/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 99 by guez, Wed Jul 2 18:39:15 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 196 by guez, Mon May 23 13:50:39 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use comconst, only: dtphys
18      ! - iflag_con = 3: version lmd      use cv30_closure_m, only: cv30_closure
19      ! - iflag_con = 4: version 4.3b      use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21      use clesphys2, only: iflag_con      use cv30_mixing_m, only: cv30_mixing
22      use cv3_compress_m, only: cv3_compress      use cv30_param_m, only: cv30_param, nl
23      use cv3_mixing_m, only: cv3_mixing      use cv30_prelim_m, only: cv30_prelim
24      use cv3_param_m, only: cv3_param      use cv30_tracer_m, only: cv30_tracer
25      use cv3_prelim_m, only: cv3_prelim      use cv30_trigger_m, only: cv30_trigger
26      use cv3_tracer_m, only: cv3_tracer      use cv30_uncompress_m, only: cv30_uncompress
27      use cv3_uncompress_m, only: cv3_uncompress      use cv30_undilute1_m, only: cv30_undilute1
28      use cv3_unsat_m, only: cv3_unsat      use cv30_undilute2_m, only: cv30_undilute2
29      use cv3_yield_m, only: cv3_yield      use cv30_unsat_m, only: cv30_unsat
30      use cv_uncompress_m, only: cv_uncompress      use cv30_yield_m, only: cv30_yield
31        use cv_thermo_m, only: cv_thermo
32      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
33    
34      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature (K)
35      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific humidity
36      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
     real q1(len, nd) !           Input        specific hum  
     real qs1(len, nd)  
     !      qs1           Real           Input        sat specific hum  
     real, intent(in):: u1(len, nd)  
     !      u1            Real           Input        u-wind  
     real, intent(in):: v1(len, nd)  
     !      v1            Real           Input        v-wind  
     real p1(len, nd)  
     !      p1            Real           Input        full level pressure  
     real ph1(len, nd + 1)  
     !      ph1           Real           Input        half level pressure  
     integer iflag1(len)  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     real ft1(len, nd)  
     !      ft1           Real           Output       temp tend  
     real fq1(len, nd)  
     !      fq1           Real           Output       spec hum tend  
     real fu1(len, nd)  
     !      fu1           Real           Output       u-wind tend  
     real fv1(len, nd)  
     !      fv1           Real           Output       v-wind tend  
     real precip1(len)  
     !      precip1       Real           Output       precipitation  
     real VPrecip1(len, nd+1)  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     real cbmf1(len)  
     !      cbmf1         Real           Output       cloud base mass flux  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
37    
38      real, intent(inout):: w01(klon, klev)      real, intent(in):: u1(klon, klev), v1(klon, klev)
39      ! vertical velocity within adiabatic updraft      ! zonal wind and meridional velocity (m/s)
40    
41      integer icb1(klon)      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
     integer inb1(klon)  
     real, intent(in):: delt  
     !      delt          Real           Input        time step  
     real Ma1(len, nd)  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     real wd1(len)            ! gust  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     real cape1(len)  
     !      cape1         Real           Output       CAPE  
42    
43      real, intent(inout):: da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(in):: ph1(klon, klev + 1)
44        ! Half level pressure (hPa). These pressures are defined at levels
45        ! intermediate between those of P1, T1, Q1 and QS1. The first
46        ! value of PH should be greater than (i.e. at a lower level than)
47        ! the first value of the array P1.
48    
49      !-------------------------------------------------------------------      integer, intent(out):: iflag1(:) ! (klon)
50      ! --- ARGUMENTS      ! Flag for Emanuel conditions.
     !-------------------------------------------------------------------  
     ! --- On input:  
51    
52      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! 0: Moist convection occurs.
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
53    
54      !  det:   Array of detrainment mass flux of dimension ND.      ! 1: Moist convection occurs, but a CFL condition on the
55        ! subsidence warming is violated. This does not cause the scheme
56        ! to terminate.
57    
58      !-------------------------------------------------------------------      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
59    
60        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
61    
62        ! 4: No moist convection; atmosphere is not unstable.
63    
64        ! 6: No moist convection because ihmin <= minorig.
65    
66        ! 7: No moist convection because unreasonable parcel level
67        ! temperature or specific humidity.
68    
69        ! 8: No moist convection: lifted condensation level is above the
70        ! 200 mbar level.
71    
72        ! 9: No moist convection: cloud base is higher than the level NL-1.
73    
74        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
75        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
76    
77        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
78        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
79    
80        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
81    
82        real, intent(out):: VPrecip1(klon, klev + 1)
83        ! vertical profile of convective precipitation (kg/m2/s)
84    
85        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
86    
87        real, intent(inout):: w01(klon, klev)
88        ! vertical velocity within adiabatic updraft
89    
90        integer, intent(out):: icb1(klon)
91        integer, intent(inout):: inb1(klon)
92        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94        real, intent(out):: upwd1(klon, klev)
95        ! total upward mass flux (adiabatic + mixed)
96    
97        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
99    
100      !  Local arrays      real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
102    
103      real da(len, nd), phi(len, nd, nd), mp(len, nd)      real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107        ! Local:
108    
109        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110      integer i, k, il      integer i, k, il
     integer icbmax  
111      integer nk1(klon)      integer nk1(klon)
112      integer icbs1(klon)      integer icbs1(klon)
   
