/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f90 revision 76 by guez, Fri Nov 15 18:45:49 2013 UTC trunk/Sources/phylmd/cv_driver.f revision 186 by guez, Mon Mar 21 15:36:26 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
     ! S. Bony, Mar 2002:  
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use cv30_compress_m, only: cv30_compress
18      ! - iflag_con=3: version lmd  (previously named convect3)      use cv30_feed_m, only: cv30_feed
19      ! - iflag_con=4: version 4.3b (vect. version, previously convect1/2)      use cv30_mixing_m, only: cv30_mixing
20        use cv30_param_m, only: cv30_param
21      ! Plus tard :      use cv30_prelim_m, only: cv30_prelim
22      ! - iflag_con=5: version lmd with ice (previously named convectg)      use cv30_tracer_m, only: cv30_tracer
23        use cv30_uncompress_m, only: cv30_uncompress
24        use cv30_undilute2_m, only: cv30_undilute2
25        use cv30_unsat_m, only: cv30_unsat
26        use cv30_yield_m, only: cv30_yield
27        USE dimphy, ONLY: klev, klon
28    
29      ! S. Bony, Oct 2002:      real, intent(in):: t1(klon, klev) ! temperature
30      ! Vectorization of convect3 (ie version lmd)      real, intent(in):: q1(klon, klev) ! specific hum
31        real, intent(in):: qs1(klon, klev) ! sat specific hum
32        real, intent(in):: u1(klon, klev) ! u-wind
33        real, intent(in):: v1(klon, klev) ! v-wind
34        real, intent(in):: p1(klon, klev) ! full level pressure
35        real, intent(in):: ph1(klon, klev + 1) ! half level pressure
36        integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
37        real, intent(out):: ft1(klon, klev) ! temp tend
38        real, intent(out):: fq1(klon, klev) ! spec hum tend
39        real, intent(out):: fu1(klon, klev) ! u-wind tend
40        real, intent(out):: fv1(klon, klev) ! v-wind tend
41        real, intent(out):: precip1(klon) ! precipitation
42    
43      use clesphys2, only: iflag_con      real, intent(out):: VPrecip1(klon, klev + 1)
44      use cv3_param_m, only: cv3_param      ! vertical profile of precipitation
     USE dimphy, ONLY: klev, klon  
45    
     ! PARAMETERS:  
     !      Name            Type         Usage            Description  
     !   ----------      ----------     -------  ----------------------------  
   
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     integer len  
     integer nd  
     integer ndp1  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real ftra1(len, nd, ntra)  
     real precip1(len)  
     real VPrecip1(len, nd+1)  
     real cbmf1(len)  
46      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47    
48      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
49      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
50    
51      integer icb1(klon)      integer, intent(out):: icb1(klon)
52      integer inb1(klon)      integer, intent(inout):: inb1(klon)
53      real, intent(in):: delt      real, intent(in):: delt ! time step
54      real Ma1(len, nd)      real Ma1(klon, klev)
55      real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)      ! Ma1 Real Output mass flux adiabatic updraft
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
56    
57      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(out):: upwd1(klon, klev)
58        ! total upward mass flux (adiab + mixed)
59    
60      !-------------------------------------------------------------------      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      ! --- ARGUMENTS      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     !-------------------------------------------------------------------  
     ! --- On input:  
62    
63      !  t:   Array of absolute temperature (K) of dimension ND, with first      real qcondc1(klon, klev) ! cld
64      !       index corresponding to lowest model level. Note that this array      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      !       will be altered by the subroutine if dry convective adjustment      real wd1(klon) ! gust
66      !       occurs and if IPBL is not equal to 0.      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      ! cape1 Real Output CAPE
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
69    
70      !  det:   Array of detrainment mass flux of dimension ND.      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71        real, intent(inout):: mp1(klon, klev)
72    
73      !-------------------------------------------------------------------      ! ARGUMENTS
74    
75        ! On input:
76    
77        ! t: Array of absolute temperature (K) of dimension KLEV, with first
78        ! index corresponding to lowest model level. Note that this array
79        ! will be altered by the subroutine if dry convective adjustment
80        ! occurs and if IPBL is not equal to 0.
