/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 69 by guez, Mon Feb 18 16:33:12 2013 UTC trunk/Sources/phylmd/cv_driver.f revision 187 by guez, Mon Mar 21 18:01:02 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17      use clesphys2, only: iflag_con      use cv30_closure_m, only: cv30_closure
18      use cv3_param_m, only: cv3_param      use cv30_compress_m, only: cv30_compress
19        use cv30_feed_m, only: cv30_feed
20        use cv30_mixing_m, only: cv30_mixing
21        use cv30_param_m, only: cv30_param
22        use cv30_prelim_m, only: cv30_prelim
23        use cv30_tracer_m, only: cv30_tracer
24        use cv30_uncompress_m, only: cv30_uncompress
25        use cv30_undilute2_m, only: cv30_undilute2
26        use cv30_unsat_m, only: cv30_unsat
27        use cv30_yield_m, only: cv30_yield
28      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
29    
30      ! PARAMETERS:      real, intent(in):: t1(klon, klev)
31      !      Name            Type         Usage            Description      ! temperature (K), with first index corresponding to lowest model
32      !   ----------      ----------     -------  ----------------------------      ! level
   
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
33    
34      real, intent(in):: delt      real, intent(in):: q1(klon, klev)
35        ! Specific humidity, with first index corresponding to lowest
36        ! model level. Must be defined at same grid levels as T1.
37    
38      !-------------------------------------------------------------------      real, intent(in):: qs1(klon, klev)
39      ! --- ARGUMENTS      ! Saturation specific humidity, with first index corresponding to
40      !-------------------------------------------------------------------      ! lowest model level. Must be defined at same grid levels as
41      ! --- On input:      ! T1.
42    
43      !  t:   Array of absolute temperature (K) of dimension ND, with first      real, intent(in):: u1(klon, klev), v1(klon, klev)
44      !       index corresponding to lowest model level. Note that this array      ! Zonal wind and meridional velocity (m/s), witth first index
45      !       will be altered by the subroutine if dry convective adjustment      ! corresponding with the lowest model level. Defined at same
46      !       occurs and if IPBL is not equal to 0.      ! levels as T1.
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
47    
48      !  det:   Array of detrainment mass flux of dimension ND.      real, intent(in):: p1(klon, klev)
49        ! Full level pressure (mb) of dimension KLEV, with first index
50        ! corresponding to lowest model level. Must be defined at same
51        ! grid levels as T1.
52    
53      !-------------------------------------------------------------------      real, intent(in):: ph1(klon, klev + 1)
54        ! Half level pressure (mb), with first index corresponding to
55        ! lowest level. These pressures are defined at levels intermediate
56        ! between those of P1, T1, Q1 and QS1. The first value of PH
57        ! should be greater than (i.e. at a lower level than) the first
58        ! value of the array P1.
59    
60        integer, intent(out):: iflag1(klon)
61        ! Flag for Emanuel conditions.
62    
63        ! 0: Moist convection occurs.
64    
65        ! 1: Moist convection occurs, but a CFL condition on the
66        ! subsidence warming is violated. This does not cause the scheme
67        ! to terminate.
68    
69        ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
70    
71        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
72    
73        ! 4: No moist convection; atmosphere is not unstable
74    
75        ! 6: No moist convection because ihmin le minorig.
76    
77        ! 7: No moist convection because unreasonable parcel level
78        ! temperature or specific humidity.
79    
80        ! 8: No moist convection: lifted condensation level is above the
81        ! 200 mb level.
82    
83        ! 9: No moist convection: cloud base is higher then the level NL-1.
84    
85        real, intent(out):: ft1(klon, klev)
86        ! Temperature tendency (K/s), defined at same grid levels as T1,
87        ! Q1, QS1 and P1.
88    
89        real, intent(out):: fq1(klon, klev)
90        ! Specific humidity tendencies (s-1), defined at same grid levels
91        ! as T1, Q1, QS1 and P1.
92    
93        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
94        ! Forcing (tendency) of zonal and meridional velocity (m/s^2),
95        ! defined at same grid levels as T1.
96    
97        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
98    
99      !  Local arrays      real, intent(out):: VPrecip1(klon, klev + 1)
100        ! vertical profile of convective precipitation (kg/m2/s)
101    
102      integer i, k, n, il, j      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
103    
104        real, intent(inout):: w01(klon, klev)
105        ! vertical velocity within adiabatic updraft
106    
107        integer, intent(out):: icb1(klon)
108        integer, intent(inout):: inb1(klon)
109        real, intent(in):: delt ! the model time step (sec) between calls
110    
111        real Ma1(klon, klev) ! Output mass flux adiabatic updraft
112    
113        real, intent(out):: upwd1(klon, klev)
114        ! total upward mass flux (adiab + mixed)
115    
116        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
117        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
118    
119        real qcondc1(klon, klev) ! Output in-cld mixing ratio of condensed water
120    
121        real wd1(klon) ! gust
122        ! Output downdraft velocity scale for surface fluxes
123        ! A convective downdraft velocity scale. For use in surface
124        ! flux parameterizations. See convect.ps file for details.
125    
126        real cape1(klon) ! Output
127        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
128        real, intent(inout):: mp1(klon, klev)
129    
130        ! Local:
131    
132        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
133    
134        integer i, k, il
135      integer icbmax      integer icbmax
136      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
137      integer icbs1(klon)      integer icbs1(klon)
138    
139      real plcl1(klon)      real plcl1(klon)
140      real tnk1(klon)      real tnk1(klon)
141      real qnk1(klon)      real qnk1(klon)
142      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
143      real pbase1(klon)      real pbase1(klon)
144      real buoybase1(klon)      real buoybase1(klon)
145    
# Line 232  contains Line 152  contains
152      real tp1(klon, klev)      real tp1(klon, klev)
153      real tvp1(klon, klev)      real tvp1(klon, klev)
154      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
155      real th1(klon, klev)      real th1(klon, klev)
156    
157      integer ncum      integer ncum
158    
159      ! (local) compressed fields:      ! Compressed fields:
   
