/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 91 by guez, Wed Mar 26 17:18:58 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 188 by guez, Tue Mar 22 16:31:39 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
   
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
     ! S. Bony, March 2002:  
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use cv30_closure_m, only: cv30_closure
18      ! - iflag_con = 3: version lmd  (previously named convect3)      use cv30_compress_m, only: cv30_compress
19      ! - iflag_con = 4: version 4.3b (vect. version, previously convect1/2)      use cv30_feed_m, only: cv30_feed
20        use cv30_mixing_m, only: cv30_mixing
21      ! Plus tard :      use cv30_param_m, only: cv30_param, nl
22      ! - iflag_con = 5: version lmd with ice (previously named convectg)      use cv30_prelim_m, only: cv30_prelim
23        use cv30_tracer_m, only: cv30_tracer
24      ! S. Bony, Oct 2002:      use cv30_uncompress_m, only: cv30_uncompress
25      ! Vectorization of convect3 (ie version lmd)      use cv30_undilute2_m, only: cv30_undilute2
26        use cv30_unsat_m, only: cv30_unsat
27      use clesphys2, only: iflag_con      use cv30_yield_m, only: cv30_yield
     use cv3_compress_m, only: cv3_compress  
     use cv3_param_m, only: cv3_param  
28      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
29    
30      ! PARAMETERS:      real, intent(in):: t1(klon, klev)
31      !      Name            Type         Usage            Description      ! temperature (K), with first index corresponding to lowest model
32      !   ----------      ----------     -------  ----------------------------      ! level
33    
34      !      len           Integer        Input        first (i) dimension      real, intent(in):: q1(klon, klev)
35      !      nd            Integer        Input        vertical (k) dimension      ! Specific humidity, with first index corresponding to lowest
36      !      ndp1          Integer        Input        nd + 1      ! model level. Must be defined at same grid levels as T1.
37      !      ntra          Integer        Input        number of tracors  
38      !      t1            Real           Input        temperature      real, intent(in):: qs1(klon, klev)
39      !      q1            Real           Input        specific hum      ! Saturation specific humidity, with first index corresponding to
40      !      qs1           Real           Input        sat specific hum      ! lowest model level. Must be defined at same grid levels as
41      !      u1            Real           Input        u-wind      ! T1.
42      !      v1            Real           Input        v-wind  
43      !      tra1          Real           Input        tracors      real, intent(in):: u1(klon, klev), v1(klon, klev)
44      !      p1            Real           Input        full level pressure      ! Zonal wind and meridional velocity (m/s), witth first index
45      !      ph1           Real           Input        half level pressure      ! corresponding with the lowest model level. Defined at same
46      !      iflag1        Integer        Output       flag for Emanuel conditions      ! levels as T1.
47      !      ft1           Real           Output       temp tend  
48      !      fq1           Real           Output       spec hum tend      real, intent(in):: p1(klon, klev)
49      !      fu1           Real           Output       u-wind tend      ! Full level pressure (mb) of dimension KLEV, with first index
50      !      fv1           Real           Output       v-wind tend      ! corresponding to lowest model level. Must be defined at same
51      !      ftra1         Real           Output       tracor tend      ! grid levels as T1.
52      !      precip1       Real           Output       precipitation  
53      !      VPrecip1      Real           Output       vertical profile of precipitations      real, intent(in):: ph1(klon, klev + 1)
54      !      cbmf1         Real           Output       cloud base mass flux      ! Half level pressure (mb), with first index corresponding to
55      !      delt          Real           Input        time step      ! lowest level. These pressures are defined at levels intermediate
56      !      Ma1           Real           Output       mass flux adiabatic updraft      ! between those of P1, T1, Q1 and QS1. The first value of PH
57      !      qcondc1       Real           Output       in-cld mixing ratio of condensed water      ! should be greater than (i.e. at a lower level than) the first
58      !      wd1           Real           Output       downdraft velocity scale for sfc fluxes      ! value of the array P1.
59      !      cape1         Real           Output       CAPE  
60        integer, intent(out):: iflag1(klon)
61      integer len      ! Flag for Emanuel conditions.
