnk,gznk &  
           ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,dph )  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
 ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
 ! ---   &  
 ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
 ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
 ! ---   &  
 ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute2(nloc,ncum,nd,icb,icbs,nk         &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,h,tv,lv,pbase,buoybase,plcl &  
                               ,inb,tp,tvp,clw,hp,ep,sigp,buoy) !na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute2(nloc,ncum,nd,icb,nk &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,dph,h,tv,lv &  
                    ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- CLOSURE  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_closure(nloc,ncum,nd,icb,inb               &  
                              ,pbase,p,ph,tv,buoy &  
                              ,sig,w0,cape,m) ! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_closure(nloc,ncum,nd,nk,icb &  
                       ,tv,tvp,p,ph,dph,plcl,cpn &  
                       ,iflag,cbmf)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- MIXING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb     &  
                            ,ph,t,q,qs,u,v,tra,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,m,sig &  
        ,ment,qent,uent,vent, nent,sij,elij,ments,qents,traent)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis &  
                            ,ph,t,q,qs,u,v,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,cbmf &  
                            ,m,ment,qent,uent,vent,nent,sij,elij)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_unsat(nloc,ncum,nd,nd,ntra,icb,inb     &  
                      ,t,q,qs,gz,u,v,tra,p,ph &  
                      ,th,tv,lv,cpn,ep,sigp,clw &  
                      ,m,ment,elij,delt,plcl &  
                 ,mp,qp,up,vp,trap,wt,water,evap,b)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph &  
                          ,h,lv,ep,sigp,clw,m,ment,elij &  
                          ,iflag,mp,qp,up,vp,wt,water,evap)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- YIELD  
 !     (tendencies, precipitation, variables of interface with other  
 !      processes, etc)  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_yield(nloc,ncum,nd,nd,ntra             &  
                            ,icb,inb,delt &  
                            ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th &  
                            ,ep,clw,m,tp,mp,qp,up,vp,trap &  
                            ,wt,water,evap,b &  
                            ,ment,qent,uent,vent,nent,elij,traent,sig &  
                            ,tv,tvp &  
                            ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra &  
                            ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt &  
                     ,t,q,u,v,gz,p,ph,h,hp,lv,cpn &  
                     ,ep,clw,frac,m,mp,qp,up,vp &  
                     ,wt,water,evap &  
                     ,ment,qent,uent,vent,nent,elij &  
                     ,tv,tvp &  
                     ,iflag,wd,qprime,tprime &  
                     ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- passive tracers  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_tracer(nloc,len,ncum,nd,nd, &  
                         ment,sij,da,phi)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- UNCOMPRESS THE FIELDS  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! set iflag1 =42 for non convective points  
       do  i=1,len  
         iflag1(i)=42  
       end do  
 !  
       if (iflag_con.eq.3) then  
        CALL cv3_uncompress(nloc,len,ncum,nd,ntra,idcum &  
                 ,iflag &  
                 ,precip,VPrecip,sig,w0 &  
                 ,ft,fq,fu,fv,ftra &  
                 ,inb  &  
                 ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape &  
                 ,da,phi,mp &  
                 ,iflag1 &  
                 ,precip1,VPrecip1,sig1,w01 &  
                 ,ft1,fq1,fu1,fv1,ftra1 &  
                 ,inb1 &  
                 ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1  &  
                 ,da1,phi1,mp1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_uncompress(nloc,len,ncum,nd,idcum &  
                 ,iflag &  
                 ,precip,cbmf &  
                 ,ft,fq,fu,fv &  
                 ,Ma,qcondc             &  
                 ,iflag1 &  
                 ,precip1,cbmf1 &  
                 ,ft1,fq1,fu1,fv1 &  
                 ,Ma1,qcondc1 )  
       endif  
2    
3        ENDIF ! ncum>0    implicit none
4    
5  9999  continue  contains
