/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 69 by guez, Mon Feb 18 16:33:12 2013 UTC trunk/Sources/phylmd/cv_driver.f revision 186 by guez, Mon Mar 21 15:36:26 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15      use clesphys2, only: iflag_con      ! Several modules corresponding to different physical processes
     use cv3_param_m, only: cv3_param  
     USE dimphy, ONLY: klev, klon  
   
     ! PARAMETERS:  
     !      Name            Type         Usage            Description  
     !   ----------      ----------     -------  ----------------------------  
   
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
   
     real, intent(in):: delt  
16    
17      !-------------------------------------------------------------------      use cv30_compress_m, only: cv30_compress
18      ! --- ARGUMENTS      use cv30_feed_m, only: cv30_feed
19      !-------------------------------------------------------------------      use cv30_mixing_m, only: cv30_mixing
20      ! --- On input:      use cv30_param_m, only: cv30_param
21        use cv30_prelim_m, only: cv30_prelim
22        use cv30_tracer_m, only: cv30_tracer
23        use cv30_uncompress_m, only: cv30_uncompress
24        use cv30_undilute2_m, only: cv30_undilute2
25        use cv30_unsat_m, only: cv30_unsat
26        use cv30_yield_m, only: cv30_yield
27        USE dimphy, ONLY: klev, klon
28    
29      !  t:   Array of absolute temperature (K) of dimension ND, with first      real, intent(in):: t1(klon, klev) ! temperature
30      !       index corresponding to lowest model level. Note that this array      real, intent(in):: q1(klon, klev) ! specific hum
31      !       will be altered by the subroutine if dry convective adjustment      real, intent(in):: qs1(klon, klev) ! sat specific hum
32      !       occurs and if IPBL is not equal to 0.      real, intent(in):: u1(klon, klev) ! u-wind
33        real, intent(in):: v1(klon, klev) ! v-wind
34      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      real, intent(in):: p1(klon, klev) ! full level pressure
35      !       index corresponding to lowest model level. Must be defined      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
36      !       at same grid levels as T. Note that this array will be altered      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
37      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      real, intent(out):: ft1(klon, klev) ! temp tend
38        real, intent(out):: fq1(klon, klev) ! spec hum tend
39      !  qs:  Array of saturation specific humidity of dimension ND, with first      real, intent(out):: fu1(klon, klev) ! u-wind tend
40      !       index corresponding to lowest model level. Must be defined      real, intent(out):: fv1(klon, klev) ! v-wind tend
41      !       at same grid levels as T. Note that this array will be altered      real, intent(out):: precip1(klon) ! precipitation
42      !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
43        real, intent(out):: VPrecip1(klon, klev + 1)
44      !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first      ! vertical profile of precipitation
45      !       index corresponding with the lowest model level. Defined at  
46      !       same levels as T. Note that this array will be altered if      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47      !       dry convective adjustment occurs and if IPBL is not equal to 0.  
48        real, intent(inout):: w01(klon, klev)
49      !  v:   Same as u but for meridional velocity.      ! vertical velocity within adiabatic updraft
50    
51      !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),      integer, intent(out):: icb1(klon)
52      !       where NTRA is the number of different tracers. If no      integer, intent(inout):: inb1(klon)
53      !       convective tracer transport is needed, define a dummy      real, intent(in):: delt ! time step
54      !       input array of dimension (ND, 1). Tracers are defined at      real Ma1(klon, klev)
55      !       same vertical levels as T. Note that this array will be altered      ! Ma1 Real Output mass flux adiabatic updraft
56      !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
57        real, intent(out):: upwd1(klon, klev)
58      !  p:   Array of pressure (mb) of dimension ND, with first      ! total upward mass flux (adiab + mixed)
59      !       index corresponding to lowest model level. Must be defined  
60      !       at same grid levels as T.      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
62      !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
63      !       corresponding to lowest level. These pressures are defined at      real qcondc1(klon, klev) ! cld
64      !       levels intermediate between those of P, T, Q and QS. The first      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      !       value of PH should be greater than (i.e. at a lower level than)      real wd1(klon) ! gust
66      !       the first value of the array P.      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68      !  nl:  The maximum number of levels to which convection can penetrate, plus 1.      ! cape1 Real Output CAPE
69      !       NL MUST be less than or equal to ND-1.  
