/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 69 by guez, Mon Feb 18 16:33:12 2013 UTC trunk/Sources/phylmd/cv_driver.f revision 201 by guez, Mon Jun 6 17:42:15 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd01, qcondc1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17      use clesphys2, only: iflag_con      use comconst, only: dtphys
18      use cv3_param_m, only: cv3_param      use cv30_closure_m, only: cv30_closure
19        use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21        use cv30_mixing_m, only: cv30_mixing
22        use cv30_param_m, only: cv30_param, nl
23        use cv30_prelim_m, only: cv30_prelim
24        use cv30_tracer_m, only: cv30_tracer
25        use cv30_trigger_m, only: cv30_trigger
26        use cv30_uncompress_m, only: cv30_uncompress
27        use cv30_undilute1_m, only: cv30_undilute1
28        use cv30_undilute2_m, only: cv30_undilute2
29        use cv30_unsat_m, only: cv30_unsat
30        use cv30_yield_m, only: cv30_yield
31      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
32    
33      ! PARAMETERS:      real, intent(in):: t1(klon, klev) ! temperature, in K
34      !      Name            Type         Usage            Description      real, intent(in):: q1(klon, klev) ! specific humidity
35      !   ----------      ----------     -------  ----------------------------      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
   
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
36    
37      real, intent(in):: delt      real, intent(in):: u1(klon, klev), v1(klon, klev)
38        ! zonal wind and meridional velocity (m/s)
39    
40      !-------------------------------------------------------------------      real, intent(in):: p1(klon, klev) ! full level pressure, in hPa
     ! --- ARGUMENTS  
     !-------------------------------------------------------------------  
     ! --- On input:  
41    
42      !  t:   Array of absolute temperature (K) of dimension ND, with first      real, intent(in):: ph1(klon, klev + 1)
43      !       index corresponding to lowest model level. Note that this array      ! Half level pressure, in hPa. These pressures are defined at levels
44      !       will be altered by the subroutine if dry convective adjustment      ! intermediate between those of P1, T1, Q1 and QS1. The first
45      !       occurs and if IPBL is not equal to 0.      ! value of PH should be greater than (i.e. at a lower level than)
46        ! the first value of the array P1.
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
47    
48      !  det:   Array of detrainment mass flux of dimension ND.      integer, intent(out):: iflag1(:) ! (klon)
49        ! Flag for Emanuel conditions.
50    
51      !-------------------------------------------------------------------      ! 0: Moist convection occurs.
52    
53      !  Local arrays      ! 1: Moist convection occurs, but a CFL condition on the
54        ! subsidence warming is violated. This does not cause the scheme
55        ! to terminate.
56    
57      integer i, k, n, il, j      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
58      integer icbmax  
59      integer nk1(klon)      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
60      integer icb1(klon)  
61      integer inb1(klon)      ! 4: No moist convection; atmosphere is not unstable.
62      integer icbs1(klon)  
63        ! 6: No moist convection because ihmin <= minorig.
64    
65        ! 7: No moist convection because unreasonable parcel level
66        ! temperature or specific humidity.
67    
68        ! 8: No moist convection: lifted condensation level is above the
69        ! 200 mbar level.
70    
71        ! 9: No moist convection: cloud base is higher than the level NL-1.
72    
73        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
74        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
75    
76        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
77        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
78    
79        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
80    
81        real, intent(out):: VPrecip1(klon, klev + 1)
82        ! vertical profile of convective precipitation (kg/m2/s)
83    
84        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
85    
86        real, intent(inout):: w01(klon, klev)
87        ! vertical velocity within adiabatic updraft
88    
89        integer, intent(out):: icb1(klon)
90        integer, intent(inout):: inb1(klon)
91        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93        real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
98    
99        real, intent(out):: qcondc1(klon, klev)
100        ! in-cloud mixing ratio of condensed water
101    
102        real, intent(out):: cape1(klon)
103        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
104        real, intent(inout):: mp1(klon, klev)
105    
106        ! Local:
107    
108        real da(klon, klev), phi(klon, klev, klev)
109        real, allocatable:: mp(:, :) ! (ncum, nl)
110        integer i, k, il
111        integer icbs1(klon)
112      real plcl1(klon)      real plcl1(klon)
113      real tnk1(klon)      real tnk1(klon)
114      real qnk1(klon)      real qnk1(klon)
115      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
116      real pbase1(klon)      real pbase1(klon)
117      real buoybase1(klon)      real buoybase1(klon)
118    
119      real lv1(klon, klev)      real lv1(klon, nl)
120      real cpn1(klon, klev)      ! specific latent heat of vaporization of water, in J kg-1
121    
122        real cpn1(klon, nl)
123        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
124    
125      real tv1(klon, klev)      real tv1(klon, klev)
126      real gz1(klon, klev)      real gz1(klon, klev)
127      real hm1(klon, klev)      real hm1(klon, klev)
# Line 232  contains Line 129  contains
129      real tp1(klon, klev)      real tp1(klon, klev)
130      real tvp1(klon, klev)      real tvp1(klon, klev)
131      real clw1(klon, klev)      real clw1(klon, klev)
132      real sig1(klon, klev)      real th1(klon, nl) ! potential temperature, in K
     real w01(klon, klev)  
     real th1(klon, klev)  
   
