/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 52 by guez, Fri Sep 23 12:28:01 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 182 by guez, Wed Mar 16 11:11:27 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &
8         tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, &         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &
9         cbmf1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, &         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10         qcondc1, wd1, cape1, da1, phi1, mp1)  
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17      ! Main driver for convection
13        ! Author: S. Bony, March 2002
14      use dimens_m  
15      use dimphy      ! Several modules corresponding to different physical processes
16      !  
17      ! PARAMETERS:      use cv3_compress_m, only: cv3_compress
18      !      Name            Type         Usage            Description      use cv3_feed_m, only: cv3_feed
19      !   ----------      ----------     -------  ----------------------------      use cv3_mixing_m, only: cv3_mixing
20      !      use cv3_param_m, only: cv3_param
21      !      len           Integer        Input        first (i) dimension      use cv3_prelim_m, only: cv3_prelim
22      !      nd            Integer        Input        vertical (k) dimension      use cv3_tracer_m, only: cv3_tracer
23      !      ndp1          Integer        Input        nd + 1      use cv3_uncompress_m, only: cv3_uncompress
24      !      ntra          Integer        Input        number of tracors      use cv3_unsat_m, only: cv3_unsat
25      !      iflag_con     Integer        Input        version of convect (3/4)      use cv3_yield_m, only: cv3_yield
26      !      t1            Real           Input        temperature      USE dimphy, ONLY: klev, klon
27      !      q1            Real           Input        specific hum  
28      !      qs1           Real           Input        sat specific hum      real, intent(in):: t1(klon, klev) ! temperature
29      !      u1            Real           Input        u-wind      real, intent(in):: q1(klon, klev) ! specific hum
30      !      v1            Real           Input        v-wind      real, intent(in):: qs1(klon, klev) ! sat specific hum
31      !      tra1          Real           Input        tracors      real, intent(in):: u1(klon, klev) ! u-wind
32      !      p1            Real           Input        full level pressure      real, intent(in):: v1(klon, klev) ! v-wind
33      !      ph1           Real           Input        half level pressure      real, intent(in):: p1(klon, klev) ! full level pressure
34      !      iflag1        Integer        Output       flag for Emanuel conditions      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
35      !      ft1           Real           Output       temp tend      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
36      !      fq1           Real           Output       spec hum tend      real, intent(out):: ft1(klon, klev) ! temp tend
37      !      fu1           Real           Output       u-wind tend      real, intent(out):: fq1(klon, klev) ! spec hum tend
38      !      fv1           Real           Output       v-wind tend      real, intent(out):: fu1(klon, klev) ! u-wind tend
39      !      ftra1         Real           Output       tracor tend      real, intent(out):: fv1(klon, klev) ! v-wind tend
40      !      precip1       Real           Output       precipitation      real, intent(out):: precip1(klon) ! precipitation
41      !      VPrecip1      Real           Output       vertical profile of precipitations  
42      !      cbmf1         Real           Output       cloud base mass flux      real, intent(out):: VPrecip1(klon, klev + 1)
43      !      sig1          Real           In/Out       section adiabatic updraft      ! vertical profile of precipitation
44      !      w01           Real           In/Out       vertical velocity within adiab updraft  
45      !      delt          Real           Input        time step      real, intent(inout):: cbmf1(klon) ! cloud base mass flux
46      !      Ma1           Real           Output       mass flux adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47      !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
48      !      dnwd1         Real           Output       saturated downward mass flux (mixed)      real, intent(inout):: w01(klon, klev)
49      !      dnwd01        Real           Output       unsaturated downward mass flux      ! vertical velocity within adiabatic updraft
50      !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
51      !      wd1           Real           Output       downdraft velocity scale for sfc fluxes      integer, intent(out):: icb1(klon)
52      !      cape1         Real           Output       CAPE      integer, intent(inout):: inb1(klon)
53      !      real, intent(in):: delt ! time step
54      ! S. Bony, Mar 2002:      real Ma1(klon, klev)
55      !     * Several modules corresponding to different physical processes      ! Ma1 Real Output mass flux adiabatic updraft
56      !     * Several versions of convect may be used:  
57      !        - iflag_con=3: version lmd  (previously named convect3)      real, intent(out):: upwd1(klon, klev)
58      !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)      ! total upward mass flux (adiab + mixed)
59      !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
60      ! S. Bony, Oct 2002:      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      !     * Vectorization of convect3 (ie version lmd)      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
62      !  