81    
82        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83        ! index corresponding to lowest model level. Must be defined
84        ! at same grid levels as T. Note that this array will be altered
85        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86    
87        ! qs: Array of saturation specific humidity of dimension KLEV, with first
88        ! index corresponding to lowest model level. Must be defined
89        ! at same grid levels as T. Note that this array will be altered
90        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91    
92        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93        ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95        ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97        ! v: Same as u but for meridional velocity.
98    
99        ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102    
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104        ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112        ! delt: The model time step (sec) between calls to CONVECT
113    
114        ! On Output:
115    
116      !  Local arrays      ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135      integer noff      ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136      real da(len, nd), phi(len, nd, nd), mp(len, nd)      ! grid levels as T, Q, QS and P.
137    
138      integer i, k, n, il, j      ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167        ! det: Array of detrainment mass flux of dimension KLEV.
168    
169        ! Local arrays
170    
171        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
172    
173        integer i, k, il
174      integer icbmax      integer icbmax
175      integer nk1(klon)      integer nk1(klon)
176      integer icbs1(klon)      integer icbs1(klon)
# Line 226  contains Line 179  contains
179      real tnk1(klon)      real tnk1(klon)
180      real qnk1(klon)      real qnk1(klon)
181      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
182      real pbase1(klon)      real pbase1(klon)
183      real buoybase1(klon)      real buoybase1(klon)
184    
# Line 246  contains Line 197  contains
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc=klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203      integer idcum(nloc)      integer icbs(klon)
204      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon)
205      integer nent(nloc, klev)  
206      integer icbs(nloc)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207      integer inb(nloc), inbis(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
212      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
213      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real tvp(klon, klev)
214      real clw(nloc, klev)      real sig(klon, klev), w0(klon, klev)
215      real dph(nloc, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
216      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real buoy(klon, klev)
217      real tvp(nloc, klev)      real cape(klon)
218      real sig(nloc, klev), w0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
219      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
220      real frac(nloc), buoy(nloc, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
221      real cape(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
222      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
223      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
224      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real b(klon, klev), ft(klon, klev), fq(klon, klev)
225      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real fu(klon, klev), fv(klon, klev)
226      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
227      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
228      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real tps(klon, klev)
229      real fu(nloc, klev), fv(nloc, klev)      real precip(klon)
230      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real VPrecip(klon, klev + 1)
231      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real qcondc(klon, klev) ! cld
232      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real wd(klon) ! gust
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
233    
234      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
235    
236      CALL cv_flag      ! SET CONSTANTS AND PARAMETERS
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
237    
238        ! set thermodynamical constants:
239        ! (common cvthermo)
240      CALL cv_thermo      CALL cv_thermo
241    
242      ! -- set convect parameters      ! set convect parameters
243        ! includes microphysical parameters and parameters that
244      !     includes microphysical parameters and parameters that      ! control the rate of approach to quasi-equilibrium)
245      !     control the rate of approach to quasi-equilibrium)      ! (common cvparam)
246      !     (common cvparam)  
247        CALL cv30_param(delt)
248      if (iflag_con.eq.3) then  
249         CALL cv3_param(nd, delt)      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
250      endif  
251        do k = 1, klev
252      if (iflag_con.eq.4) then         do i = 1, klon
253         CALL cv_param(nd)            ft1(i, k) = 0.0
254      endif            fq1(i, k) = 0.0
255              fu1(i, k) = 0.0
256      !---------------------------------------------------------------------            fv1(i, k) = 0.0
257      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            tvp1(i, k) = 0.0
258      !---------------------------------------------------------------------            tp1(i, k) = 0.0
259              clw1(i, k) = 0.0
260      do k=1, nd            clw(i, k) = 0.0
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
261            gz1(i, k) = 0.            gz1(i, k) = 0.
262            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
263            Ma1(i, k)=0.0            Ma1(i, k) = 0.0
264            upwd1(i, k)=0.0            upwd1(i, k) = 0.0
265            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.0
266            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.0
267            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.0
        end do  
     end do  
   
     do  j=1, ntra  
        do  k=1, nd  
           do  i=1, len  
              ftra1(i, k, j)=0.0  
           end do  
268         end do         end do
269      end do      end do
270    
271      do  i=1, len      do i = 1, klon
272         precip1(i)=0.0         precip1(i) = 0.0
273         iflag1(i)=0         iflag1(i) = 0
274         wd1(i)=0.0         wd1(i) = 0.0
275         cape1(i)=0.0         cape1(i) = 0.0
276         VPrecip1(i, nd+1)=0.0         VPrecip1(i, klev + 1) = 0.0
277      end do      end do
278    
279      if (iflag_con.eq.3) then      do il = 1, klon
280         do il=1, len         sig1(il, klev) = sig1(il, klev) + 1.