133      integer ncum      integer ncum
134    
135      ! (local) compressed fields:      ! Compressed fields:
136        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
137      integer nloc      integer, allocatable:: icb(:) ! (ncum)
138      parameter (nloc=klon) ! pour l'instant      integer nent(klon, klev)
139        integer icbs(klon)
140      integer idcum(nloc)  
141      integer iflag(nloc), nk(nloc), icb(nloc)      integer, allocatable:: inb(:) ! (ncum)
142      integer nent(nloc, klev)      ! first model level above the level of neutral buoyancy of the
143      integer icbs(nloc)      ! parcel (1 <= inb <= nl - 1)
144      integer inb(nloc), inbis(nloc)  
145        real, allocatable:: plcl(:) ! (ncum)
146      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real tnk(klon), qnk(klon), gznk(klon)
147      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real t(klon, klev), q(klon, klev), qs(klon, klev)
148      real u(nloc, klev), v(nloc, klev)      real u(klon, klev), v(klon, klev)
149      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real gz(klon, klev), h(klon, klev)
150      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
151      real clw(nloc, klev)      real, allocatable:: lv(:, :) ! (ncum, nl)
152      real dph(nloc, klev)      ! specific latent heat of vaporization of water, in J kg-1
153      real pbase(nloc), buoybase(nloc), th(nloc, klev)  
154      real tvp(nloc, klev)      real, allocatable:: cpn(:, :) ! (ncum, nl)
155      real sig(nloc, klev), w0(nloc, klev)      ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
156      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
157      real frac(nloc), buoy(nloc, klev)      real p(klon, klev) ! pressure at full level, in hPa
158      real cape(nloc)      real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
159      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real clw(klon, klev)
160      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real pbase(klon), buoybase(klon)
161      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real, allocatable:: th(:, :) ! (ncum, nl)
162      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real tvp(klon, klev)
163      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real sig(klon, klev), w0(klon, klev)
164      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real hp(klon, klev), ep(klon, klev)
165      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real buoy(klon, klev)
166      real fu(nloc, klev), fv(nloc, klev)      real cape(klon)
167      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
168      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
169      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real ments(klon, klev, klev), qents(klon, klev, klev)
170      real precip(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
171      real VPrecip(nloc, klev+1)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
172      real tra(nloc, klev, ntra), trap(nloc, klev, ntra)      real wt(klon, klev), water(klon, klev)
173      real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)      real, allocatable:: evap(:, :) ! (ncum, nl)
174      real qcondc(nloc, klev)  ! cld      real, allocatable:: b(:, :) ! (ncum, nl - 1)
175      real wd(nloc)           ! gust      real ft(klon, klev), fq(klon, klev)
176        real fu(klon, klev), fv(klon, klev)
177        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
178        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
179        real tps(klon, klev)
180        real precip(klon)
181        real VPrecip(klon, klev + 1)
182        real qcondc(klon, klev) ! cld
183    
184      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
185    
186      CALL cv_flag      ! SET CONSTANTS AND PARAMETERS
187        CALL cv30_param
188    
189      ! -- set thermodynamical constants:      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
     !     (common cvthermo)  
190    
191      CALL cv_thermo      do k = 1, klev
192           do i = 1, klon
193      ! -- set convect parameters            ft1(i, k) = 0.
194              fq1(i, k) = 0.
195      !     includes microphysical parameters and parameters that            fu1(i, k) = 0.
196      !     control the rate of approach to quasi-equilibrium)            fv1(i, k) = 0.
197      !     (common cvparam)            tvp1(i, k) = 0.
198              tp1(i, k) = 0.
199      if (iflag_con.eq.3) then            clw1(i, k) = 0.
200         CALL cv3_param(nd, delt)            clw(i, k) = 0.
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
201            gz1(i, k) = 0.            gz1(i, k) = 0.
202            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
203            Ma1(i, k)=0.0            Ma1(i, k) = 0.
204            upwd1(i, k)=0.0            upwd1(i, k) = 0.
205            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
206            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
207            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
        end do  
     end do  
   
