/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 62 by guez, Thu Jul 26 14:37:37 2012 UTC trunk/Sources/phylmd/cv_driver.f revision 186 by guez, Mon Mar 21 15:36:26 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         cbmf1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, &         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10         qcondc1, wd1, cape1, da1, phi1, mp1)  
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17      ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        use cv30_compress_m, only: cv30_compress
18        use cv30_feed_m, only: cv30_feed
19        use cv30_mixing_m, only: cv30_mixing
20        use cv30_param_m, only: cv30_param
21        use cv30_prelim_m, only: cv30_prelim
22        use cv30_tracer_m, only: cv30_tracer
23        use cv30_uncompress_m, only: cv30_uncompress
24        use cv30_undilute2_m, only: cv30_undilute2
25        use cv30_unsat_m, only: cv30_unsat
26        use cv30_yield_m, only: cv30_yield
27      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
28    
29      ! PARAMETERS:      real, intent(in):: t1(klon, klev) ! temperature
30      !      Name            Type         Usage            Description      real, intent(in):: q1(klon, klev) ! specific hum
31      !   ----------      ----------     -------  ----------------------------      real, intent(in):: qs1(klon, klev) ! sat specific hum
32        real, intent(in):: u1(klon, klev) ! u-wind
33      !      len           Integer        Input        first (i) dimension      real, intent(in):: v1(klon, klev) ! v-wind
34      !      nd            Integer        Input        vertical (k) dimension      real, intent(in):: p1(klon, klev) ! full level pressure
35      !      ndp1          Integer        Input        nd + 1      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
36      !      ntra          Integer        Input        number of tracors      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
37      !      iflag_con     Integer        Input        version of convect (3/4)      real, intent(out):: ft1(klon, klev) ! temp tend
38      !      t1            Real           Input        temperature      real, intent(out):: fq1(klon, klev) ! spec hum tend
39      !      q1            Real           Input        specific hum      real, intent(out):: fu1(klon, klev) ! u-wind tend
40      !      qs1           Real           Input        sat specific hum      real, intent(out):: fv1(klon, klev) ! v-wind tend
41      !      u1            Real           Input        u-wind      real, intent(out):: precip1(klon) ! precipitation
42      !      v1            Real           Input        v-wind  
43      !      tra1          Real           Input        tracors      real, intent(out):: VPrecip1(klon, klev + 1)
44      !      p1            Real           Input        full level pressure      ! vertical profile of precipitation
45      !      ph1           Real           Input        half level pressure  
46      !      iflag1        Integer        Output       flag for Emanuel conditions      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47      !      ft1           Real           Output       temp tend  
48      !      fq1           Real           Output       spec hum tend      real, intent(inout):: w01(klon, klev)
49      !      fu1           Real           Output       u-wind tend      ! vertical velocity within adiabatic updraft
50      !      fv1           Real           Output       v-wind tend  
51      !      ftra1         Real           Output       tracor tend      integer, intent(out):: icb1(klon)
52      !      precip1       Real           Output       precipitation      integer, intent(inout):: inb1(klon)
53      !      VPrecip1      Real           Output       vertical profile of precipitations      real, intent(in):: delt ! time step
54      !      cbmf1         Real           Output       cloud base mass flux      real Ma1(klon, klev)
55      !      sig1          Real           In/Out       section adiabatic updraft      ! Ma1 Real Output mass flux adiabatic updraft
56      !      w01           Real           In/Out       vertical velocity within adiab updraft  
57      !      delt          Real           Input        time step      real, intent(out):: upwd1(klon, klev)
58      !      Ma1           Real           Output       mass flux adiabatic updraft      ! total upward mass flux (adiab + mixed)
59      !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
60      !      wd1           Real           Output       downdraft velocity scale for sfc fluxes      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      !      cape1         Real           Output       CAPE      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
62    
63      ! S. Bony, Mar 2002:      real qcondc1(klon, klev) ! cld
64      !     * Several modules corresponding to different physical processes      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      !     * Several versions of convect may be used:      real wd1(klon) ! gust
66      !        - iflag_con=3: version lmd  (previously named convect3)      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67      !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)      real cape1(klon)
68      !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)      ! cape1 Real Output CAPE
69      ! S. Bony, Oct 2002:  
70      !     * Vectorization of convect3 (ie version lmd)      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71        real, intent(inout):: mp1(klon, klev)
72      integer len  
73      integer nd      ! ARGUMENTS
74      integer ndp1  
75      integer noff      ! On input:
76      integer, intent(in):: iflag_con  
77      integer ntra      ! t: Array of absolute temperature (K) of dimension KLEV, with first
78      real, intent(in):: t1(len, nd)      ! index corresponding to lowest model level. Note that this array
79      real q1(len, nd)      ! will be altered by the subroutine if dry convective adjustment
80      real qs1(len, nd)      ! occurs and if IPBL is not equal to 0.
81      real u1(len, nd)  
82      real v1(len, nd)      ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83      real p1(len, nd)      ! index corresponding to lowest model level. Must be defined
84      real ph1(len, ndp1)      ! at same grid levels as T. Note that this array will be altered
85      integer iflag1(len)      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86      real ft1(len, nd)  
87      real fq1(len, nd)      ! qs: Array of saturation specific humidity of dimension KLEV, with first
88      real fu1(len, nd)      ! index corresponding to lowest model level. Must be defined
89      real fv1(len, nd)      ! at same grid levels as T. Note that this array will be altered
90      real precip1(len)      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91      real cbmf1(len)  
92      real VPrecip1(len, nd+1)      ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93      real Ma1(len, nd)      ! index corresponding with the lowest model level. Defined at
94      real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)      ! same levels as T. Note that this array will be altered if
95      real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)      ! dry convective adjustment occurs and if IPBL is not equal to 0.
96      real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
97        ! v: Same as u but for meridional velocity.
98      real qcondc1(len, nd)     ! cld  
99      real wd1(len)            ! gust      ! p: Array of pressure (mb) of dimension KLEV, with first
100      real cape1(len)      ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
103      real da(len, nd), phi(len, nd, nd), mp(len, nd)      ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104      real, intent(in):: tra1(len, nd, ntra)      ! corresponding to lowest level. These pressures are defined at
105      real ftra1(len, nd, ntra)      ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112        ! delt: The model time step (sec) between calls to CONVECT
113    
114        ! On Output:
115    
116        ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167      real, intent(in):: delt      ! det: Array of detrainment mass flux of dimension KLEV.
168    
169      !-------------------------------------------------------------------      ! Local arrays
     ! --- ARGUMENTS  
     !-------------------------------------------------------------------  
     ! --- On input:  
170    
171      !  t:   Array of absolute temperature (K) of dimension ND, with first      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
   