63      !..............................END PROLOGUE.............................      real qcondc1(klon, klev) ! cld
64      !      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      !      real wd1(klon) ! gust
66        ! wd1 Real Output downdraft velocity scale for sfc fluxes
67      integer len      real cape1(klon)
68      integer nd      ! cape1 Real Output CAPE
69      integer ndp1  
70      integer noff      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71      integer, intent(in):: iflag_con      real, intent(inout):: mp1(klon, klev)
72      integer ntra  
73      real, intent(in):: t1(len, nd)      ! ARGUMENTS
74      real q1(len, nd)  
75      real qs1(len, nd)      ! On input:
76      real u1(len, nd)  
77      real v1(len, nd)      ! t: Array of absolute temperature (K) of dimension KLEV, with first
78      real p1(len, nd)      ! index corresponding to lowest model level. Note that this array
79      real ph1(len, ndp1)      ! will be altered by the subroutine if dry convective adjustment
80      integer iflag1(len)      ! occurs and if IPBL is not equal to 0.
81      real ft1(len, nd)  
82      real fq1(len, nd)      ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83      real fu1(len, nd)      ! index corresponding to lowest model level. Must be defined
84      real fv1(len, nd)      ! at same grid levels as T. Note that this array will be altered
85      real precip1(len)      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86      real cbmf1(len)  
87      real VPrecip1(len, nd+1)      ! qs: Array of saturation specific humidity of dimension KLEV, with first
88      real Ma1(len, nd)      ! index corresponding to lowest model level. Must be defined
89      real upwd1(len, nd)      ! at same grid levels as T. Note that this array will be altered
90      real dnwd1(len, nd)      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91      real dnwd01(len, nd)  
92        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93      real qcondc1(len, nd)     ! cld      ! index corresponding with the lowest model level. Defined at
94      real wd1(len)            ! gust      ! same levels as T. Note that this array will be altered if
95      real cape1(len)      ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      ! v: Same as u but for meridional velocity.
98      real da(len, nd), phi(len, nd, nd), mp(len, nd)  
99      real, intent(in):: tra1(len, nd, ntra)      ! p: Array of pressure (mb) of dimension KLEV, with first
100      real ftra1(len, nd, ntra)      ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102    
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104        ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112        ! delt: The model time step (sec) between calls to CONVECT
113    
114        ! On Output:
115    
116        ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167      real, intent(in):: delt      ! det: Array of detrainment mass flux of dimension KLEV.
168    
169      !-------------------------------------------------------------------      ! Local arrays
     ! --- ARGUMENTS  
     !-------------------------------------------------------------------  
     ! --- On input:  
     !  
     !  t:   Array of absolute temperature (K) of dimension ND, with first  
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
     !  
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  v:   Same as u but for meridional velocity.  
     !  
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
     !  
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
     !  
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
     !  
     !  delt: The model time step (sec) between calls to CONVECT  
     !  
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
     !  
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
     !  
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
     !  
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
     !  
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
     !  
     !  fv:   Same as FU, but for forcing of meridional velocity.  
     !  
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
     !  
     !  precip: Scalar convective precipitation rate (mm/day).  
     !  
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
     !  
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
     !  
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
     !  
     !  det:   Array of detrainment mass flux of dimension ND.  
     !  
     !-------------------------------------------------------------------  
     !  
     !  Local arrays  
     !  
170    
171      integer i, k, n, il, j      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
172    
173        integer i, k, il
174      integer icbmax      integer icbmax
175      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
176      integer icbs1(klon)      integer icbs1(klon)
177    
178      real plcl1(klon)      real plcl1(klon)
179      real tnk1(klon)      real tnk1(klon)
180      real qnk1(klon)      real qnk1(klon)
181      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
182      real pbase1(klon)      real pbase1(klon)
183      real buoybase1(klon)      real buoybase1(klon)
184    
# Line 239  contains Line 191  contains
191      real tp1(klon, klev)      real tp1(klon, klev)
192      real tvp1(klon, klev)      real tvp1(klon, klev)
193      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
194      real th1(klon, klev)      real th1(klon, klev)
195      !  
196      integer ncum      integer ncum
197      !  
198      ! (local) compressed fields:      ! (local) compressed fields:
199      !  