70        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71      !  delt: The model time step (sec) between calls to CONVECT      real, intent(inout):: mp1(klon, klev)
72    
73      !----------------------------------------------------------------------------      ! ARGUMENTS
74      ! ---   On Output:  
75        ! On input:
76      !  iflag: An output integer whose value denotes the following:  
77      !       VALUE   INTERPRETATION      ! t: Array of absolute temperature (K) of dimension KLEV, with first
78      !       -----   --------------      ! index corresponding to lowest model level. Note that this array
79      !         0     Moist convection occurs.      ! will be altered by the subroutine if dry convective adjustment
80      !         1     Moist convection occurs, but a CFL condition      ! occurs and if IPBL is not equal to 0.
81      !               on the subsidence warming is violated. This  
82      !               does not cause the scheme to terminate.      ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83      !         2     Moist convection, but no precip because ep(inb) lt 0.0001      ! index corresponding to lowest model level. Must be defined
84      !         3     No moist convection because new cbmf is 0 and old cbmf is 0.      ! at same grid levels as T. Note that this array will be altered
85      !         4     No moist convection; atmosphere is not      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86      !               unstable  
87      !         6     No moist convection because ihmin le minorig.      ! qs: Array of saturation specific humidity of dimension KLEV, with first
88      !         7     No moist convection because unreasonable      ! index corresponding to lowest model level. Must be defined
89      !               parcel level temperature or specific humidity.      ! at same grid levels as T. Note that this array will be altered
90      !         8     No moist convection: lifted condensation      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91      !               level is above the 200 mb level.  
92      !         9     No moist convection: cloud base is higher      ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93      !               then the level NL-1.      ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95      !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same      ! dry convective adjustment occurs and if IPBL is not equal to 0.
96      !        grid levels as T, Q, QS and P.  
97        ! v: Same as u but for meridional velocity.
98      !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
99      !        defined at same grid levels as T, Q, QS and P.      ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101      !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,      ! at same grid levels as T.
102      !        defined at same grid levels as T.  
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104      !  fv:   Same as FU, but for forcing of meridional velocity.      ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106      !  ftra: Array of forcing of tracer content, in tracer mixing ratio per      ! value of PH should be greater than (i.e. at a lower level than)
107      !        second, defined at same levels as T. Dimensioned (ND, NTRA).      ! the first value of the array P.
108    
109      !  precip: Scalar convective precipitation rate (mm/day).      ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111      !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
112        ! delt: The model time step (sec) between calls to CONVECT
113      !  wd:   A convective downdraft velocity scale. For use in surface  
114      !        flux parameterizations. See convect.ps file for details.      ! On Output:
115    
116      !  tprime: A convective downdraft temperature perturbation scale (K).      ! iflag: An output integer whose value denotes the following:
117      !          For use in surface flux parameterizations. See convect.ps      ! VALUE INTERPRETATION
118      !          file for details.      ! ----- --------------
119        ! 0 Moist convection occurs.
120      !  qprime: A convective downdraft specific humidity      ! 1 Moist convection occurs, but a CFL condition
121      !          perturbation scale (gm/gm).      ! on the subsidence warming is violated. This
122      !          For use in surface flux parameterizations. See convect.ps      ! does not cause the scheme to terminate.
123      !          file for details.      ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125      !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST      ! 4 No moist convection; atmosphere is not
126      !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT      ! unstable
127      !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"      ! 6 No moist convection because ihmin le minorig.
128      !        by the calling program between calls to CONVECT.      ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167      !  det:   Array of detrainment mass flux of dimension ND.      ! det: Array of detrainment mass flux of dimension KLEV.
