/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 99 by guez, Wed Jul 2 18:39:15 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 186 by guez, Mon Mar 21 15:36:26 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use cv30_compress_m, only: cv30_compress
18      ! - iflag_con = 3: version lmd      use cv30_feed_m, only: cv30_feed
19      ! - iflag_con = 4: version 4.3b      use cv30_mixing_m, only: cv30_mixing
20        use cv30_param_m, only: cv30_param
21      use clesphys2, only: iflag_con      use cv30_prelim_m, only: cv30_prelim
22      use cv3_compress_m, only: cv3_compress      use cv30_tracer_m, only: cv30_tracer
23      use cv3_mixing_m, only: cv3_mixing      use cv30_uncompress_m, only: cv30_uncompress
24      use cv3_param_m, only: cv3_param      use cv30_undilute2_m, only: cv30_undilute2
25      use cv3_prelim_m, only: cv3_prelim      use cv30_unsat_m, only: cv30_unsat
26      use cv3_tracer_m, only: cv3_tracer      use cv30_yield_m, only: cv30_yield
     use cv3_uncompress_m, only: cv3_uncompress  
     use cv3_unsat_m, only: cv3_unsat  
     use cv3_yield_m, only: cv3_yield  
     use cv_uncompress_m, only: cv_uncompress  
27      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
28    
29      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature
30      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific hum
31      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! sat specific hum
32      real q1(len, nd) !           Input        specific hum      real, intent(in):: u1(klon, klev) ! u-wind
33      real qs1(len, nd)      real, intent(in):: v1(klon, klev) ! v-wind
34      !      qs1           Real           Input        sat specific hum      real, intent(in):: p1(klon, klev) ! full level pressure
35      real, intent(in):: u1(len, nd)      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
36      !      u1            Real           Input        u-wind      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
37      real, intent(in):: v1(len, nd)      real, intent(out):: ft1(klon, klev) ! temp tend
38      !      v1            Real           Input        v-wind      real, intent(out):: fq1(klon, klev) ! spec hum tend
39      real p1(len, nd)      real, intent(out):: fu1(klon, klev) ! u-wind tend
40      !      p1            Real           Input        full level pressure      real, intent(out):: fv1(klon, klev) ! v-wind tend
41      real ph1(len, nd + 1)      real, intent(out):: precip1(klon) ! precipitation
42      !      ph1           Real           Input        half level pressure  
43      integer iflag1(len)      real, intent(out):: VPrecip1(klon, klev + 1)
44      !      iflag1        Integer        Output       flag for Emanuel conditions      ! vertical profile of precipitation
45      real ft1(len, nd)  
     !      ft1           Real           Output       temp tend  
     real fq1(len, nd)  
     !      fq1           Real           Output       spec hum tend  
     real fu1(len, nd)  
     !      fu1           Real           Output       u-wind tend  
     real fv1(len, nd)  
     !      fv1           Real           Output       v-wind tend  
     real precip1(len)  
     !      precip1       Real           Output       precipitation  
     real VPrecip1(len, nd+1)  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     real cbmf1(len)  
     !      cbmf1         Real           Output       cloud base mass flux  
46      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47    
48      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
49      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
50    
51      integer icb1(klon)      integer, intent(out):: icb1(klon)
52      integer inb1(klon)      integer, intent(inout):: inb1(klon)
53      real, intent(in):: delt      real, intent(in):: delt ! time step
54      !      delt          Real           Input        time step      real Ma1(klon, klev)
55      real Ma1(len, nd)      ! Ma1 Real Output mass flux adiabatic updraft
56      !      Ma1           Real           Output       mass flux adiabatic updraft  
57      real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)      real, intent(out):: upwd1(klon, klev)
58      real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)      ! total upward mass flux (adiab + mixed)
59      real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
60        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      real qcondc1(len, nd)     ! cld      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
62      !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
63      real wd1(len)            ! gust      real qcondc1(klon, klev) ! cld
64      !      wd1           Real           Output       downdraft velocity scale for sfc fluxes      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      real cape1(len)      real wd1(klon) ! gust
66      !      cape1         Real           Output       CAPE      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68        ! cape1 Real Output CAPE
69    
70        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71        real, intent(inout):: mp1(klon, klev)
72    
73        ! ARGUMENTS
74    
75        ! On input:
76    
77        ! t: Array of absolute temperature (K) of dimension KLEV, with first
78        ! index corresponding to lowest model level. Note that this array
79        ! will be altered by the subroutine if dry convective adjustment
80        ! occurs and if IPBL is not equal to 0.
81    
82        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83        ! index corresponding to lowest model level. Must be defined
84        ! at same grid levels as T. Note that this array will be altered
85        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86    
87        ! qs: Array of saturation specific humidity of dimension KLEV, with first
88        ! index corresponding to lowest model level. Must be defined
89        ! at same grid levels as T. Note that this array will be altered
90        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91    
92        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93        ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95        ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97        ! v: Same as u but for meridional velocity.
98    
99        ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102    
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104        ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112        ! delt: The model time step (sec) between calls to CONVECT
113    
114        ! On Output:
115    
116        ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167      real, intent(inout):: da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      ! det: Array of detrainment mass flux of dimension KLEV.
168    
169      !-------------------------------------------------------------------      ! Local arrays
     ! --- ARGUMENTS  
     !-------------------------------------------------------------------  
     ! --- On input:  
170    
171      !  t:   Array of absolute temperature (K) of dimension ND, with first      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
   