6    
7        return    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &
8        end         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &
9           Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        ! Several versions of convect may be used:
18        ! - iflag_con = 3: version lmd
19        ! - iflag_con = 4: version 4.3b
20    
21        use clesphys2, only: iflag_con
22        use cv3_compress_m, only: cv3_compress
23        use cv3_feed_m, only: cv3_feed
24        use cv3_mixing_m, only: cv3_mixing
25        use cv3_param_m, only: cv3_param
26        use cv3_prelim_m, only: cv3_prelim
27        use cv3_tracer_m, only: cv3_tracer
28        use cv3_uncompress_m, only: cv3_uncompress
29        use cv3_unsat_m, only: cv3_unsat
30        use cv3_yield_m, only: cv3_yield
31        use cv_feed_m, only: cv_feed
32        use cv_uncompress_m, only: cv_uncompress
33        USE dimphy, ONLY: klev, klon
34    
35        real, intent(in):: t1(klon, klev) ! temperature
36        real, intent(in):: q1(klon, klev) ! specific hum
37        real, intent(in):: qs1(klon, klev) ! sat specific hum
38        real, intent(in):: u1(klon, klev) ! u-wind
39        real, intent(in):: v1(klon, klev) ! v-wind
40        real, intent(in):: p1(klon, klev) ! full level pressure
41        real, intent(in):: ph1(klon, klev + 1) ! half level pressure
42        integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
43        real, intent(out):: ft1(klon, klev) ! temp tend
44        real, intent(out):: fq1(klon, klev) ! spec hum tend
45        real, intent(out):: fu1(klon, klev) ! u-wind tend
46        real, intent(out):: fv1(klon, klev) ! v-wind tend
47        real, intent(out):: precip1(klon) ! precipitation
48    
49        real, intent(out):: VPrecip1(klon, klev + 1)
50        ! vertical profile of precipitation
51    
52        real, intent(inout):: cbmf1(klon) ! cloud base mass flux
53        real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
54    
55        real, intent(inout):: w01(klon, klev)
56        ! vertical velocity within adiabatic updraft
57    
58        integer, intent(out):: icb1(klon)
59        integer, intent(inout):: inb1(klon)
60        real, intent(in):: delt ! time step
61        real Ma1(klon, klev)
62        ! Ma1 Real Output mass flux adiabatic updraft
63    
64        real, intent(out):: upwd1(klon, klev)
65        ! total upward mass flux (adiab + mixed)
66    
67        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
68        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
69    
70        real qcondc1(klon, klev) ! cld
71        ! qcondc1 Real Output in-cld mixing ratio of condensed water
72        real wd1(klon) ! gust
73        ! wd1 Real Output downdraft velocity scale for sfc fluxes
74        real cape1(klon)
75        ! cape1 Real Output CAPE
76    
77        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
78        real, intent(inout):: mp1(klon, klev)
79    
80        ! ARGUMENTS
81    
82        ! On input:
83    
84        ! t: Array of absolute temperature (K) of dimension KLEV, with first
85        ! index corresponding to lowest model level. Note that this array
86        ! will be altered by the subroutine if dry convective adjustment
87        ! occurs and if IPBL is not equal to 0.
88    
89        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
90        ! index corresponding to lowest model level. Must be defined
91        ! at same grid levels as T. Note that this array will be altered
92        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
93    
94        ! qs: Array of saturation specific humidity of dimension KLEV, with first
95        ! index corresponding to lowest model level. Must be defined
96        ! at same grid levels as T. Note that this array will be altered
97        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
98    
99        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
100        ! index corresponding with the lowest model level. Defined at
101        ! same levels as T. Note that this array will be altered if
102        ! dry convective adjustment occurs and if IPBL is not equal to 0.
103    
104        ! v: Same as u but for meridional velocity.
105    
106        ! p: Array of pressure (mb) of dimension KLEV, with first
107        ! index corresponding to lowest model level. Must be defined
108        ! at same grid levels as T.
109    
110        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
111        ! corresponding to lowest level. These pressures are defined at
112        ! levels intermediate between those of P, T, Q and QS. The first
113        ! value of PH should be greater than (i.e. at a lower level than)
114        ! the first value of the array P.