     integer nloc  
     parameter (nloc=klon) ! pour l'instant  
160    
161      integer idcum(nloc)      integer idcum(klon)
162      integer iflag(nloc), nk(nloc), icb(nloc)      integer iflag(klon), nk(klon), icb(klon)
163      integer nent(nloc, klev)      integer nent(klon, klev)
164      integer icbs(nloc)      integer icbs(klon)
165      integer inb(nloc), inbis(nloc)      integer inb(klon)
166    
167      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
168      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real t(klon, klev), q(klon, klev), qs(klon, klev)
169      real u(nloc, klev), v(nloc, klev)      real u(klon, klev), v(klon, klev)
170      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
171      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
172      real clw(nloc, klev)      real clw(klon, klev)
173      real dph(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
174      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real tvp(klon, klev)
175      real tvp(nloc, klev)      real sig(klon, klev), w0(klon, klev)
176      real sig(nloc, klev), w0(nloc, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
177      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real buoy(klon, klev)
178      real frac(nloc), buoy(nloc, klev)      real cape(klon)
179      real cape(nloc)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
180      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
181      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
182      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real sij(klon, klev, klev), elij(klon, klev, klev)
183      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
184      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
185      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real b(klon, klev), ft(klon, klev), fq(klon, klev)
186      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real fu(klon, klev), fv(klon, klev)
187      real fu(nloc, klev), fv(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
188      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
189      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real tps(klon, klev)
190      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real precip(klon)
191      real precip(nloc)      real VPrecip(klon, klev + 1)
192      real VPrecip(nloc, klev+1)      real qcondc(klon, klev) ! cld
193      real tra(nloc, klev, ntra), trap(nloc, klev, ntra)      real wd(klon) ! gust
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
194    
195      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
   
     CALL cv_flag  
196    
197      ! -- set thermodynamical constants:      ! SET CONSTANTS AND PARAMETERS
     !     (common cvthermo)  
198    
199        ! set thermodynamical constants:
200        ! (common cvthermo)
201      CALL cv_thermo      CALL cv_thermo
202    
203      ! -- set convect parameters      ! set convect parameters
204        ! includes microphysical parameters and parameters that
205      !     includes microphysical parameters and parameters that      ! control the rate of approach to quasi-equilibrium)
206      !     control the rate of approach to quasi-equilibrium)      ! (common cvparam)
207      !     (common cvparam)      CALL cv30_param(delt)
208    
209      if (iflag_con.eq.3) then      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
210         CALL cv3_param(nd, delt)  
211      endif      do k = 1, klev
212           do i = 1, klon
213      if (iflag_con.eq.4) then            ft1(i, k) = 0.
214         CALL cv_param(nd)            fq1(i, k) = 0.
215      endif            fu1(i, k) = 0.
216              fv1(i, k) = 0.
217      !---------------------------------------------------------------------            tvp1(i, k) = 0.
218      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            tp1(i, k) = 0.
219      !---------------------------------------------------------------------            clw1(i, k) = 0.
220              clw(i, k) = 0.
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
221            gz1(i, k) = 0.            gz1(i, k) = 0.
222            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
223            Ma1(i, k)=0.0            Ma1(i, k) = 0.
224            upwd1(i, k)=0.0            upwd1(i, k) = 0.
225            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
226            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
227            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
        end do  
     end do  
   
