--- trunk/Sources/phylmd/cv_driver.f 2015/06/18 13:49:26 150 +++ trunk/Sources/phylmd/cv_driver.f 2016/04/14 15:15:56 190 @@ -4,9 +4,9 @@ contains - SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, & - fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, & - Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1) + SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, & + fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, & + dnwd01, qcondc1, cape1, da1, phi1, mp1) ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17 ! Main driver for convection @@ -14,178 +14,109 @@ ! Several modules corresponding to different physical processes - ! Several versions of convect may be used: - ! - iflag_con = 3: version lmd - ! - iflag_con = 4: version 4.3b - - use clesphys2, only: iflag_con - use cv3_compress_m, only: cv3_compress - use cv3_feed_m, only: cv3_feed - use cv3_mixing_m, only: cv3_mixing - use cv3_param_m, only: cv3_param - use cv3_prelim_m, only: cv3_prelim - use cv3_tracer_m, only: cv3_tracer - use cv3_uncompress_m, only: cv3_uncompress - use cv3_unsat_m, only: cv3_unsat - use cv3_yield_m, only: cv3_yield - use cv_feed_m, only: cv_feed - use cv_uncompress_m, only: cv_uncompress + use cv30_closure_m, only: cv30_closure + use cv30_compress_m, only: cv30_compress + use cv30_feed_m, only: cv30_feed + use cv30_mixing_m, only: cv30_mixing + use cv30_param_m, only: cv30_param, nl + use cv30_prelim_m, only: cv30_prelim + use cv30_tracer_m, only: cv30_tracer + use cv30_trigger_m, only: cv30_trigger + use cv30_uncompress_m, only: cv30_uncompress + use cv30_undilute2_m, only: cv30_undilute2 + use cv30_unsat_m, only: cv30_unsat + use cv30_yield_m, only: cv30_yield + use cv_thermo_m, only: cv_thermo USE dimphy, ONLY: klev, klon - real, intent(in):: t1(klon, klev) ! temperature - real, intent(in):: q1(klon, klev) ! specific hum - real, intent(in):: qs1(klon, klev) ! sat specific hum - real, intent(in):: u1(klon, klev) ! u-wind - real, intent(in):: v1(klon, klev) ! v-wind - real, intent(in):: p1(klon, klev) ! full level pressure - real, intent(in):: ph1(klon, klev + 1) ! half level pressure - integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions - real, intent(out):: ft1(klon, klev) ! temp tend - real, intent(out):: fq1(klon, klev) ! spec hum tend - real, intent(out):: fu1(klon, klev) ! u-wind tend - real, intent(out):: fv1(klon, klev) ! v-wind tend - real, intent(out):: precip1(klon) ! precipitation - - real, intent(out):: VPrecip1(klon, klev+1) - ! vertical profile of precipitation + real, intent(in):: t1(klon, klev) ! temperature (K) + real, intent(in):: q1(klon, klev) ! specific humidity + real, intent(in):: qs1(klon, klev) ! saturation specific humidity + + real, intent(in):: u1(klon, klev), v1(klon, klev) + ! zonal wind and meridional velocity (m/s) + + real, intent(in):: p1(klon, klev) ! full level pressure (hPa) + + real, intent(in):: ph1(klon, klev + 1) + ! Half level pressure (hPa). These pressures are defined at levels + ! intermediate between those of P1, T1, Q1 and QS1. The first + ! value of PH should be greater than (i.e. at a lower level than) + ! the first value of the array P1. - real, intent(inout):: cbmf1(klon) ! cloud base mass flux - real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft + integer, intent(out):: iflag1(klon) + ! Flag for Emanuel conditions. - real, intent(inout):: w01(klon, klev) - ! vertical velocity within adiabatic updraft - - integer, intent(out):: icb1(klon) - integer, intent(inout):: inb1(klon) - real, intent(in):: delt ! time step - real Ma1(klon, klev) - ! Ma1 Real Output mass flux adiabatic updraft - real, intent(out):: upwd1(klon, klev) ! total upward mass flux (adiab+mixed) - real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed) - real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux + ! 0: Moist convection occurs. - real qcondc1(klon, klev) ! cld - ! qcondc1 Real Output in-cld mixing ratio of condensed water - real wd1(klon) ! gust - ! wd1 Real Output downdraft velocity scale for sfc fluxes - real cape1(klon) - ! cape1 Real Output CAPE + ! 1: Moist convection occurs, but a CFL condition on the + ! subsidence warming is violated. This does not cause the scheme + ! to terminate. - real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev) - real, intent(inout):: mp1(klon, klev) + ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4 - ! --- ARGUMENTS + ! 