115    
116        ! nl: The maximum number of levels to which convection can penetrate, plus 1
117        ! NL MUST be less than or equal to KLEV-1.
118    
119        ! delt: The model time step (sec) between calls to CONVECT
120    
121        ! On Output:
122    
123        ! iflag: An output integer whose value denotes the following:
124        ! VALUE INTERPRETATION
125        ! ----- --------------
126        ! 0 Moist convection occurs.
127        ! 1 Moist convection occurs, but a CFL condition
128        ! on the subsidence warming is violated. This
129        ! does not cause the scheme to terminate.
130        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
131        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
132        ! 4 No moist convection; atmosphere is not
133        ! unstable
134        ! 6 No moist convection because ihmin le minorig.
135        ! 7 No moist convection because unreasonable
136        ! parcel level temperature or specific humidity.
137        ! 8 No moist convection: lifted condensation
138        ! level is above the 200 mb level.
139        ! 9 No moist convection: cloud base is higher
140        ! then the level NL-1.
141    
142        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
143        ! grid levels as T, Q, QS and P.
144    
145        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
146        ! defined at same grid levels as T, Q, QS and P.
147    
148        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
149        ! defined at same grid levels as T.
150    
151        ! fv: Same as FU, but for forcing of meridional velocity.
152    
153        ! precip: Scalar convective precipitation rate (mm/day).
154    
155        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
156    
157        ! wd: A convective downdraft velocity scale. For use in surface
158        ! flux parameterizations. See convect.ps file for details.
159    
160        ! tprime: A convective downdraft temperature perturbation scale (K).
161        ! For use in surface flux parameterizations. See convect.ps
162        ! file for details.
163    
164        ! qprime: A convective downdraft specific humidity
165        ! perturbation scale (gm/gm).
166        ! For use in surface flux parameterizations. See convect.ps
167        ! file for details.
168    
169        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
170        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
171        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
172        ! by the calling program between calls to CONVECT.
173    
174        ! det: Array of detrainment mass flux of dimension KLEV.
175    
176        ! Local arrays
177    
178        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
179    
180        integer i, k, il
181        integer icbmax
182        integer nk1(klon)
183        integer icbs1(klon)
184    
185        real plcl1(klon)
186        real tnk1(klon)
187        real qnk1(klon)
188        real gznk1(klon)
189        real pbase1(klon)
190        real buoybase1(klon)
191    
192        real lv1(klon, klev)
193        real cpn1(klon, klev)
194        real tv1(klon, klev)
195        real gz1(klon, klev)
196        real hm1(klon, klev)
197        real h1(klon, klev)
198        real tp1(klon, klev)
199        real tvp1(klon, klev)
200        real clw1(klon, klev)
201        real th1(klon, klev)
202    
203        integer ncum
204    
205        ! (local) compressed fields:
206    
207        integer idcum(klon)
208        integer iflag(klon), nk(klon), icb(klon)
209        integer nent(klon, klev)
210        integer icbs(klon)
211        integer inb(klon), inbis(klon)
212    
213        real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon)
214        real t(klon, klev), q(klon, klev), qs(klon, klev)
215        real u(klon, klev), v(klon, klev)
216        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
217        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
218        real clw(klon, klev)
