/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 52 by guez, Fri Sep 23 12:28:01 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 187 by guez, Mon Mar 21 18:01:02 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         cbmf1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, &         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
        qcondc1, wd1, cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
   
     use dimens_m  
     use dimphy  
     !  
     ! PARAMETERS:  
     !      Name            Type         Usage            Description  
     !   ----------      ----------     -------  ----------------------------  
     !  
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      iflag_con     Integer        Input        version of convect (3/4)  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
     !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
     !      dnwd01        Real           Output       unsaturated downward mass flux  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
     !  
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
     !  
     !..............................END PROLOGUE.............................  
     !  
     !  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: iflag_con  
     integer ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real upwd1(len, nd)  
     real dnwd1(len, nd)  
     real dnwd01(len, nd)  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
10    
11      real, intent(in):: delt      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15      !-------------------------------------------------------------------      ! Several modules corresponding to different physical processes
16      ! --- ARGUMENTS  
17      !-------------------------------------------------------------------      use cv30_closure_m, only: cv30_closure
18      ! --- On input:      use cv30_compress_m, only: cv30_compress
19      !      use cv30_feed_m, only: cv30_feed
20      !  t:   Array of absolute temperature (K) of dimension ND, with first      use cv30_mixing_m, only: cv30_mixing
21      !       index corresponding to lowest model level. Note that this array      use cv30_param_m, only: cv30_param
22      !       will be altered by the subroutine if dry convective adjustment      use cv30_prelim_m, only: cv30_prelim
23      !       occurs and if IPBL is not equal to 0.      use cv30_tracer_m, only: cv30_tracer
24      !      use cv30_uncompress_m, only: cv30_uncompress
25      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      use cv30_undilute2_m, only: cv30_undilute2
26      !       index corresponding to lowest model level. Must be defined      use cv30_unsat_m, only: cv30_unsat
27      !       at same grid levels as T. Note that this array will be altered      use cv30_yield_m, only: cv30_yield
28      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      USE dimphy, ONLY: klev, klon
29      !  
30      !  qs:  Array of saturation specific humidity of dimension ND, with first      real, intent(in):: t1(klon, klev)
31      !       index corresponding to lowest model level. Must be defined      ! temperature (K), with first index corresponding to lowest model
32      !       at same grid levels as T. Note that this array will be altered      ! level
33      !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
34      !      real, intent(in):: q1(klon, klev)
35      !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first      ! Specific humidity, with first index corresponding to lowest
36      !       index corresponding with the lowest model level. Defined at      ! model level. Must be defined at same grid levels as T1.
37      !       same levels as T. Note that this array will be altered if  
38      !       dry convective adjustment occurs and if IPBL is not equal to 0.      real, intent(in):: qs1(klon, klev)
39      !      ! Saturation specific humidity, with first index corresponding to
40      !  v:   Same as u but for meridional velocity.      ! lowest model level. Must be defined at same grid levels as
41      !      ! T1.
42      !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
43      !       where NTRA is the number of different tracers. If no      real, intent(in):: u1(klon, klev), v1(klon, klev)
44      !       convective tracer transport is needed, define a dummy      ! Zonal wind and meridional velocity (m/s), witth first index
45      !       input array of dimension (ND, 1). Tracers are defined at      ! corresponding with the lowest model level. Defined at same
46      !       same vertical levels as T. Note that this array will be altered      ! levels as T1.
47      !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
48      !      real, intent(in):: p1(klon, klev)
49      !  p:   Array of pressure (mb) of dimension ND, with first      ! Full level pressure (mb) of dimension KLEV, with first index
50      !       index corresponding to lowest model level. Must be defined      ! corresponding to lowest model level. Must be defined at same
51      !       at same grid levels as T.      ! grid levels as T1.
52      !  
53      !  ph:  Array of pressure (mb) of dimension ND+1, with first index      real, intent(in):: ph1(klon, klev + 1)
54      !       corresponding to lowest level. These pressures are defined at      ! Half level pressure (mb), with first index corresponding to
55      !       levels intermediate between those of P, T, Q and QS. The first      ! lowest level. These pressures are defined at levels intermediate
56      !       value of PH should be greater than (i.e. at a lower level than)      ! between those of P1, T1, Q1 and QS1. The first value of PH
57      !       the first value of the array P.      ! should be greater than (i.e. at a lower level than) the first
58      !      ! value of the array P1.