3: No moist convection because new cbmf is 0 and old cbmf is 0. - ! --- On input: + ! 4: No moist convection; atmosphere is not unstable - ! t: Array of absolute temperature (K) of dimension KLEV, with first - ! index corresponding to lowest model level. Note that this array - ! will be altered by the subroutine if dry convective adjustment - ! occurs and if IPBL is not equal to 0. - - ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. Note that this array will be altered - ! if dry convective adjustment occurs and if IPBL is not equal to 0. - - ! qs: Array of saturation specific humidity of dimension KLEV, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. Note that this array will be altered - ! if dry convective adjustment occurs and if IPBL is not equal to 0. - - ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first - ! index corresponding with the lowest model level. Defined at - ! same levels as T. Note that this array will be altered if - ! dry convective adjustment occurs and if IPBL is not equal to 0. - - ! v: Same as u but for meridional velocity. - - ! p: Array of pressure (mb) of dimension KLEV, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. - - ! ph: Array of pressure (mb) of dimension KLEV+1, with first index - ! corresponding to lowest level. These pressures are defined at - ! levels intermediate between those of P, T, Q and QS. The first - ! value of PH should be greater than (i.e. at a lower level than) - ! the first value of the array P. + ! 6: No moist convection because ihmin le minorig. - ! nl: The maximum number of levels to which convection can penetrate, plus 1 - ! NL MUST be less than or equal to KLEV-1. + ! 7: No moist convection because unreasonable parcel level + ! temperature or specific humidity. - ! delt: The model time step (sec) between calls to CONVECT + ! 8: No moist convection: lifted condensation level is above the + ! 200 mb level. - ! --- On Output: + ! 9: No moist convection: cloud base is higher then the level NL-1. - ! iflag: An output integer whose value denotes the following: - ! VALUE INTERPRETATION - ! ----- -------------- - ! 0 Moist convection occurs. - ! 1 Moist convection occurs, but a CFL condition - ! on the subsidence warming is violated. This - ! does not cause the scheme to terminate. - ! 2 Moist convection, but no precip because ep(inb) lt 0.0001 - ! 3 No moist convection because new cbmf is 0 and old cbmf is 0. - ! 4 No moist convection; atmosphere is not - ! unstable - ! 6 No moist convection because ihmin le minorig. - ! 7 No moist convection because unreasonable - ! parcel level temperature or specific humidity. - ! 8 No moist convection: lifted condensation - ! level is above the 200 mb level. - ! 9 No moist convection: cloud base is higher - ! then the level NL-1. + real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s) + real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1) - ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same - ! grid levels as T, Q, QS and P. + real, intent(out):: fu1(klon, klev), fv1(klon, klev) + ! forcing (tendency) of zonal and meridional velocity (m/s^2) - ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV, - ! defined at same grid levels as T, Q, QS and P. + real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day) - ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV, - ! defined at same grid levels as T. + real, intent(out):: VPrecip1(klon, klev + 1) + ! vertical profile of convective precipitation (kg/m2/s) - ! fv: Same as FU, but for forcing of meridional velocity. + real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft - ! precip: Scalar convective precipitation rate (mm/day). + real, intent(inout):: w01(klon, klev) + ! vertical velocity within adiabatic updraft - ! VPrecip: Vertical profile of convective precipitation (kg/m2/s). + integer, intent(out):: icb1(klon) + integer, intent(inout):: inb1(klon) + real, intent(in):: delt ! the model time step (sec) between calls - ! wd: A convective downdraft velocity scale. For use in surface - ! flux parameterizations. See convect.ps file for details. + real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft - ! tprime: A convective downdraft temperature perturbation scale (K). - ! For use in surface flux parameterizations. See convect.ps - ! file for details. + real, intent(out):: upwd1(klon, klev) + ! total upward mass flux (adiabatic + mixed) - ! qprime: A convective downdraft specific humidity - ! perturbation scale (gm/gm). - ! For use in surface flux parameterizations. See convect.ps - ! file for details. + real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed) + real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux - ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST - ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT - ! ITS NEXT CALL. That is, the value of CBMF must be "remembered" - ! by the calling program between calls to CONVECT. + real, intent(out):: qcondc1(klon, klev) + ! in-cloud mixing ratio of condensed water - ! det: Array of detrainment mass flux of dimension KLEV. + real, intent(out):: cape1(klon) + real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev) + real, intent(inout):: mp1(klon, klev) - ! Local arrays + ! Local: real da(klon, klev), phi(klon, klev, klev), mp(klon, klev) - integer i, k, il integer icbmax integer nk1(klon) integer icbs1(klon) - real plcl1(klon) real tnk1(klon) real qnk1(klon) real gznk1(klon) real pbase1(klon) real buoybase1(klon) - real lv1(klon, klev) real cpn1(klon, klev) real tv1(klon, klev) @@ -196,29 +127,25 @@ real tvp1(klon, klev) real clw1(klon, klev) real th1(klon, klev) - integer ncum - ! (local) compressed fields: - + ! Compressed fields: integer idcum(klon) integer iflag(klon), nk(klon), icb(klon) integer nent(klon, klev) integer icbs(klon) - integer inb(klon), inbis(klon) - - real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon) + integer inb(klon) + real plcl(klon), tnk(klon), qnk(klon), gznk(klon) real t(klon, klev), q(klon, klev), qs(klon, klev) real u(klon, klev), v(klon, klev) real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev) - real p(klon, klev), ph(klon, klev+1), tv(klon, klev), tp(klon, klev) + real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev) real clw(klon, klev) - real dph(klon, klev) real pbase(klon), buoybase(klon), th(klon, klev) real tvp(klon, klev) real sig(klon, klev), w0(klon, klev) real hp(klon, klev), ep(klon, klev), sigp(klon, klev) - real frac(klon), buoy(klon, klev) + real buoy(klon, klev) real cape(klon) real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev) real uent(klon, klev, klev), vent(klon, klev, klev) @@ -226,250 +153,131 @@ real sij(klon, klev, klev), elij(klon, klev, klev) real qp(klon, klev), up(klon, klev), vp(klon, klev) real wt(klon, klev), water(klon, klev), evap(klon, klev) - real b(klon, klev), ft(klon, klev), fq(klon, klev) + real, allocatable:: b(:, :) ! (ncum, nl - 1) + real ft(klon, klev), fq(klon, klev) real fu(klon, klev), fv(klon, klev) real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev) real Ma(klon, klev), mike(klon, klev), tls(klon, klev) - real tps(klon, klev), qprime(klon), tprime(klon) + real tps(klon, klev) real precip(klon) - real VPrecip(klon, klev+1) + real VPrecip(klon, klev + 1) real qcondc(klon, klev) ! cld - real wd(klon) ! gust !------------------------------------------------------------------- - ! --- SET CONSTANTS AND PARAMETERS - - ! -- set simulation flags: - ! (common cvflag) - CALL cv_flag - - ! -- set thermodynamical constants: - ! (common cvthermo) + ! SET CONSTANTS AND PARAMETERS + ! set thermodynamical constants: CALL cv_thermo - ! -- set convect parameters - + ! set convect parameters ! includes microphysical parameters and parameters that ! control the rate of approach to quasi-equilibrium) ! (common cvparam) + CALL cv30_param(delt) - if (iflag_con == 3) CALL cv3_param(klev, delt) - - ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS + ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS do k = 1, klev do i = 1, klon - ft1(i, k) = 0.0 - fq1(i, k) = 0.0 - fu1(i, k) = 0.0 - fv1(i, k) = 0.0 - tvp1(i, k) = 0.0 - tp1(i, k) = 0.0 - clw1(i, k) = 0.0 - !ym - clw(i, k) = 0.0 + ft1(i, k) = 0. + fq1(i, k) = 0. + fu1(i, k) = 0. + fv1(i, k) = 0. + tvp1(i, k) = 0. + tp1(i, k) = 0. + clw1(i, k) = 0. + clw(i, k) = 0. gz1(i, k) = 0. VPrecip1(i, k) = 0. - Ma1(i, k) = 0.0 - upwd1(i, k) = 