62      integer nd  
63      integer ndp1      ! 0: Moist convection occurs.
64      integer, intent(in):: ntra  
65      real, intent(in):: t1(len, nd)      ! 1: Moist convection occurs, but a CFL condition on the
66      real q1(len, nd)      ! subsidence warming is violated. This does not cause the scheme
67      real qs1(len, nd)      ! to terminate.
68      real, intent(in):: u1(len, nd)  
69      real, intent(in):: v1(len, nd)      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
70      real, intent(in):: tra1(len, nd, ntra)  
71      real p1(len, nd)      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
72      real ph1(len, ndp1)  
73      integer iflag1(len)      ! 4: No moist convection; atmosphere is not unstable
74      real ft1(len, nd)  
75      real fq1(len, nd)      ! 6: No moist convection because ihmin le minorig.
76      real fu1(len, nd)  
77      real fv1(len, nd)      ! 7: No moist convection because unreasonable parcel level
78      real ftra1(len, nd, ntra)      ! temperature or specific humidity.
79      real precip1(len)  
80      real VPrecip1(len, nd+1)      ! 8: No moist convection: lifted condensation level is above the
81      real cbmf1(len)      ! 200 mb level.
82    
83        ! 9: No moist convection: cloud base is higher then the level NL-1.
84    
85        real, intent(out):: ft1(klon, klev)
86        ! Temperature tendency (K/s), defined at same grid levels as T1,
87        ! Q1, QS1 and P1.
88    
89        real, intent(out):: fq1(klon, klev)
90        ! Specific humidity tendencies (s-1), defined at same grid levels
91        ! as T1, Q1, QS1 and P1.
92    
93        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
94        ! Forcing (tendency) of zonal and meridional velocity (m/s^2),
95        ! defined at same grid levels as T1.
96    
97        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
98    
99        real, intent(out):: VPrecip1(klon, klev + 1)
100        ! vertical profile of convective precipitation (kg/m2/s)
101    
102      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
103    
104      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
105      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
106    
107      integer icb1(klon)      integer, intent(out):: icb1(klon)
108      integer inb1(klon)      integer, intent(inout):: inb1(klon)
109      real, intent(in):: delt      real, intent(in):: delt ! the model time step (sec) between calls
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
110    
111      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real Ma1(klon, klev) ! Output mass flux adiabatic updraft
112    
113      !-------------------------------------------------------------------      real, intent(out):: upwd1(klon, klev)
114      ! --- ARGUMENTS      ! total upward mass flux (adiab + mixed)
     !-------------------------------------------------------------------  
     ! --- On input:  
115    
116      !  t:   Array of absolute temperature (K) of dimension ND, with first      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
117      !       index corresponding to lowest model level. Note that this array      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
118    
119      !  det:   Array of detrainment mass flux of dimension ND.      real qcondc1(klon, klev) ! Output in-cld mixing ratio of condensed water
120    
121      !-------------------------------------------------------------------      real wd1(klon) ! gust
122        ! Output downdraft velocity scale for surface fluxes
123        ! A convective downdraft velocity scale. For use in surface
124        ! flux parameterizations. See convect.ps file for details.