     do  j=1, ntra  
        do  k=1, nd  
           do  i=1, len  
              ftra1(i, k, j)=0.0  
           end do  
228         end do         end do
229      end do      end do
230    
231      do  i=1, len      do i = 1, klon
232         precip1(i)=0.0         precip1(i) = 0.
233         iflag1(i)=0         iflag1(i) = 0
234         wd1(i)=0.0         wd1(i) = 0.
235         cape1(i)=0.0         cape1(i) = 0.
236         VPrecip1(i, nd+1)=0.0         VPrecip1(i, klev + 1) = 0.
237      end do      end do
238    
239      if (iflag_con.eq.3) then      do il = 1, klon
240         do il=1, len         sig1(il, klev) = sig1(il, klev) + 1.
241            sig1(il, nd)=sig1(il, nd)+1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
242            sig1(il, nd)=amin1(sig1(il, nd), 12.1)      enddo
243         enddo  
244      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
245        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
246      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
247      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
248      !--------------------------------------------------------------------      ! CONVECTIVE FEED
249        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
250      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
251         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
252              h1, hm1, th1)! nd->na      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
253      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
254        ! Calculates the lifted parcel virtual temperature at nk, the
255      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
256         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
257              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
258      endif  
259        ! TRIGGERING
260      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
261      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
262      !--------------------------------------------------------------------  
263        ! Moist convective adjustment is necessary
264      if (iflag_con.eq.3) then  
265         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &      ncum = 0
266              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na      do i = 1, klon
267      endif         if (iflag1(i) == 0) then
268              ncum = ncum + 1
269      if (iflag_con.eq.4) then            idcum(ncum) = i
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
270         endif         endif
271      end do      end do
272    
273      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
274           ! COMPRESS THE FIELDS
275      IF (ncum.gt.0) THEN         ! (-> vectorization over convective gridpoints)
276           CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
277         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
278         ! --- COMPRESS THE FIELDS              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
279         !        (-> vectorization over convective gridpoints)              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
280         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
281                tvp, clw, sig, w0)
282         if (iflag_con.eq.3) then  
283            CALL cv3_compress( len, nloc, ncum, nd, ntra &         CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
284                 , iflag1, nk1, icb1, icbs1 &              h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
285                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &              ep, sigp, buoy)
286                 , t1, q1, qs1, u1, v1, gz1, th1 &  
287                 , tra1 &         ! CLOSURE
288                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
289                 , sig1, w01 &              buoy, sig, w0, cape, m) ! na->klev
290                 , iflag, nk, icb, icbs &  
291                 , plcl, tnk, qnk, gznk, pbase, buoybase &         ! MIXING
292                 , t, q, qs, u, v, gz, th &         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
293                 , tra &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
294                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &              sij, elij, ments, qents)
295                 , sig, w0  )  
296         endif         ! Unsaturated (precipitating) downdrafts
297           CALL cv30_unsat(ncum, icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, &
298         if (iflag_con.eq.4) then              ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, &
299            CALL cv_compress( len, nloc, ncum, nd &              mp, qp, up, vp, wt, water, evap, b(:ncum, :))
300                 , iflag1, nk1, icb1 &  
301                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         ! Yield (tendencies, precipitation, variables of interface with
302                 , t1, q1, qs1, u1, v1, gz1 &         ! other processes, etc)
303                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &         CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
304                 , iflag, nk, icb &              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
305                 , cbmf, plcl, tnk, qnk, gznk &              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
306                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
307                 , dph )              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
308         endif  
309           ! passive tracers
310         !-------------------------------------------------------------------         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
311         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
312         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES         ! UNCOMPRESS THE FIELDS
313         ! ---   &  
314         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE         ! set iflag1 = 42 for non convective points
315         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD         iflag1 = 42
316         ! ---   &  
317         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
318         !-------------------------------------------------------------------              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
319                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
320         if (iflag_con.eq.3) then              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
321            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &              cape1, da1, phi1, mp1)
322                 , tnk, qnk, gznk, t, q, qs, gz &      ENDIF
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
323    
324    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
325    

Legend:
Removed from v.69  
changed lines
  Added in v.187

  ViewVC Help
Powered by ViewVC 1.1.21