     !  det:   Array of detrainment mass flux of dimension ND.  
   
     !-------------------------------------------------------------------  
172    
173      !  Local arrays      integer i, k, il
   
     integer i, k, n, il, j  
174      integer icbmax      integer icbmax
175      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
176      integer icbs1(klon)      integer icbs1(klon)
177    
178      real plcl1(klon)      real plcl1(klon)
179      real tnk1(klon)      real tnk1(klon)
180      real qnk1(klon)      real qnk1(klon)
181      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
182      real pbase1(klon)      real pbase1(klon)
183      real buoybase1(klon)      real buoybase1(klon)
184    
# Line 230  contains Line 191  contains
191      real tp1(klon, klev)      real tp1(klon, klev)
192      real tvp1(klon, klev)      real tvp1(klon, klev)
193      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
194      real th1(klon, klev)      real th1(klon, klev)
195    
196      integer ncum      integer ncum
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc=klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203      integer idcum(nloc)      integer icbs(klon)
204      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon)
205      integer nent(nloc, klev)  
206      integer icbs(nloc)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207      integer inb(nloc), inbis(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
212      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
213      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real tvp(klon, klev)
214      real clw(nloc, klev)      real sig(klon, klev), w0(klon, klev)
215      real dph(nloc, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
216      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real buoy(klon, klev)
217      real tvp(nloc, klev)      real cape(klon)
218      real sig(nloc, klev), w0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
219      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
220      real frac(nloc), buoy(nloc, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
221      real cape(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
222      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
223      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
224      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real b(klon, klev), ft(klon, klev), fq(klon, klev)
225      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real fu(klon, klev), fv(klon, klev)
226      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
227      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
228      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real tps(klon, klev)
229      real fu(nloc, klev), fv(nloc, klev)      real precip(klon)
230      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real VPrecip(klon, klev + 1)
231      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real qcondc(klon, klev) ! cld
232      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real wd(klon) ! gust
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
233    
234      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
235    
236      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
237    
238      CALL cv_flag      ! set thermodynamical constants:
239        ! (common cvthermo)
240      ! -- set thermodynamical constants:      CALL cv_thermo
241      !     (common cvthermo)  
242        ! set convect parameters
243      CALL cv_thermo(iflag_con)      ! includes microphysical parameters and parameters that
244        ! control the rate of approach to quasi-equilibrium)
245      ! -- set convect parameters      ! (common cvparam)
246    
247      !     includes microphysical parameters and parameters that      CALL cv30_param(delt)
248      !     control the rate of approach to quasi-equilibrium)  
249      !     (common cvparam)      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
250    
251      if (iflag_con.eq.3) then      do k = 1, klev
252         CALL cv3_param(nd, delt)         do i = 1, klon
253      endif            ft1(i, k) = 0.0
254              fq1(i, k) = 0.0
255      if (iflag_con.eq.4) then            fu1(i, k) = 0.0
256         CALL cv_param(nd)            fv1(i, k) = 0.0
257      endif            tvp1(i, k) = 0.0
258              tp1(i, k) = 0.0
259      !---------------------------------------------------------------------            clw1(i, k) = 0.0
260      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            clw(i, k) = 0.0
     !---------------------------------------------------------------------  
   