125    
126        real cape1(klon) ! Output
127        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
128        real, intent(inout):: mp1(klon, klev)
129    
130      !  Local arrays      ! Local:
131    
132      integer noff      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
133    
134      integer i, k, n, il, j      integer i, k, il
135      integer icbmax      integer icbmax
136      integer nk1(klon)      integer nk1(klon)
137      integer icbs1(klon)      integer icbs1(klon)
# Line 227  contains Line 140  contains
140      real tnk1(klon)      real tnk1(klon)
141      real qnk1(klon)      real qnk1(klon)
142      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
143      real pbase1(klon)      real pbase1(klon)
144      real buoybase1(klon)      real buoybase1(klon)
145    
# Line 245  contains Line 156  contains
156    
157      integer ncum      integer ncum
158    
159      ! (local) compressed fields:      ! Compressed fields:
160    
161      integer nloc      integer idcum(klon)
162      parameter (nloc = klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
163        integer nent(klon, klev)
164        integer icbs(klon)
165        integer inb(klon)
166    
167        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
168        real t(klon, klev), q(klon, klev), qs(klon, klev)
169        real u(klon, klev), v(klon, klev)
170        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
171        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
172        real clw(klon, klev)
173        real pbase(klon), buoybase(klon), th(klon, klev)
174        real tvp(klon, klev)
175        real sig(klon, klev), w0(klon, klev)
176        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
177        real buoy(klon, klev)
178        real cape(klon)
179        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
180        real uent(klon, klev, klev), vent(klon, klev, klev)
181        real ments(klon, klev, klev), qents(klon, klev, klev)
182        real sij(klon, klev, klev), elij(klon, klev, klev)
183        real qp(klon, klev), up(klon, klev), vp(klon, klev)
184        real wt(klon, klev), water(klon, klev), evap(klon, klev)
185        real, allocatable:: b(:, :) ! (ncum, nl)
186        real ft(klon, klev), fq(klon, klev)
187        real fu(klon, klev), fv(klon, klev)
188        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
189        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
190        real tps(klon, klev)
191        real precip(klon)
192        real VPrecip(klon, klev + 1)
193        real qcondc(klon, klev) ! cld
194        real wd(klon) ! gust
195    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
196      !-------------------------------------------------------------------      !-------------------------------------------------------------------
197    
198      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
199    
200        ! set thermodynamical constants:
201        ! (common cvthermo)
202      CALL cv_thermo      CALL cv_thermo
203    
204      ! -- set convect parameters      ! set convect parameters
205        ! includes microphysical parameters and parameters that
206      !     includes microphysical parameters and parameters that      ! control the rate of approach to quasi-equilibrium)
207      !     control the rate of approach to quasi-equilibrium)      ! (common cvparam)
208      !     (common cvparam)      CALL cv30_param(delt)
209    
210      if (iflag_con.eq.3) then      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
211         CALL cv3_param(nd, delt)  
212      endif      do k = 1, klev
213           do i = 1, klon
214      if (iflag_con.eq.4) then            ft1(i, k) = 0.
215         CALL cv_param(nd)            fq1(i, k) = 0.
216      endif            fu1(i, k) = 0.
217              fv1(i, k) = 0.
218      !---------------------------------------------------------------------            tvp1(i, k) = 0.
219      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            tp1(i, k) = 0.
220      !---------------------------------------------------------------------            clw1(i, k) = 0.
221              clw(i, k) = 0.
222      do k = 1, nd            gz1(i, k) = 0.
        do  i = 1, len  
           ft1(i, k) = 0.0  
           fq1(i, k) = 0.0  
           fu1(i, k) = 0.0  
           fv1(i, k) = 0.0  
           tvp1(i, k) = 0.0  
           tp1(i, k) = 0.0  
           clw1(i, k) = 0.0  
           !ym  
           clw(i, k) = 0.0  
           gz1(i, k)  =  0.  
223            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
224            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
225            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
226            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
227            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
228            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
229         end do         end do
230      end do      end do
231    
232      do  j = 1, ntra      do i = 1, klon
233         do  k = 1, nd         precip1(i) = 0.
           do  i = 1, len  
              ftra1(i, k, j) = 0.0  
           end do  
        end do  
     end do  
   
     do  i = 1, len  
        precip1(i) = 0.0  
234         iflag1(i) = 0         iflag1(i) = 0
235         wd1(i) = 0.0         wd1(i) = 0.
236         cape1(i) = 0.0         cape1(i) = 0.
237         VPrecip1(i, nd+1) = 0.0         VPrecip1(i, klev + 1) = 0.
238      end do      end do
239    
240      if (iflag_con.eq.3) then      do il = 1, klon
241         do il = 1, len         sig1(il, klev) = sig1(il, klev) + 1.
