/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 97 by guez, Fri Apr 25 14:58:31 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 198 by guez, Tue May 31 16:17:35 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use comconst, only: dtphys
18      ! - iflag_con = 3: version lmd      use cv30_closure_m, only: cv30_closure
19      ! - iflag_con = 4: version 4.3b      use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21      use clesphys2, only: iflag_con      use cv30_mixing_m, only: cv30_mixing
22      use cv3_compress_m, only: cv3_compress      use cv30_param_m, only: cv30_param, nl
23      use cv3_mixing_m, only: cv3_mixing      use cv30_prelim_m, only: cv30_prelim
24      use cv3_param_m, only: cv3_param      use cv30_tracer_m, only: cv30_tracer
25      use cv3_prelim_m, only: cv3_prelim      use cv30_trigger_m, only: cv30_trigger
26      use cv3_tracer_m, only: cv3_tracer      use cv30_uncompress_m, only: cv30_uncompress
27      use cv3_uncompress_m, only: cv3_uncompress      use cv30_undilute1_m, only: cv30_undilute1
28      use cv3_unsat_m, only: cv3_unsat      use cv30_undilute2_m, only: cv30_undilute2
29      use cv3_yield_m, only: cv3_yield      use cv30_unsat_m, only: cv30_unsat
30      use cv_uncompress_m, only: cv_uncompress      use cv30_yield_m, only: cv30_yield
31        use cv_thermo_m, only: cv_thermo
32      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
33    
34      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature (K)
35      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific humidity
36      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
     real q1(len, nd) !           Input        specific hum  
     real qs1(len, nd)  
     !      qs1           Real           Input        sat specific hum  
     real, intent(in):: u1(len, nd)  
     !      u1            Real           Input        u-wind  
     real, intent(in):: v1(len, nd)  
     !      v1            Real           Input        v-wind  
     real p1(len, nd)  
     !      p1            Real           Input        full level pressure  
     real ph1(len, nd + 1)  
     !      ph1           Real           Input        half level pressure  
     integer iflag1(len)  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     real ft1(len, nd)  
     !      ft1           Real           Output       temp tend  
     real fq1(len, nd)  
     !      fq1           Real           Output       spec hum tend  
     real fu1(len, nd)  
     !      fu1           Real           Output       u-wind tend  
     real fv1(len, nd)  
     !      fv1           Real           Output       v-wind tend  
     real precip1(len)  
     !      precip1       Real           Output       precipitation  
     real VPrecip1(len, nd+1)  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     real cbmf1(len)  
     !      cbmf1         Real           Output       cloud base mass flux  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
37    
38      real, intent(inout):: w01(klon, klev)      real, intent(in):: u1(klon, klev), v1(klon, klev)
39      ! vertical velocity within adiabatic updraft      ! zonal wind and meridional velocity (m/s)
40    
41      integer icb1(klon)      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
     integer inb1(klon)  
     real, intent(in):: delt  
     !      delt          Real           Input        time step  
     real Ma1(len, nd)  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     real wd1(len)            ! gust  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     real cape1(len)  
     !      cape1         Real           Output       CAPE  
42    
43      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(in):: ph1(klon, klev + 1)
44        ! Half level pressure (hPa). These pressures are defined at levels
45        ! intermediate between those of P1, T1, Q1 and QS1. The first
46        ! value of PH should be greater than (i.e. at a lower level than)
47        ! the first value of the array P1.
48    
49      !-------------------------------------------------------------------      integer, intent(out):: iflag1(:) ! (klon)
50      ! --- ARGUMENTS      ! Flag for Emanuel conditions.
     !-------------------------------------------------------------------  
     ! --- On input:  
51    
52      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! 0: Moist convection occurs.
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
53    
54      !  det:   Array of detrainment mass flux of dimension ND.      ! 1: Moist convection occurs, but a CFL condition on the
55        ! subsidence warming is violated. This does not cause the scheme
56        ! to terminate.
57    
58      !-------------------------------------------------------------------      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
59    
60        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
61    
62        ! 4: No moist convection; atmosphere is not unstable.
63    
64        ! 6: No moist convection because ihmin <= minorig.
65    
66        ! 7: No moist convection because unreasonable parcel level
67        ! temperature or specific humidity.
68    
69        ! 8: No moist convection: lifted condensation level is above the
70        ! 200 mbar level.
71    
72        ! 9: No moist convection: cloud base is higher than the level NL-1.
73    
74        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
75        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
76    
77        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
78        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
79    
80        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
81    
82        real, intent(out):: VPrecip1(klon, klev + 1)
83        ! vertical profile of convective precipitation (kg/m2/s)
84    
85        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
86    
87        real, intent(inout):: w01(klon, klev)
88        ! vertical velocity within adiabatic updraft
89    
90        integer, intent(out):: icb1(klon)
91        integer, intent(inout):: inb1(klon)
92        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94        real, intent(out):: upwd1(klon, klev)
95        ! total upward mass flux (adiabatic + mixed)
96    
97        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
99    
100      !  Local arrays      real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
102    
103      real da(len, nd), phi(len, nd, nd), mp(len, nd)      real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107        ! Local:
108    
109        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110      integer i, k, il      integer i, k, il
     integer icbmax  
     integer nk1(klon)  
111      integer icbs1(klon)      integer icbs1(klon)
   