219        real dph(klon, klev)
220        real pbase(klon), buoybase(klon), th(klon, klev)
221        real tvp(klon, klev)
222        real sig(klon, klev), w0(klon, klev)
223        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
224        real frac(klon), buoy(klon, klev)
225        real cape(klon)
226        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
227        real uent(klon, klev, klev), vent(klon, klev, klev)
228        real ments(klon, klev, klev), qents(klon, klev, klev)
229        real sij(klon, klev, klev), elij(klon, klev, klev)
230        real qp(klon, klev), up(klon, klev), vp(klon, klev)
231        real wt(klon, klev), water(klon, klev), evap(klon, klev)
232        real b(klon, klev), ft(klon, klev), fq(klon, klev)
233        real fu(klon, klev), fv(klon, klev)
234        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
235        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
236        real tps(klon, klev), qprime(klon), tprime(klon)
237        real precip(klon)
238        real VPrecip(klon, klev + 1)
239        real qcondc(klon, klev) ! cld
240        real wd(klon) ! gust
241    
242        !-------------------------------------------------------------------
243    
244        ! SET CONSTANTS AND PARAMETERS
245    
246        ! set simulation flags:
247        ! (common cvflag)
248    
249        CALL cv_flag
250    
251        ! set thermodynamical constants:
252        ! (common cvthermo)
253    
254        CALL cv_thermo
255    
256        ! set convect parameters
257    
258        ! includes microphysical parameters and parameters that
259        ! control the rate of approach to quasi-equilibrium)
260        ! (common cvparam)
261    
262        if (iflag_con == 3) CALL cv3_param(klev, delt)
263    
264        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
265    
266        do k = 1, klev
267           do i = 1, klon
268              ft1(i, k) = 0.0
269              fq1(i, k) = 0.0
270              fu1(i, k) = 0.0
271              fv1(i, k) = 0.0
272              tvp1(i, k) = 0.0
273              tp1(i, k) = 0.0
274              clw1(i, k) = 0.0
275              !ym
276              clw(i, k) = 0.0
277              gz1(i, k) = 0.
278              VPrecip1(i, k) = 0.
279              Ma1(i, k) = 0.0
280              upwd1(i, k) = 0.0
281              dnwd1(i, k) = 0.0
282              dnwd01(i, k) = 0.0
283              qcondc1(i, k) = 0.0
284           end do
285        end do
286    
287        do i = 1, klon
288           precip1(i) = 0.0
289           iflag1(i) = 0
290           wd1(i) = 0.0
291           cape1(i) = 0.0
292           VPrecip1(i, klev + 1) = 0.0
293        end do
294    
295        if (iflag_con == 3) then
296           do il = 1, klon
297              sig1(il, klev) = sig1(il, klev) + 1.
298              sig1(il, klev) = min(sig1(il, klev), 12.1)
299           enddo
300        endif
301    
302        ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
303    
304        if (iflag_con == 3) then
305           CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
306                gz1, h1, hm1, th1)
307        else
308           ! iflag_con == 4
309           CALL cv_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
310                gz1, h1, hm1)
311        endif
312    
313        ! CONVECTIVE FEED
314    
315        if (iflag_con == 3) then
316           CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
317                icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
318        else
319           ! iflag_con == 4
320           CALL cv_feed(klon, klev, t1, q1, qs1, p1, hm1, gz1, nk1, icb1, icbmax, &
321                iflag1, tnk1, qnk1, gznk1, plcl1)
322        endif
323    
324        ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
325        ! (up through ICB for convect4, up through ICB + 1 for convect3)
326        ! Calculates the lifted parcel virtual temperature at nk, the
327        ! actual temperature, and the adiabatic liquid water content.