242            sig1(il, nd) = sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
243            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      enddo
244         enddo  
245      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
246        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
247      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
248      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
249      !--------------------------------------------------------------------      ! CONVECTIVE FEED
250        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
251      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
252         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
253              h1, hm1, th1)! nd->na      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
254      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
255        ! Calculates the lifted parcel virtual temperature at nk, the
256      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
257         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
258              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
259      endif  
260        ! TRIGGERING
261      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
262      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
263    
264      !-------------------------------------------------------------------      ! Moist convective adjustment is necessary
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
265    
266      ncum = 0      ncum = 0
267      do  i = 1, len      do i = 1, klon
268         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
269            ncum = ncum+1            ncum = ncum + 1
270            idcum(ncum) = i            idcum(ncum) = i
271         endif         endif
272      end do      end do
273    
274      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
275           allocate(b(ncum, nl))
     IF (ncum.gt.0) THEN  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- COMPRESS THE FIELDS  
        !        (-> vectorization over convective gridpoints)  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, &  
                icbs1, plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, &  
                qs1, u1, v1, gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, &  
                tvp1, clw1, sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, &  
                gznk, pbase, buoybase, t, q, qs, u, v, gz, th, tra, h, lv, &  
                cpn, p, ph, tv, tp, tvp, clw, sig, w0)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_compress( len, nloc, ncum, nd &  
                , iflag1, nk1, icb1 &  
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
276    
277         if (iflag_con.eq.4) then         ! COMPRESS THE FIELDS
278            CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &         ! (-> vectorization over convective gridpoints)
279                 , ph, t, q, qs, u, v, h, lv, qnk &         CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
280                 , hp, tv, tvp, ep, clw, cbmf &              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
281                 , m, ment, qent, uent, vent, nent, sij, elij)              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
282         endif              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
283                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
284         !-------------------------------------------------------------------              tvp, clw, sig, w0)
285         ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
286         !-------------------------------------------------------------------         CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
287                h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
288         if (iflag_con.eq.3) then              ep, sigp, buoy)
289            CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
290                 , t, q, qs, gz, u, v, tra, p, ph &         ! CLOSURE
291                 , th, tv, lv, cpn, ep, sigp, clw &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
292                 , m, ment, elij, delt, plcl &              buoy, sig, w0, cape, m) ! na->klev
293                 , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
294         endif         ! MIXING
295           CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
296         if (iflag_con.eq.4) then              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
297            CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &              sij, elij, ments, qents)
298                 , h, lv, ep, sigp, clw, m, ment, elij &  
299                 , iflag, mp, qp, up, vp, wt, water, evap)         ! Unsaturated (precipitating) downdrafts
300         endif         CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, &
301                tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, mp, qp, &
302         !-------------------------------------------------------------------              up, vp, wt, water, evap, b)
303         ! --- YIELD  
304         !     (tendencies, precipitation, variables of interface with other         ! Yield (tendencies, precipitation, variables of interface with
305         !      processes, etc)         ! other processes, etc)
306         !-------------------------------------------------------------------         CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, &
307                h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, &
308         if (iflag_con.eq.3) then              water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, &
309            CALL cv3_yield(nloc, ncum, nd, nd, ntra             &              nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, &
310                 , icb, inb, delt &              upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)
311                 , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
312                 , ep, clw, m, tp, mp, qp, up, vp, trap &         ! passive tracers
313                 , wt, water, evap, b &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
314                 , ment, qent, uent, vent, nent, elij, traent, sig &  
315                 , tv, tvp &         ! UNCOMPRESS THE FIELDS
316                 , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
317                 , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd         ! set iflag1 = 42 for non convective points
318         endif         iflag1 = 42
319    
320         if (iflag_con.eq.4) then         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
321            CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
322                 , t, q, u, v, gz, p, ph, h, hp, lv, cpn &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
323                 , ep, clw, frac, m, mp, qp, up, vp &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
324                 , wt, water, evap &              cape1, da1, phi1, mp1)
325                 , ment, qent, uent, vent, nent, elij &      ENDIF
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
326    
327    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
328    

Legend:
Removed from v.91  
changed lines
  Added in v.188

  ViewVC Help
Powered by ViewVC 1.1.21