112      real plcl1(klon)      real plcl1(klon)
113      real tnk1(klon)      real tnk1(klon)
114      real qnk1(klon)      real qnk1(klon)
115      real gznk1(klon)      real gznk1(klon)
116      real pbase1(klon)      real pbase1(klon)
117      real buoybase1(klon)      real buoybase1(klon)
   
118      real lv1(klon, klev)      real lv1(klon, klev)
119      real cpn1(klon, klev)      real cpn1(klon, klev)
120      real tv1(klon, klev)      real tv1(klon, klev)
# Line 210  contains Line 125  contains
125      real tvp1(klon, klev)      real tvp1(klon, klev)
126      real clw1(klon, klev)      real clw1(klon, klev)
127      real th1(klon, klev)      real th1(klon, klev)
   
128      integer ncum      integer ncum
129    
130      ! (local) compressed fields:      ! Compressed fields:
131        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
132      integer nloc      integer, allocatable:: icb(:) ! (ncum)
133      parameter (nloc = klon) ! pour l'instant      integer nent(klon, klev)
134        integer icbs(klon)
135      integer idcum(nloc)      integer inb(klon)
136      integer iflag(nloc), nk(nloc), icb(nloc)      real, allocatable:: plcl(:) ! (ncum)
137      integer nent(nloc, klev)      real tnk(klon), qnk(klon), gznk(klon)
138      integer icbs(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
139      integer inb(nloc), inbis(nloc)      real u(klon, klev), v(klon, klev)
140        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
141      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real p(klon, klev) ! pressure at full level, in hPa
142      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
143      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
144      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
145      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real tvp(klon, klev)
146      real clw(nloc, klev)      real sig(klon, klev), w0(klon, klev)
147      real dph(nloc, klev)      real hp(klon, klev), ep(klon, klev)
148      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real buoy(klon, klev)
149      real tvp(nloc, klev)      real cape(klon)
150      real sig(nloc, klev), w0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
151      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
152      real frac(nloc), buoy(nloc, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
153      real cape(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
154      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
155      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real wt(klon, klev), water(klon, klev)
156      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real, allocatable:: evap(:, :) ! (ncum, nl)
157      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real, allocatable:: b(:, :) ! (ncum, nl - 1)
158      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real ft(klon, klev), fq(klon, klev)
159      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real fu(klon, klev), fv(klon, klev)
160      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
161      real fu(nloc, klev), fv(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
162      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real tps(klon, klev)
163      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real precip(klon)
164      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real VPrecip(klon, klev + 1)
165      real precip(nloc)      real qcondc(klon, klev) ! cld
     real VPrecip(nloc, klev+1)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
166    
167      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
168    
169        ! SET CONSTANTS AND PARAMETERS
170      CALL cv_thermo      CALL cv_thermo
171        CALL cv30_param
172    
173      ! -- set convect parameters      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
174    
175      !     includes microphysical parameters and parameters that      do k = 1, klev
176      !     control the rate of approach to quasi-equilibrium)         do i = 1, klon
177      !     (common cvparam)            ft1(i, k) = 0.
178              fq1(i, k) = 0.
179      if (iflag_con.eq.3) then            fu1(i, k) = 0.
180         CALL cv3_param(nd, delt)            fv1(i, k) = 0.
181      endif            tvp1(i, k) = 0.
182              tp1(i, k) = 0.
183      if (iflag_con.eq.4) then            clw1(i, k) = 0.
184         CALL cv_param(nd)            clw(i, k) = 0.
185      endif            gz1(i, k) = 0.
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k = 1, nd  
        do  i = 1, len  
           ft1(i, k) = 0.0  
           fq1(i, k) = 0.0  
           fu1(i, k) = 0.0  
           fv1(i, k) = 0.0  
           tvp1(i, k) = 0.0  
           tp1(i, k) = 0.0  
           clw1(i, k) = 0.0  
           !ym  
           clw(i, k) = 0.0  
           gz1(i, k)  =  0.  
186            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
187            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
188            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
189            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
190            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
191            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
192         end do         end do
193      end do      end do
194    
195      do  i = 1, len      precip1 = 0.
196         precip1(i) = 0.0      cape1 = 0.
197         iflag1(i) = 0      VPrecip1(:, klev + 1) = 0.
198         wd1(i) = 0.0  
199         cape1(i) = 0.0      do il = 1, klon
200         VPrecip1(i, nd+1) = 0.0         sig1(il, klev) = sig1(il, klev) + 1.