59      !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
60      !       NL MUST be less than or equal to ND-1.      integer, intent(out):: iflag1(klon)
61      !      ! Flag for Emanuel conditions.
62      !  delt: The model time step (sec) between calls to CONVECT  
63      !      ! 0: Moist convection occurs.
64      !----------------------------------------------------------------------------  
65      ! ---   On Output:      ! 1: Moist convection occurs, but a CFL condition on the
66      !      ! subsidence warming is violated. This does not cause the scheme
67      !  iflag: An output integer whose value denotes the following:      ! to terminate.
68      !       VALUE   INTERPRETATION  
69      !       -----   --------------      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
70      !         0     Moist convection occurs.  
71      !         1     Moist convection occurs, but a CFL condition      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
72      !               on the subsidence warming is violated. This  
73      !               does not cause the scheme to terminate.      ! 4: No moist convection; atmosphere is not unstable
74      !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
75      !         3     No moist convection because new cbmf is 0 and old cbmf is 0.      ! 6: No moist convection because ihmin le minorig.
76      !         4     No moist convection; atmosphere is not  
77      !               unstable      ! 7: No moist convection because unreasonable parcel level
78      !         6     No moist convection because ihmin le minorig.      ! temperature or specific humidity.
79      !         7     No moist convection because unreasonable  
80      !               parcel level temperature or specific humidity.      ! 8: No moist convection: lifted condensation level is above the
81      !         8     No moist convection: lifted condensation      ! 200 mb level.
82      !               level is above the 200 mb level.  
83      !         9     No moist convection: cloud base is higher      ! 9: No moist convection: cloud base is higher then the level NL-1.
     !               then the level NL-1.  
     !  
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
     !  
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
     !  
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
     !  
     !  fv:   Same as FU, but for forcing of meridional velocity.  
     !  
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
     !  
     !  precip: Scalar convective precipitation rate (mm/day).  
     !  
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
     !  
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
     !  
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
     !  
     !  det:   Array of detrainment mass flux of dimension ND.  
     !  
     !-------------------------------------------------------------------  
     !  
     !  Local arrays  
     !  
84    
85      integer i, k, n, il, j      real, intent(out):: ft1(klon, klev)
86        ! Temperature tendency (K/s), defined at same grid levels as T1,
87        ! Q1, QS1 and P1.
88    
89        real, intent(out):: fq1(klon, klev)
90        ! Specific humidity tendencies (s-1), defined at same grid levels
91        ! as T1, Q1, QS1 and P1.
92    
93        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
94        ! Forcing (tendency) of zonal and meridional velocity (m/s^2),
95        ! defined at same grid levels as T1.
96    
97        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
98    
99        real, intent(out):: VPrecip1(klon, klev + 1)
100        ! vertical profile of convective precipitation (kg/m2/s)
101    
102        real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
103    
104        real, intent(inout):: w01(klon, klev)
105        ! vertical velocity within adiabatic updraft
106    
107        integer, intent(out):: icb1(klon)
108        integer, intent(inout):: inb1(klon)
109        real, intent(in):: delt ! the model time step (sec) between calls
110    
111        real Ma1(klon, klev) ! Output mass flux adiabatic updraft
112    
113        real, intent(out):: upwd1(klon, klev)
114        ! total upward mass flux (adiab + mixed)
115    
116        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
117        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
118    
119        real qcondc1(klon, klev) ! Output in-cld mixing ratio of condensed water
120    
121        real wd1(klon) ! gust
122        ! Output downdraft velocity scale for surface fluxes
123        ! A convective downdraft velocity scale. For use in surface
124        ! flux parameterizations. See convect.ps file for details.