168    
169      !-------------------------------------------------------------------      ! Local arrays
170    
171      !  Local arrays      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
172    
173      integer i, k, n, il, j      integer i, k, il
174      integer icbmax      integer icbmax
175      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
176      integer icbs1(klon)      integer icbs1(klon)
177    
178      real plcl1(klon)      real plcl1(klon)
179      real tnk1(klon)      real tnk1(klon)
180      real qnk1(klon)      real qnk1(klon)
181      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
182      real pbase1(klon)      real pbase1(klon)
183      real buoybase1(klon)      real buoybase1(klon)
184    
# Line 232  contains Line 191  contains
191      real tp1(klon, klev)      real tp1(klon, klev)
192      real tvp1(klon, klev)      real tvp1(klon, klev)
193      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
194      real th1(klon, klev)      real th1(klon, klev)
195    
196      integer ncum      integer ncum
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc=klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203      integer idcum(nloc)      integer icbs(klon)
204      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon)
205      integer nent(nloc, klev)  
206      integer icbs(nloc)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207      integer inb(nloc), inbis(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
212      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
213      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real tvp(klon, klev)
214      real clw(nloc, klev)      real sig(klon, klev), w0(klon, klev)
215      real dph(nloc, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
216      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real buoy(klon, klev)
217      real tvp(nloc, klev)      real cape(klon)
218      real sig(nloc, klev), w0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
219      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
220      real frac(nloc), buoy(nloc, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
221      real cape(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
222      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
223      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
224      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real b(klon, klev), ft(klon, klev), fq(klon, klev)
225      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real fu(klon, klev), fv(klon, klev)
226      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
227      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
228      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real tps(klon, klev)
229      real fu(nloc, klev), fv(nloc, klev)      real precip(klon)
230      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real VPrecip(klon, klev + 1)
231      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real qcondc(klon, klev) ! cld
232      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real wd(klon) ! gust
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
233    
234      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
235    
236      CALL cv_flag      ! SET CONSTANTS AND PARAMETERS
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
237    
238        ! set thermodynamical constants:
239        ! (common cvthermo)
240      CALL cv_thermo      CALL cv_thermo
241    
242      ! -- set convect parameters      ! set convect parameters
243        ! includes microphysical parameters and parameters that
244      !     includes microphysical parameters and parameters that      ! control the rate of approach to quasi-equilibrium)
245      !     control the rate of approach to quasi-equilibrium)      ! (common cvparam)
246      !     (common cvparam)  
247        CALL cv30_param(delt)
248      if (iflag_con.eq.3) then  
249         CALL cv3_param(nd, delt)      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
250      endif  
251        do k = 1, klev
252      if (iflag_con.eq.4) then         do i = 1, klon
253         CALL cv_param(nd)            ft1(i, k) = 0.0
254      endif            fq1(i, k) = 0.0
255              fu1(i, k) = 0.0
256      !---------------------------------------------------------------------            fv1(i, k) = 0.0
257      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            tvp1(i, k) = 0.0
258      !---------------------------------------------------------------------            tp1(i, k) = 0.0
259              clw1(i, k) = 0.0
260      do k=1, nd            clw(i, k) = 0.0
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
261            gz1(i, k) = 0.            gz1(i, k) = 0.
262            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
263            Ma1(i, k)=0.0            Ma1(i, k) = 0.0
264            upwd1(i, k)=0.0            upwd1(i, k) = 0.0
265            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.0
266            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.0
267            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.0
268         end do         end do
269      end do      end do
270    
271      do  j=1, ntra      do i = 1, klon
272         do  k=1, nd         precip1(i) = 0.0
273            do  i=1, len         iflag1(i) = 0
274               ftra1(i, k, j)=0.0         wd1(i) = 0.0
275            end do         cape1(i) = 0.0
276         end do         VPrecip1(i, klev + 1) = 0.0
277      end do      end do
278    
279      do  i=1, len      do il = 1, klon
280         precip1(i)=0.0         sig1(il, klev) = sig1(il, klev) + 1.