200      integer nloc      integer idcum(klon)
201      parameter (nloc=klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203      integer idcum(nloc)      integer icbs(klon)
204      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon), inbis(klon)
205      integer nent(nloc, klev)  
206      integer icbs(nloc)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207      integer inb(nloc), inbis(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
212      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real dph(klon, klev)
213      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
214      real clw(nloc, klev)      real tvp(klon, klev)
215      real dph(nloc, klev)      real sig(klon, klev), w0(klon, klev)
216      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
217      real tvp(nloc, klev)      real frac(klon), buoy(klon, klev)
218      real sig(nloc, klev), w0(nloc, klev)      real cape(klon)
219      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
220      real frac(nloc), buoy(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
221      real cape(nloc)      real ments(klon, klev, klev), qents(klon, klev, klev)
222      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real sij(klon, klev, klev), elij(klon, klev, klev)
223      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
224      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
225      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real b(klon, klev), ft(klon, klev), fq(klon, klev)
226      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real fu(klon, klev), fv(klon, klev)
227      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
228      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
229      real fu(nloc, klev), fv(nloc, klev)      real tps(klon, klev), qprime(klon), tprime(klon)
230      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real precip(klon)
231      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real VPrecip(klon, klev + 1)
232      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real qcondc(klon, klev) ! cld
233      real precip(nloc)      real wd(klon) ! gust
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
234    
235      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
236    
237      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
238      !   (common cvflag)  
239        ! set simulation flags:
240        ! (common cvflag)
241    
242      CALL cv_flag      CALL cv_flag
243    
244      ! -- set thermodynamical constants:      ! set thermodynamical constants:
245      !     (common cvthermo)      ! (common cvthermo)
246    
247      CALL cv_thermo(iflag_con)      CALL cv_thermo
248    
249      ! -- set convect parameters      ! set convect parameters
250      !  
251      !     includes microphysical parameters and parameters that      ! includes microphysical parameters and parameters that
252      !     control the rate of approach to quasi-equilibrium)      ! control the rate of approach to quasi-equilibrium)
253      !     (common cvparam)      ! (common cvparam)
254    
255      if (iflag_con.eq.3) then      CALL cv3_param(klev, delt)
256         CALL cv3_param(nd, delt)  
257      endif      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
258    
259      if (iflag_con.eq.4) then      do k = 1, klev
260         CALL cv_param(nd)         do i = 1, klon
261      endif            ft1(i, k) = 0.0
262              fq1(i, k) = 0.0
263      !---------------------------------------------------------------------            fu1(i, k) = 0.0
264      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            fv1(i, k) = 0.0
265      !---------------------------------------------------------------------            tvp1(i, k) = 0.0
266              tp1(i, k) = 0.0
267      do k=1, nd            clw1(i, k) = 0.0
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
268            !ym            !ym
269            clw(i, k)=0.0            clw(i, k) = 0.0
270            gz1(i, k) = 0.            gz1(i, k) = 0.
271            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
272            Ma1(i, k)=0.0            Ma1(i, k) = 0.0
273            upwd1(i, k)=0.0            upwd1(i, k) = 0.0
274            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.0
275            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.0
276            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.0
277         end do         end do
278      end do      end do
279    
280      do  j=1, ntra      do i = 1, klon
281         do  k=1, nd         precip1(i) = 0.0
282            do  i=1, len         iflag1(i) = 0
283               ftra1(i, k, j)=0.0         wd1(i) = 0.0
284            end do         cape1(i) = 0.0
285         end do         VPrecip1(i, klev + 1) = 0.0
286      end do      end do
287    
288      do  i=1, len      do il = 1, klon
289         precip1(i)=0.0         sig1(il, klev) = sig1(il, klev) + 1.
290         iflag1(i)=0         sig1(il, klev) = min(sig1(il, klev), 12.1)
291         wd1(i)=0.0      enddo
        cape1(i)=0.0  
        VPrecip1(i, nd+1)=0.0  
     end do  
292    
293      if (iflag_con.eq.3) then      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
        do il=1, len  
           sig1(il, nd)=sig1(il, nd)+1.  
           sig1(il, nd)=amin1(sig1(il, nd), 12.1)  
        enddo  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
             h1, hm1, th1)! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &  
             , lv1, cpn1, tv1, gz1, h1, hm1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
294    
295      !-------------------------------------------------------------------      CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
296      ! --- TRIGGERING           gz1, h1, hm1, th1)
297      !-------------------------------------------------------------------  
298        ! CONVECTIVE FEED
299    
300        CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
301             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
302    
303        ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
304        ! (up through ICB for convect4, up through ICB + 1 for convect3)
305        ! Calculates the lifted parcel virtual temperature at nk, the
306        ! actual temperature, and the adiabatic liquid water content.