328    
329        if (iflag_con == 3) then
330           CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
331                tp1, tvp1, clw1, icbs1) ! klev->na
332        else
333           ! iflag_con == 4
334           CALL cv_undilute1(klon, klev, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax, &
335                tp1, tvp1, clw1)
336        endif
337    
338        ! TRIGGERING
339    
340        if (iflag_con == 3) then
341           CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
342                buoybase1, iflag1, sig1, w01) ! klev->na
343        else
344           ! iflag_con == 4
345           CALL cv_trigger(klon, klev, icb1, cbmf1, tv1, tvp1, iflag1)
346        end if
347    
348        ! Moist convective adjustment is necessary
349    
350        ncum = 0
351        do i = 1, klon
352           if (iflag1(i) == 0) then
353              ncum = ncum + 1
354              idcum(ncum) = i
355           endif
356        end do
357    
358        IF (ncum > 0) THEN
359           ! COMPRESS THE FIELDS
360           ! (-> vectorization over convective gridpoints)
361    
362           if (iflag_con == 3) then
363              CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
364                   plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
365                   v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
366                   sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
367                   buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
368                   tvp, clw, sig, w0)
369           else
370              ! iflag_con == 4
371              CALL cv_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, cbmf1, &
372                   plcl1, tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, &
373                   cpn1, p1, ph1, tv1, tp1, tvp1, clw1, iflag, nk, icb, cbmf, &
374                   plcl, tnk, qnk, gznk, t, q, qs, u, v, gz, h, lv, cpn, p, ph, &
375                   tv, tp, tvp, clw, dph)
376           endif
377    
378           ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
379           ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
380           ! &
381           ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
382           ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
383           ! &
384           ! FIND THE LEVEL OF NEUTRAL BUOYANCY
385    
386           if (iflag_con == 3) then
387              CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
388                   t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
389                   tvp, clw, hp, ep, sigp, buoy) !na->klev
390           else
391              ! iflag_con == 4
392              CALL cv_undilute2(klon, ncum, klev, icb, nk, tnk, qnk, gznk, t, &
393                   qs, gz, p, dph, h, tv, lv, inb, inbis, tp, tvp, clw, hp, ep, &
394                   sigp, frac)
395           endif
396    
397           ! CLOSURE
398    
399           if (iflag_con == 3) then
400              CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
401                   buoy, sig, w0, cape, m) ! na->klev
402           else
403              ! iflag_con == 4
404              CALL cv_closure(klon, ncum, klev, nk, icb, tv, tvp, p, ph, dph, &
405                   plcl, cpn, iflag, cbmf)
406           endif
407    
408           ! MIXING
409    
410           if (iflag_con == 3) then
411              CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
412                   v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
413                   sij, elij, ments, qents)
414           else
415              ! iflag_con == 4
416              CALL cv_mixing(klon, ncum, klev, icb, nk, inb, inbis, ph, t, q, qs, &
417                   u, v, h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, &
418                   uent, vent, nent, sij, elij)
419           endif
420    
421           ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
422    
423           if (iflag_con == 3) then
424              CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
425                   v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
426                   plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
427           else
428              ! iflag_con == 4
429              CALL cv_unsat(klon, ncum, klev, inb, t, q, qs, gz, u, v, p, ph, h, &
430                   lv, ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, &
431                   water, evap)
432           endif
433    
434           ! YIELD
435           ! (tendencies, precipitation, variables of interface with other
436           ! processes, etc)
437    
438           if (iflag_con == 3) then
439              CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
440                   gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
441                   wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
442                   tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
443                   dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
444           else
445              ! iflag_con == 4
446              CALL cv_yield(klon, ncum, klev, nk, icb, inb, delt, t, q, u, v, gz, &
447                   p, ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, &
448                   water, evap, ment, qent, uent, vent, nent, elij, tv, tvp, &
449                   iflag, wd, qprime, tprime, precip, cbmf, ft, fq, fu, fv, Ma, &
450                   qcondc)
451           endif
452    
453           ! passive tracers
454    
455           if (iflag_con == 3) CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
456    
457           ! UNCOMPRESS THE FIELDS
458    
459           ! set iflag1 = 42 for non convective points
460           do i = 1, klon
461              iflag1(i) = 42
462           end do
463    
464           if (iflag_con == 3) then
465              CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
466                   ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
467                   da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
468                   fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
469                   cape1, da1, phi1, mp1)
470           else
471              ! iflag_con == 4
472              CALL cv_uncompress(idcum(:ncum), iflag, precip, cbmf, ft, fq, fu, &
473                   fv, Ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, &
474                   Ma1, qcondc1)
475           endif
476        ENDIF ! ncum>0
477    
478      end SUBROUTINE cv_driver
479    
480    end module cv_driver_m

Legend:
Removed from v.49  
changed lines
  Added in v.180

  ViewVC Help
Powered by ViewVC 1.1.21