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
261            gz1(i, k) = 0.            gz1(i, k) = 0.
262            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
263            Ma1(i, k)=0.0            Ma1(i, k) = 0.0
264            upwd1(i, k)=0.0            upwd1(i, k) = 0.0
265            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.0
266            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.0
267            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.0
        end do  
     end do  
   
     do  j=1, ntra  
        do  k=1, nd  
           do  i=1, len  
              ftra1(i, k, j)=0.0  
           end do  
268         end do         end do
269      end do      end do
270    
271      do  i=1, len      do i = 1, klon
272         precip1(i)=0.0         precip1(i) = 0.0
273         iflag1(i)=0         iflag1(i) = 0
274         wd1(i)=0.0         wd1(i) = 0.0
275         cape1(i)=0.0         cape1(i) = 0.0
276         VPrecip1(i, nd+1)=0.0         VPrecip1(i, klev + 1) = 0.0
277      end do      end do
278    
279      if (iflag_con.eq.3) then      do il = 1, klon
280         do il=1, len         sig1(il, klev) = sig1(il, klev) + 1.
281            sig1(il, nd)=sig1(il, nd)+1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
282            sig1(il, nd)=amin1(sig1(il, nd), 12.1)      enddo
283         enddo  
284      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
285        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
286      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
287      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
288      !--------------------------------------------------------------------      ! CONVECTIVE FEED
289        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
290      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
291         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
292              h1, hm1, th1)! nd->na      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
293      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
294        ! Calculates the lifted parcel virtual temperature at nk, the
295      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
296         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
297              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
298      endif  
299        ! TRIGGERING
300      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
301      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
302      !--------------------------------------------------------------------  
303        ! Moist convective adjustment is necessary
304      if (iflag_con.eq.3) then  
305         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &      ncum = 0
306              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na      do i = 1, klon
307      endif         if (iflag1(i) == 0) then
308              ncum = ncum + 1
309      if (iflag_con.eq.4) then            idcum(ncum) = i
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
310         endif         endif
311      end do      end do
312    
313      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
314           ! COMPRESS THE FIELDS
315      IF (ncum.gt.0) THEN         ! (-> vectorization over convective gridpoints)
316           CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
317         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
318         ! --- COMPRESS THE FIELDS              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
319         !        (-> vectorization over convective gridpoints)              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
320         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
321                tvp, clw, sig, w0)
322         if (iflag_con.eq.3) then  
323            CALL cv3_compress( len, nloc, ncum, nd, ntra &         ! Undilute (adiabatic) updraft, second part: find the rest of
324                 , iflag1, nk1, icb1, icbs1 &         ! the lifted parcel temperatures; compute the precipitation
325                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &         ! efficiencies and the fraction of precipitation falling
326                 , t1, q1, qs1, u1, v1, gz1, th1 &         ! outside of cloud; find the level of neutral buoyancy.
327                 , tra1 &         CALL cv30_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
328                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
329                 , sig1, w01 &              tvp, clw, hp, ep, sigp, buoy) !na->klev
330                 , iflag, nk, icb, icbs &  
331                 , plcl, tnk, qnk, gznk, pbase, buoybase &         ! CLOSURE
332                 , t, q, qs, u, v, gz, th &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
333                 , tra &              buoy, sig, w0, cape, m) ! na->klev
334                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
335                 , sig, w0  )         ! MIXING
336         endif         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
337                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
338         if (iflag_con.eq.4) then              sij, elij, ments, qents)
339            CALL cv_compress( len, nloc, ncum, nd &  
340                 , iflag1, nk1, icb1 &         ! Unsaturated (precipitating) downdrafts
341                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         CALL cv30_unsat(klon, ncum, klev, klev, icb(:ncum), inb(:ncum), t, q, &
342                 , t1, q1, qs1, u1, v1, gz1 &              qs, gz, u, v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, &
343                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &              elij, delt, plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
344                 , iflag, nk, icb &  
345                 , cbmf, plcl, tnk, qnk, gznk &         ! Yield (tendencies, precipitation, variables of interface with
346                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &         ! other processes, etc)
347                 , dph )         CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
348         endif              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
349                wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
350         !-------------------------------------------------------------------              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
351         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
352         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
353         ! ---   &         ! passive tracers
354         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
355         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
356         ! ---   &         ! UNCOMPRESS THE FIELDS
357         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
358         !-------------------------------------------------------------------         ! set iflag1 = 42 for non convective points
359           iflag1 = 42
360         if (iflag_con.eq.3) then  
361            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
362                 , tnk, qnk, gznk, t, q, qs, gz &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
363                 , p, h, tv, lv, pbase, buoybase, plcl &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
364                 , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
365         endif              cape1, da1, phi1, mp1)
366        ENDIF
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
367    
368    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
369    

Legend:
Removed from v.62  
changed lines
  Added in v.186

  ViewVC Help
Powered by ViewVC 1.1.21