125    
126        real cape1(klon) ! Output
127        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
128        real, intent(inout):: mp1(klon, klev)
129    
130        ! Local:
131    
132        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
133    
134        integer i, k, il
135      integer icbmax      integer icbmax
136      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
137      integer icbs1(klon)      integer icbs1(klon)
138    
139      real plcl1(klon)      real plcl1(klon)
140      real tnk1(klon)      real tnk1(klon)
141      real qnk1(klon)      real qnk1(klon)
142      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
143      real pbase1(klon)      real pbase1(klon)
144      real buoybase1(klon)      real buoybase1(klon)
145    
# Line 239  contains Line 152  contains
152      real tp1(klon, klev)      real tp1(klon, klev)
153      real tvp1(klon, klev)      real tvp1(klon, klev)
154      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
155      real th1(klon, klev)      real th1(klon, klev)
156      !  
157      integer ncum      integer ncum
     !  
     ! (local) compressed fields:  
     !  
     integer nloc  
     parameter (nloc=klon) ! pour l'instant  
   
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
158    
159      !-------------------------------------------------------------------      ! Compressed fields:
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
160    
161      ! -- set simulation flags:      integer idcum(klon)
162      !   (common cvflag)      integer iflag(klon), nk(klon), icb(klon)
163        integer nent(klon, klev)
164        integer icbs(klon)
165        integer inb(klon)
166    
167        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
168        real t(klon, klev), q(klon, klev), qs(klon, klev)
169        real u(klon, klev), v(klon, klev)
170        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
171        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
172        real clw(klon, klev)
173        real pbase(klon), buoybase(klon), th(klon, klev)
174        real tvp(klon, klev)
175        real sig(klon, klev), w0(klon, klev)
176        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
177        real buoy(klon, klev)
178        real cape(klon)
179        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
180        real uent(klon, klev, klev), vent(klon, klev, klev)
181        real ments(klon, klev, klev), qents(klon, klev, klev)
182        real sij(klon, klev, klev), elij(klon, klev, klev)
183        real qp(klon, klev), up(klon, klev), vp(klon, klev)
184        real wt(klon, klev), water(klon, klev), evap(klon, klev)
185        real b(klon, klev), ft(klon, klev), fq(klon, klev)
186        real fu(klon, klev), fv(klon, klev)
187        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
188        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
189        real tps(klon, klev)
190        real precip(klon)
191        real VPrecip(klon, klev + 1)
192        real qcondc(klon, klev) ! cld
193        real wd(klon) ! gust
194    
195      CALL cv_flag      !-------------------------------------------------------------------
196    
197      ! -- set thermodynamical constants:      ! SET CONSTANTS AND PARAMETERS
     !     (common cvthermo)  
198    
199      CALL cv_thermo(iflag_con)      ! set thermodynamical constants:
200        ! (common cvthermo)
201      ! -- set convect parameters      CALL cv_thermo
202      !  
203      !     includes microphysical parameters and parameters that      ! set convect parameters
204      !     control the rate of approach to quasi-equilibrium)      ! includes microphysical parameters and parameters that
205      !     (common cvparam)      ! control the rate of approach to quasi-equilibrium)
206        ! (common cvparam)
207      if (iflag_con.eq.3) then      CALL cv30_param(delt)
208         CALL cv3_param(nd, delt)  
209      endif      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
210    
211      if (iflag_con.eq.4) then      do k = 1, klev
212         CALL cv_param(nd)         do i = 1, klon
213      endif            ft1(i, k) = 0.
214              fq1(i, k) = 0.
215      !---------------------------------------------------------------------            fu1(i, k) = 0.
216      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            fv1(i, k) = 0.
217      !---------------------------------------------------------------------            tvp1(i, k) = 0.
218              tp1(i, k) = 0.
219      do k=1, nd            clw1(i, k) = 0.
220         do  i=1, len            clw(i, k) = 0.
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
221            gz1(i, k) = 0.            gz1(i, k) = 0.
222            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
223            Ma1(i, k)=0.0            Ma1(i, k) = 0.
224            upwd1(i, k)=0.0            upwd1(i, k) = 0.
225            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
226            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
227            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
228         end do         end do
229      end do      end do
230    
231      do  j=1, ntra      do i = 1, klon
232         do  k=1, nd         precip1(i) = 0.