     !  det:   Array of detrainment mass flux of dimension ND.  
   
     !-------------------------------------------------------------------  
   
     !  Local arrays  
   
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
172    
173      integer i, k, il      integer i, k, il
174      integer icbmax      integer icbmax
# Line 215  contains Line 197  contains
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc = klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203      integer idcum(nloc)      integer icbs(klon)
204      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon)
205      integer nent(nloc, klev)  
206      integer icbs(nloc)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207      integer inb(nloc), inbis(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
212      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
213      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real tvp(klon, klev)
214      real clw(nloc, klev)      real sig(klon, klev), w0(klon, klev)
215      real dph(nloc, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
216      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real buoy(klon, klev)
217      real tvp(nloc, klev)      real cape(klon)
218      real sig(nloc, klev), w0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
219      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
220      real frac(nloc), buoy(nloc, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
221      real cape(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
222      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
223      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
224      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real b(klon, klev), ft(klon, klev), fq(klon, klev)
225      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real fu(klon, klev), fv(klon, klev)
226      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
227      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
228      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real tps(klon, klev)
229      real fu(nloc, klev), fv(nloc, klev)      real precip(klon)
230      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real VPrecip(klon, klev + 1)
231      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real qcondc(klon, klev) ! cld
232      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real wd(klon) ! gust
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
233    
234      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
   
     CALL cv_flag  
235    
236      ! -- set thermodynamical constants:      ! SET CONSTANTS AND PARAMETERS
     !     (common cvthermo)  
237    
238        ! set thermodynamical constants:
239        ! (common cvthermo)
240      CALL cv_thermo      CALL cv_thermo
241    
242      ! -- set convect parameters      ! set convect parameters
243        ! includes microphysical parameters and parameters that
244        ! control the rate of approach to quasi-equilibrium)
245        ! (common cvparam)
246    
247      !     includes microphysical parameters and parameters that      CALL cv30_param(delt)
     !     control the rate of approach to quasi-equilibrium)  
     !     (common cvparam)  
   