281            sig1(il, nd)=sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
282            sig1(il, nd) = min(sig1(il, nd), 12.1)      enddo
283         enddo  
284      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
285        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
286      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
287      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
288      !--------------------------------------------------------------------      ! CONVECTIVE FEED
289        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
290      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
291         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
292              h1, hm1, th1)! nd->na      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
293      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
294        ! Calculates the lifted parcel virtual temperature at nk, the
295      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
296         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
297              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
298      endif  
299        ! TRIGGERING
300      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
301      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
302      !--------------------------------------------------------------------  
303        ! Moist convective adjustment is necessary
304      if (iflag_con.eq.3) then  
305         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &      ncum = 0
306              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na      do i = 1, klon
307      endif         if (iflag1(i) == 0) then
308              ncum = ncum + 1
309      if (iflag_con.eq.4) then            idcum(ncum) = i
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
310         endif         endif
311      end do      end do
312    
313      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
314           ! COMPRESS THE FIELDS
315      IF (ncum.gt.0) THEN         ! (-> vectorization over convective gridpoints)
316           CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
317         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
318         ! --- COMPRESS THE FIELDS              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
319         !        (-> vectorization over convective gridpoints)              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
320         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
321                tvp, clw, sig, w0)
322         if (iflag_con.eq.3) then  
323            CALL cv3_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, &         ! Undilute (adiabatic) updraft, second part: find the rest of
324                 icbs1, plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, &         ! the lifted parcel temperatures; compute the precipitation
325                 qs1, u1, v1, gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, &         ! efficiencies and the fraction of precipitation falling
326                 tvp1, clw1, sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, &         ! outside of cloud; find the level of neutral buoyancy.
327                 gznk, pbase, buoybase, t, q, qs, u, v, gz, th, tra, h, lv, &         CALL cv30_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
328                 cpn, p, ph, tv, tp, tvp, clw, sig, w0)              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
329         endif              tvp, clw, hp, ep, sigp, buoy) !na->klev
330    
331         if (iflag_con.eq.4) then         ! CLOSURE
332            CALL cv_compress( len, nloc, ncum, nd &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
333                 , iflag1, nk1, icb1 &              buoy, sig, w0, cape, m) ! na->klev
334                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
335                 , t1, q1, qs1, u1, v1, gz1 &         ! MIXING
336                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
337                 , iflag, nk, icb &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
338                 , cbmf, plcl, tnk, qnk, gznk &              sij, elij, ments, qents)
339                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
340                 , dph )         ! Unsaturated (precipitating) downdrafts
341         endif         CALL cv30_unsat(klon, ncum, klev, klev, icb(:ncum), inb(:ncum), t, q, &
342                qs, gz, u, v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, &
343         !-------------------------------------------------------------------              elij, delt, plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
344         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
345         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES         ! Yield (tendencies, precipitation, variables of interface with
346         ! ---   &         ! other processes, etc)
347         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE         CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
348         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
349         ! ---   &              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
350         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
351         !-------------------------------------------------------------------              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
352    
353         if (iflag_con.eq.3) then         ! passive tracers
354            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
355                 , tnk, qnk, gznk, t, q, qs, gz &  
356                 , p, h, tv, lv, pbase, buoybase, plcl &         ! UNCOMPRESS THE FIELDS
357                 , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
358         endif         ! set iflag1 = 42 for non convective points
359           iflag1 = 42
360         if (iflag_con.eq.4) then  
361            CALL cv_undilute2(nloc, ncum, nd, icb, nk &         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
362                 , tnk, qnk, gznk, t, q, qs, gz &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
363                 , p, dph, h, tv, lv &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
364                 , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
365         endif              cape1, da1, phi1, mp1)
366        ENDIF
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
367    
368    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
369    

Legend:
Removed from v.76  
changed lines
  Added in v.186

  ViewVC Help
Powered by ViewVC 1.1.21