201      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
202        enddo
203      if (iflag_con.eq.3) then  
204         do il = 1, len      CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
205            sig1(il, nd) = sig1(il, nd) + 1.      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
206            sig1(il, nd)  =  min(sig1(il, nd), 12.1)           gznk1, plcl1)
207         enddo      CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
208      endif           icbs1)
209        CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
210      !--------------------------------------------------------------------           iflag1, sig1, w01)
211      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
212      !--------------------------------------------------------------------      ncum = count(iflag1 == 0)
213    
214      if (iflag_con.eq.3) then      IF (ncum > 0) THEN
215         CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &         ! Moist convective adjustment is necessary
216              h1, hm1, th1)         allocate(idcum(ncum), plcl(ncum))
217      endif         allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
218           idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
219      if (iflag_con.eq.4) then         CALL cv30_compress(iflag1, icb1, icbs1, plcl1, tnk1, qnk1, gznk1, &
220         CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &              pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, cpn1, &
221              , lv1, cpn1, tv1, gz1, h1, hm1)              p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, tnk, &
222      endif              qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, &
223                p, ph, tv, tp, tvp, clw, sig, w0)
224      !--------------------------------------------------------------------         CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
225      ! --- CONVECTIVE FEED              tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb(:ncum), tp, tvp, &
226      !--------------------------------------------------------------------              clw, hp, ep, buoy)
227           CALL cv30_closure(icb, inb(:ncum), pbase, p, ph(:ncum, :), tv, buoy, &
228      if (iflag_con.eq.3) then              sig, w0, cape, m)
229         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &         CALL cv30_mixing(icb, inb(:ncum), t, q, qs, u, v, h, lv, hp, ep, clw, &
230              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na              m, sig, ment, qent, uent, vent, nent, sij, elij, ments, qents)
231      endif         CALL cv30_unsat(icb, inb(:ncum), t(:ncum, :nl), q(:ncum, :nl), &
232                qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
233      if (iflag_con.eq.4) then              ph(:ncum, :), th(:ncum, :nl - 1), tv, lv(:ncum, :), &
234         CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &              cpn(:ncum, :nl), ep(:ncum, :), clw(:ncum, :), m(:ncum, :), &
235              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)              ment(:ncum, :, :), elij(:ncum, :, :), dtphys, plcl, mp, &
236      endif              qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt(:ncum, :nl), &
237                water(:ncum, :nl), evap, b)
238      !--------------------------------------------------------------------         CALL cv30_yield(icb, inb(:ncum), dtphys, t, q, u, v, gz, p, ph, h, hp, &
239      ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
240      ! (up through ICB for convect4, up through ICB+1 for convect3)              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
241      !     Calculates the lifted parcel virtual temperature at nk, the              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
242      !     actual temperature, and the adiabatic liquid water content.              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
243      !--------------------------------------------------------------------         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
244           CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
245      if (iflag_con.eq.3) then              fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
246         CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &              iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
247              , tp1, tvp1, clw1, icbs1) ! nd->na              Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
248      endif      ENDIF
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
   
     ncum = 0  
     do  i = 1, len  
        if(iflag1(i).eq.0)then  
           ncum = ncum+1  
           idcum(ncum) = i  
        endif  
     end do  
   
     !       print*, 'klon, ncum = ', len, ncum  
   
     IF (ncum.gt.0) THEN  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- COMPRESS THE FIELDS  
        !        (-> vectorization over convective gridpoints)  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &  
                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &  
                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &  
                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &  
                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &  
                tvp, clw, sig, w0)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_compress( len, nloc, ncum, nd &  
                , iflag1, nk1, icb1 &  
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
249    
250    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
251    

Legend:
Removed from v.97  
changed lines
  Added in v.198

  ViewVC Help
Powered by ViewVC 1.1.21