281         iflag1(i)=0         sig1(il, klev) = min(sig1(il, klev), 12.1)
282         wd1(i)=0.0      enddo
283         cape1(i)=0.0  
284         VPrecip1(i, nd+1)=0.0      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
285      end do      CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
286             gz1, h1, hm1, th1)
287      if (iflag_con.eq.3) then  
288         do il=1, len      ! CONVECTIVE FEED
289            sig1(il, nd)=sig1(il, nd)+1.      CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
290            sig1(il, nd)=amin1(sig1(il, nd), 12.1)           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
291         enddo  
292      endif      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
293        ! (up through ICB for convect4, up through ICB + 1 for convect3)
294      !--------------------------------------------------------------------      ! Calculates the lifted parcel virtual temperature at nk, the
295      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY      ! actual temperature, and the adiabatic liquid water content.
296      !--------------------------------------------------------------------      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
297             tp1, tvp1, clw1, icbs1) ! klev->na
298      if (iflag_con.eq.3) then  
299         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &      ! TRIGGERING
300              h1, hm1, th1)! nd->na      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
301      endif           buoybase1, iflag1, sig1, w01) ! klev->na
302    
303      if (iflag_con.eq.4) then      ! Moist convective adjustment is necessary
304         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &  
305              , lv1, cpn1, tv1, gz1, h1, hm1)      ncum = 0
306      endif      do i = 1, klon
307           if (iflag1(i) == 0) then
308      !--------------------------------------------------------------------            ncum = ncum + 1
309      ! --- CONVECTIVE FEED            idcum(ncum) = i
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
310         endif         endif
311      end do      end do
312    
313      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
314           ! COMPRESS THE FIELDS
315      IF (ncum.gt.0) THEN         ! (-> vectorization over convective gridpoints)
316           CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
317         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
318         ! --- COMPRESS THE FIELDS              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
319         !        (-> vectorization over convective gridpoints)              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
320         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
321                tvp, clw, sig, w0)
322         if (iflag_con.eq.3) then  
323            CALL cv3_compress( len, nloc, ncum, nd, ntra &         ! Undilute (adiabatic) updraft, second part: find the rest of
324                 , iflag1, nk1, icb1, icbs1 &         ! the lifted parcel temperatures; compute the precipitation
325                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &         ! efficiencies and the fraction of precipitation falling
326                 , t1, q1, qs1, u1, v1, gz1, th1 &         ! outside of cloud; find the level of neutral buoyancy.
327                 , tra1 &         CALL cv30_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
328                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
329                 , sig1, w01 &              tvp, clw, hp, ep, sigp, buoy) !na->klev
330                 , iflag, nk, icb, icbs &  
331                 , plcl, tnk, qnk, gznk, pbase, buoybase &         ! CLOSURE
332                 , t, q, qs, u, v, gz, th &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
333                 , tra &              buoy, sig, w0, cape, m) ! na->klev
334                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
335                 , sig, w0  )         ! MIXING
336         endif         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
337                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
338         if (iflag_con.eq.4) then              sij, elij, ments, qents)
339            CALL cv_compress( len, nloc, ncum, nd &  
340                 , iflag1, nk1, icb1 &         ! Unsaturated (precipitating) downdrafts
341                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         CALL cv30_unsat(klon, ncum, klev, klev, icb(:ncum), inb(:ncum), t, q, &
342                 , t1, q1, qs1, u1, v1, gz1 &              qs, gz, u, v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, &
343                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &              elij, delt, plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
344                 , iflag, nk, icb &  
345                 , cbmf, plcl, tnk, qnk, gznk &         ! Yield (tendencies, precipitation, variables of interface with
346                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &         ! other processes, etc)
347                 , dph )         CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
348         endif              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
349                wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
350         !-------------------------------------------------------------------              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
351         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
352         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
353         ! ---   &         ! passive tracers
354         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
355         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
356         ! ---   &         ! UNCOMPRESS THE FIELDS
357         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
358         !-------------------------------------------------------------------         ! set iflag1 = 42 for non convective points
359           iflag1 = 42
360         if (iflag_con.eq.3) then  
361            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
362                 , tnk, qnk, gznk, t, q, qs, gz &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
363                 , p, h, tv, lv, pbase, buoybase, plcl &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
364                 , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
365         endif              cape1, da1, phi1, mp1)
366        ENDIF
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
367    
368    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
369    

Legend:
Removed from v.69  
changed lines
  Added in v.186

  ViewVC Help
Powered by ViewVC 1.1.21