233            do  i=1, len         iflag1(i) = 0
234               ftra1(i, k, j)=0.0         wd1(i) = 0.
235            end do         cape1(i) = 0.
236         end do         VPrecip1(i, klev + 1) = 0.
     end do  
   
     do  i=1, len  
        precip1(i)=0.0  
        iflag1(i)=0  
        wd1(i)=0.0  
        cape1(i)=0.0  
        VPrecip1(i, nd+1)=0.0  
237      end do      end do
238    
239      if (iflag_con.eq.3) then      do il = 1, klon
240         do il=1, len         sig1(il, klev) = sig1(il, klev) + 1.
241            sig1(il, nd)=sig1(il, nd)+1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
242            sig1(il, nd)=amin1(sig1(il, nd), 12.1)      enddo
243         enddo  
244      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
245        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
246      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
247      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
248      !--------------------------------------------------------------------      ! CONVECTIVE FEED
249        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
250      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
251         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
252              h1, hm1, th1)! nd->na      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
253      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
254        ! Calculates the lifted parcel virtual temperature at nk, the
255      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
256         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
257              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
258      endif  
259        ! TRIGGERING
260      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
261      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
262      !--------------------------------------------------------------------  
263        ! Moist convective adjustment is necessary
264      if (iflag_con.eq.3) then  
265         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &      ncum = 0
266              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na      do i = 1, klon
267      endif         if (iflag1(i) == 0) then
268              ncum = ncum + 1
269      if (iflag_con.eq.4) then            idcum(ncum) = i
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
270         endif         endif
271      end do      end do
272    
273      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
274           ! COMPRESS THE FIELDS
275      IF (ncum.gt.0) THEN         ! (-> vectorization over convective gridpoints)
276           CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
277         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
278         ! --- COMPRESS THE FIELDS              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
279         !        (-> vectorization over convective gridpoints)              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
280         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
281                tvp, clw, sig, w0)
282         if (iflag_con.eq.3) then  
283            CALL cv3_compress( len, nloc, ncum, nd, ntra &         CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
284                 , iflag1, nk1, icb1, icbs1 &              h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
285                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &              ep, sigp, buoy)
286                 , t1, q1, qs1, u1, v1, gz1, th1 &  
287                 , tra1 &         ! CLOSURE
288                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
289                 , sig1, w01 &              buoy, sig, w0, cape, m) ! na->klev
290                 , iflag, nk, icb, icbs &  
291                 , plcl, tnk, qnk, gznk, pbase, buoybase &         ! MIXING
292                 , t, q, qs, u, v, gz, th &         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
293                 , tra &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
294                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &              sij, elij, ments, qents)
295                 , sig, w0  )  
296         endif         ! Unsaturated (precipitating) downdrafts
297           CALL cv30_unsat(ncum, icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, &
298         if (iflag_con.eq.4) then              ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, &
299            CALL cv_compress( len, nloc, ncum, nd &              mp, qp, up, vp, wt, water, evap, b(:ncum, :))
300                 , iflag1, nk1, icb1 &  
301                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         ! Yield (tendencies, precipitation, variables of interface with
302                 , t1, q1, qs1, u1, v1, gz1 &         ! other processes, etc)
303                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &         CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
304                 , iflag, nk, icb &              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
305                 , cbmf, plcl, tnk, qnk, gznk &              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
306                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
307                 , dph )              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
308         endif  
309           ! passive tracers
310         !-------------------------------------------------------------------         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
311         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
312         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES         ! UNCOMPRESS THE FIELDS
313         ! ---   &  
314         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE         ! set iflag1 = 42 for non convective points
315         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD         iflag1 = 42
316         ! ---   &  
317         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
318         !-------------------------------------------------------------------              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
319                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
320         if (iflag_con.eq.3) then              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
321            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &              cape1, da1, phi1, mp1)
322                 , tnk, qnk, gznk, t, q, qs, gz &      ENDIF
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
        !  
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
323    
324    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
325    

Legend:
Removed from v.52  
changed lines
  Added in v.187

  ViewVC Help
Powered by ViewVC 1.1.21