0.0 - dnwd1(i, k) = 0.0 - dnwd01(i, k) = 0.0 - qcondc1(i, k) = 0.0 + Ma1(i, k) = 0. + upwd1(i, k) = 0. + dnwd1(i, k) = 0. + dnwd01(i, k) = 0. + qcondc1(i, k) = 0. end do end do do i = 1, klon - precip1(i) = 0.0 + precip1(i) = 0. iflag1(i) = 0 - wd1(i) = 0.0 - cape1(i) = 0.0 - VPrecip1(i, klev+1) = 0.0 + cape1(i) = 0. + VPrecip1(i, klev + 1) = 0. end do - if (iflag_con == 3) then - do il = 1, klon - sig1(il, klev) = sig1(il, klev) + 1. - sig1(il, klev) = min(sig1(il, klev), 12.1) - enddo - endif - - ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY - - if (iflag_con == 3) then - CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, & - gz1, h1, hm1, th1) - else - ! iflag_con == 4 - CALL cv_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, & - gz1, h1, hm1) - endif - - ! --- CONVECTIVE FEED - - if (iflag_con == 3) then - CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, & - icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na - else - ! iflag_con == 4 - CALL cv_feed(klon, klev, t1, q1, qs1, p1, hm1, gz1, nk1, icb1, icbmax, & - iflag1, tnk1, qnk1, gznk1, plcl1) - endif - - ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part - ! (up through ICB for convect4, up through ICB+1 for convect3) - ! Calculates the lifted parcel virtual temperature at nk, the - ! actual temperature, and the adiabatic liquid water content. - - if (iflag_con == 3) then - CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, & - tp1, tvp1, clw1, icbs1) ! klev->na - else - ! iflag_con == 4 - CALL cv_undilute1(klon, klev, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax, & - tp1, tvp1, clw1) - endif - - ! --- TRIGGERING - - if (iflag_con == 3) then - CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, & - buoybase1, iflag1, sig1, w01) ! klev->na - else - ! iflag_con == 4 - CALL cv_trigger(klon, klev, icb1, cbmf1, tv1, tvp1, iflag1) - end if + do il = 1, klon + sig1(il, klev) = sig1(il, klev) + 1. + sig1(il, klev) = min(sig1(il, klev), 12.1) + enddo + + ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY + CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, & + gz1, h1, hm1, th1) + + ! CONVECTIVE FEED + CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, & + icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na + + CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, & + tp1, tvp1, clw1, icbs1) ! klev->na + + ! TRIGGERING + CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, & + buoybase1, iflag1, sig1, w01) ! klev->na - ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY + ! Moist convective adjustment is necessary ncum = 0 do i = 1, klon - if(iflag1(i) == 0)then - ncum = ncum+1 + if (iflag1(i) == 0) then + ncum = ncum + 1 idcum(ncum) = i endif end do IF (ncum > 0) THEN - ! --- COMPRESS THE FIELDS - ! (-> vectorization over convective gridpoints) - - if (iflag_con == 3) then - CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, & - plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, & - v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, & - sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, & - buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, & - tvp, clw, sig, w0) - else - ! iflag_con == 4 - CALL cv_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, cbmf1, & - plcl1, tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, & - cpn1, p1, ph1, tv1, tp1, tvp1, clw1, iflag, nk, icb, cbmf, & - plcl, tnk, qnk, gznk, t, q, qs, u, v, gz, h, lv, cpn, p, ph, & - tv, tp, tvp, clw, dph) - endif - - ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part : - ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES - ! --- & - ! --- COMPUTE THE PRECIPITATION EFFICIENCIES AND THE - ! --- FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD - ! --- & - ! --- FIND THE LEVEL OF NEUTRAL BUOYANCY - - if (iflag_con == 3) then - CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, & - t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, & - tvp, clw, hp, ep, sigp, buoy) !na->klev - else - ! iflag_con == 4 - CALL cv_undilute2(klon, ncum, klev, icb, nk, tnk, qnk, gznk, t, & - qs, gz, p, dph, h, tv, lv, inb, inbis, tp, tvp, clw, hp, ep, & - sigp, frac) - endif - - ! --- CLOSURE - - if (iflag_con == 3) then - CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, & - buoy, sig, w0, cape, m) ! na->klev - else - ! iflag_con == 4 - CALL cv_closure(klon, ncum, klev, nk, icb, tv, tvp, p, ph, dph, & - plcl, cpn, iflag, cbmf) - endif - - ! --- MIXING - - if (iflag_con == 3) then - CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, & - v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, & - sij, elij, ments, qents) - else - ! iflag_con == 4 - CALL cv_mixing(klon, ncum, klev, icb, nk, inb, inbis, ph, t, q, qs, & - u, v, h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, & - uent, vent, nent, sij, elij) - endif - - ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS - - if (iflag_con == 3) then - CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, & - v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, & - plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev - else - ! iflag_con == 4 - CALL cv_unsat(klon, ncum, klev, inb, t, q, qs, gz, u, v, p, ph, h, & - lv, ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, & - water, evap) - endif - - ! --- YIELD - ! (tendencies, precipitation, variables of interface with other - ! processes, etc) - - if (iflag_con == 3) then - CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, & - gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, & - wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, & - tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, & - dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev - else - ! iflag_con == 4 - CALL cv_yield(klon, ncum, klev, nk, icb, inb, delt, t, q, u, v, gz, & - p, ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, & - water, evap, ment, qent, uent, vent, nent, elij, tv, tvp, & - iflag, wd, qprime, tprime, precip, cbmf, ft, fq, fu, fv, Ma, & - qcondc) - endif - - ! --- passive tracers - - if (iflag_con == 3) CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi) - - ! --- UNCOMPRESS THE FIELDS - - ! set iflag1 = 42 for non convective points - do i = 1, klon - iflag1(i) = 42 - end do - - if (iflag_con == 3) then - CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, & - ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, & - da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, & - fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, & - cape1, da1, phi1, mp1) - else - ! iflag_con == 4 - CALL cv_uncompress(idcum(:ncum), iflag, precip, cbmf, ft, fq, fu, & - fv, Ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, & - Ma1, qcondc1) - endif - ENDIF ! ncum>0 + allocate(b(ncum, nl - 1)) + CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, & + gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, & + cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, & + icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, & + th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0) + CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, & + h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, & + ep, sigp, buoy) + + ! CLOSURE + CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, & + buoy, sig, w0, cape, m) ! na->klev + + ! MIXING + CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, & + v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, & + sij, elij, ments, qents) + + ! Unsaturated (precipitating) downdrafts + CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, & + tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, mp, & + qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt, water, evap, b) + + ! Yield (tendencies, precipitation, variables of interface with + ! other processes, etc) + CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, & + h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, & + water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, & + nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, & + upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc) + + CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi) + + ! UNCOMPRESS THE FIELDS + iflag1 = 42 ! for non convective points + CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, & + ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, & + da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, & + fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, & + phi1, mp1) + ENDIF end SUBROUTINE cv_driver