     if (iflag_con.eq.3) then  
        CALL cv3_param(nd, delt)  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
248    
249      do k = 1, nd      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
250         do  i = 1, len  
251        do k = 1, klev
252           do i = 1, klon
253            ft1(i, k) = 0.0            ft1(i, k) = 0.0
254            fq1(i, k) = 0.0            fq1(i, k) = 0.0
255            fu1(i, k) = 0.0            fu1(i, k) = 0.0
# Line 294  contains Line 257  contains
257            tvp1(i, k) = 0.0            tvp1(i, k) = 0.0
258            tp1(i, k) = 0.0            tp1(i, k) = 0.0
259            clw1(i, k) = 0.0            clw1(i, k) = 0.0
           !ym  
260            clw(i, k) = 0.0            clw(i, k) = 0.0
261            gz1(i, k)  =  0.            gz1(i, k) = 0.
262            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
263            Ma1(i, k) = 0.0            Ma1(i, k) = 0.0
264            upwd1(i, k) = 0.0            upwd1(i, k) = 0.0
# Line 306  contains Line 268  contains
268         end do         end do
269      end do      end do
270    
271      do  i = 1, len      do i = 1, klon
272         precip1(i) = 0.0         precip1(i) = 0.0
273         iflag1(i) = 0         iflag1(i) = 0
274         wd1(i) = 0.0         wd1(i) = 0.0
275         cape1(i) = 0.0         cape1(i) = 0.0
276         VPrecip1(i, nd+1) = 0.0         VPrecip1(i, klev + 1) = 0.0
277      end do      end do
278    
279      if (iflag_con.eq.3) then      do il = 1, klon
280         do il = 1, len         sig1(il, klev) = sig1(il, klev) + 1.
281            sig1(il, nd) = sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
282            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      enddo
283         enddo  
284      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
285        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
286      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
287      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
288      !--------------------------------------------------------------------      ! CONVECTIVE FEED
289        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
290      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
291         CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
292              h1, hm1, th1)      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
293      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
294        ! Calculates the lifted parcel virtual temperature at nk, the
295      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
296         CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
297              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
298      endif  
299        ! TRIGGERING
300      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
301      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
302    
303      ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY      ! Moist convective adjustment is necessary
304    
305      ncum = 0      ncum = 0
306      do  i = 1, len      do i = 1, klon
307         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
308            ncum = ncum+1            ncum = ncum + 1
309            idcum(ncum) = i            idcum(ncum) = i
310         endif         endif
311      end do      end do
312    
313      IF (ncum.gt.0) THEN      IF (ncum > 0) THEN
314           ! COMPRESS THE FIELDS
315         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! (-> vectorization over convective gridpoints)
316         ! --- COMPRESS THE FIELDS         CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
317         !        (-> vectorization over convective gridpoints)              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
318         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
319                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
320         if (iflag_con.eq.3) then              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
321            CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &              tvp, clw, sig, w0)
322                 plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &  
323                 v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &         ! Undilute (adiabatic) updraft, second part: find the rest of
324                 sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &         ! the lifted parcel temperatures; compute the precipitation
325                 buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &         ! efficiencies and the fraction of precipitation falling
326                 tvp, clw, sig, w0)         ! outside of cloud; find the level of neutral buoyancy.
327         endif         CALL cv30_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
328                t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
329         if (iflag_con.eq.4) then              tvp, clw, hp, ep, sigp, buoy) !na->klev
330            CALL cv_compress( len, nloc, ncum, nd &  
331                 , iflag1, nk1, icb1 &         ! CLOSURE
332                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
333                 , t1, q1, qs1, u1, v1, gz1 &              buoy, sig, w0, cape, m) ! na->klev
334                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
335                 , iflag, nk, icb &         ! MIXING
336                 , cbmf, plcl, tnk, qnk, gznk &         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
337                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
338                 , dph )              sij, elij, ments, qents)
339         endif  
340           ! Unsaturated (precipitating) downdrafts
341         !-------------------------------------------------------------------         CALL cv30_unsat(klon, ncum, klev, klev, icb(:ncum), inb(:ncum), t, q, &
342         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              qs, gz, u, v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, &
343         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES              elij, delt, plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
344         ! ---   &  
345         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE         ! Yield (tendencies, precipitation, variables of interface with
346         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD         ! other processes, etc)
347         ! ---   &         CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
348         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
349         !-------------------------------------------------------------------              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
350                tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
351         if (iflag_con.eq.3) then              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
352            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
353                 , tnk, qnk, gznk, t, q, qs, gz &         ! passive tracers
354                 , p, h, tv, lv, pbase, buoybase, plcl &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
355                 , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
356         endif         ! UNCOMPRESS THE FIELDS
357    
358         if (iflag_con.eq.4) then         ! set iflag1 = 42 for non convective points
359            CALL cv_undilute2(nloc, ncum, nd, icb, nk &         iflag1 = 42
360                 , tnk, qnk, gznk, t, q, qs, gz &  
361                 , p, dph, h, tv, lv &         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
362                 , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
363         endif              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
364                fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
365         !-------------------------------------------------------------------              cape1, da1, phi1, mp1)
366         ! --- CLOSURE      ENDIF
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, &  
                VPrecip, sig, w0, ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, &  
                qcondc, wd, cape, da, phi, mp, iflag1, precip1, VPrecip1, &  
                sig1, w01, ft1, fq1, fu1, fv1, inb1, Ma1, upwd1, dnwd1, &  
                dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
367    
368    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
369    

Legend:
Removed from v.99  
changed lines
  Added in v.186

  ViewVC Help
Powered by ViewVC 1.1.21