307    
308        CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
309             tp1, tvp1, clw1, icbs1) ! klev->na
310    
311      if (iflag_con.eq.3) then      ! TRIGGERING
312         CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
313              , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na      CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
314      endif           buoybase1, iflag1, sig1, w01) ! klev->na
315    
316      if (iflag_con.eq.4) then      ! Moist convective adjustment is necessary
317         CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
318      endif      ncum = 0
319        do i = 1, klon
320      !=====================================================================         if (iflag1(i) == 0) then
321      ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY            ncum = ncum + 1
322      !=====================================================================            idcum(ncum) = i
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
323         endif         endif
324      end do      end do
325    
326      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
327           ! COMPRESS THE FIELDS
328           ! (-> vectorization over convective gridpoints)
329    
330      IF (ncum.gt.0) THEN         CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
331                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
332                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
333                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
334                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
335                tvp, clw, sig, w0)
336    
337         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
338         ! --- COMPRESS THE FIELDS         ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
339         !        (-> vectorization over convective gridpoints)         ! &
340         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
341           ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
342         if (iflag_con.eq.3) then         ! &
343            CALL cv3_compress( len, nloc, ncum, nd, ntra &         ! FIND THE LEVEL OF NEUTRAL BUOYANCY
                , iflag1, nk1, icb1, icbs1 &  
                , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &  
                , t1, q1, qs1, u1, v1, gz1, th1 &  
                , tra1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &  
                , sig1, w01 &  
                , iflag, nk, icb, icbs &  
                , plcl, tnk, qnk, gznk, pbase, buoybase &  
                , t, q, qs, u, v, gz, th &  
                , tra &  
                , h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , sig, w0  )  
        endif  
344    
345         if (iflag_con.eq.4) then         CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
346            CALL cv_compress( len, nloc, ncum, nd &              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
347                 , iflag1, nk1, icb1 &              tvp, clw, hp, ep, sigp, buoy) !na->klev
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
348    
349         !-------------------------------------------------------------------         ! CLOSURE
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
350    
351         if (iflag_con.eq.4) then         CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
352            CALL cv_undilute2(nloc, ncum, nd, icb, nk &              buoy, sig, w0, cape, m) ! na->klev
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
353    
354         !-------------------------------------------------------------------         ! MIXING
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
355    
356         if (iflag_con.eq.4) then         CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
357            CALL cv_closure(nloc, ncum, nd, nk, icb &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
358                 , tv, tvp, p, ph, dph, plcl, cpn &              sij, elij, ments, qents)
                , iflag, cbmf)  
        endif  
359    
360         !-------------------------------------------------------------------         ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
361    
362         if (iflag_con.eq.4) then         CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
363            CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &              v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
364                 , ph, t, q, qs, u, v, h, lv, qnk &              plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
365    
366         !-------------------------------------------------------------------         ! YIELD
367         ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS         ! (tendencies, precipitation, variables of interface with other
368         !-------------------------------------------------------------------         ! processes, etc)
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
369    
370         if (iflag_con.eq.4) then         CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
371            CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
372                 , h, lv, ep, sigp, clw, m, ment, elij &              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
373                 , iflag, mp, qp, up, vp, wt, water, evap)              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
374         endif              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
375    
376         !-------------------------------------------------------------------         ! passive tracers
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
377    
378         if (iflag_con.eq.4) then         CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
379    
380         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! UNCOMPRESS THE FIELDS
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
381    
382         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! set iflag1 = 42 for non convective points
383         ! --- UNCOMPRESS THE FIELDS         do i = 1, klon
384         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^            iflag1(i) = 42
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
385         end do         end do
        !  
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
386    
387         if (iflag_con.eq.4) then         CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
388            CALL cv_uncompress(nloc, len, ncum, nd, idcum &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
389                 , iflag &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
390                 , precip, cbmf &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
391                 , ft, fq, fu, fv &              cape1, da1, phi1, mp1)
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
392      ENDIF ! ncum>0      ENDIF ! ncum>0
393    
394    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver

Legend:
Removed from v.52  
changed lines
  Added in v.182

  ViewVC Help
Powered by ViewVC 1.1.21