     do  j=1, ntra  
        do  k=1, nd  
           do  i=1, len  
              ftra1(i, k, j)=0.0  
           end do  
208         end do         end do
209      end do      end do
210    
211      do  i=1, len      precip1 = 0.
212         precip1(i)=0.0      cape1 = 0.
213         iflag1(i)=0      VPrecip1(:, klev + 1) = 0.
214         wd1(i)=0.0  
215         cape1(i)=0.0      do il = 1, klon
216         VPrecip1(i, nd+1)=0.0         sig1(il, klev) = sig1(il, klev) + 1.
217      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
218        enddo
219      if (iflag_con.eq.3) then  
220         do il=1, len      CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
221            sig1(il, nd)=sig1(il, nd)+1.      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
222            sig1(il, nd)=amin1(sig1(il, nd), 12.1)           gznk1, plcl1)
223         enddo      CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
224      endif           icbs1)
225        CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
226      !--------------------------------------------------------------------           iflag1, sig1, w01)
227      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
228      !--------------------------------------------------------------------      ncum = count(iflag1 == 0)
229    
230      if (iflag_con.eq.3) then      IF (ncum > 0) THEN
231         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &         ! Moist convective adjustment is necessary
232              h1, hm1, th1)! nd->na         allocate(idcum(ncum), plcl(ncum), inb(ncum))
233      endif         allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
234           allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl))
235      if (iflag_con.eq.4) then         idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
236         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &         CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, &
237              , lv1, cpn1, tv1, gz1, h1, hm1)              gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
238      endif              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, &
239                tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
240      !--------------------------------------------------------------------              cpn, p, ph, tv, tp, tvp, clw, sig, w0)
241      ! --- CONVECTIVE FEED         CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
242      !--------------------------------------------------------------------              tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, &
243                clw, hp, ep, buoy)
244      if (iflag_con.eq.3) then         CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, &
245         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &              sig, w0, cape, m)
246              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na         CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, &
247      endif              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
248                ments, qents)
249      if (iflag_con.eq.4) then         CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), &
250         CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &              qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
251              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)              ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), &
252      endif              clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), &
253                dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), &
254      !--------------------------------------------------------------------              wt(:ncum, :nl), water(:ncum, :nl), evap, b)
255      ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part         CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, &
256      ! (up through ICB for convect4, up through ICB+1 for convect3)              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
257      !     Calculates the lifted parcel virtual temperature at nk, the              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
258      !     actual temperature, and the adiabatic liquid water content.              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
259      !--------------------------------------------------------------------              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
260           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
261      if (iflag_con.eq.3) then         CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
262         CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &              fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
263              , tp1, tvp1, clw1, icbs1) ! nd->na              iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
264      endif              Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
265        ENDIF
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
        endif  
     end do  
   
     !       print*, 'klon, ncum = ', len, ncum  
   
     IF (ncum.gt.0) THEN  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- COMPRESS THE FIELDS  
        !        (-> vectorization over convective gridpoints)  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_compress( len, nloc, ncum, nd, ntra &  
                , iflag1, nk1, icb1, icbs1 &  
                , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &  
                , t1, q1, qs1, u1, v1, gz1, th1 &  
                , tra1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &  
                , sig1, w01 &  
                , iflag, nk, icb, icbs &  
                , plcl, tnk, qnk, gznk, pbase, buoybase &  
                , t, q, qs, u, v, gz, th &  
                , tra &  
                , h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , sig, w0  )  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_compress( len, nloc, ncum, nd &  
                , iflag1, nk1, icb1 &  
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
266    
267    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
268    

Legend:
Removed from v.69  
changed lines
  Added in v.201

  ViewVC Help
Powered by ViewVC 1.1.21