113      real plcl1(klon)      real plcl1(klon)
114      real tnk1(klon)      real tnk1(klon)
115      real qnk1(klon)      real qnk1(klon)
116      real gznk1(klon)      real gznk1(klon)
117      real pbase1(klon)      real pbase1(klon)
118      real buoybase1(klon)      real buoybase1(klon)
   
119      real lv1(klon, klev)      real lv1(klon, klev)
120      real cpn1(klon, klev)      real cpn1(klon, klev)
121      real tv1(klon, klev)      real tv1(klon, klev)
# Line 210  contains Line 126  contains
126      real tvp1(klon, klev)      real tvp1(klon, klev)
127      real clw1(klon, klev)      real clw1(klon, klev)
128      real th1(klon, klev)      real th1(klon, klev)
   
129      integer ncum      integer ncum
130    
131      ! (local) compressed fields:      ! Compressed fields:
132        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
133      integer nloc      integer nk(klon)
134      parameter (nloc = klon) ! pour l'instant      integer, allocatable:: icb(:) ! (ncum)
135        integer nent(klon, klev)
136      integer idcum(nloc)      integer icbs(klon)
137      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon)
138      integer nent(nloc, klev)      real, allocatable:: plcl(:) ! (ncum)
139      integer icbs(nloc)      real tnk(klon), qnk(klon), gznk(klon)
140      integer inb(nloc), inbis(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
141        real u(klon, klev), v(klon, klev)
142      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
143      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real p(klon, klev) ! pressure at full level, in hPa
144      real u(nloc, klev), v(nloc, klev)      real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
145      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real clw(klon, klev)
146      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
147      real clw(nloc, klev)      real tvp(klon, klev)
148      real dph(nloc, klev)      real sig(klon, klev), w0(klon, klev)
149      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real hp(klon, klev), ep(klon, klev)
150      real tvp(nloc, klev)      real buoy(klon, klev)
151      real sig(nloc, klev), w0(nloc, klev)      real cape(klon)
152      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
153      real frac(nloc), buoy(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
154      real cape(nloc)      real ments(klon, klev, klev), qents(klon, klev, klev)
155      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real sij(klon, klev, klev), elij(klon, klev, klev)
156      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
157      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real wt(klon, klev), water(klon, klev)
158      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real, allocatable:: evap(:, :) ! (ncum, nl)
159      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real, allocatable:: b(:, :) ! (ncum, nl - 1)
160      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real ft(klon, klev), fq(klon, klev)
161      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real fu(klon, klev), fv(klon, klev)
162      real fu(nloc, klev), fv(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
163      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
164      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real tps(klon, klev)
165      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real precip(klon)
166      real precip(nloc)      real VPrecip(klon, klev + 1)
167      real VPrecip(nloc, klev+1)      real qcondc(klon, klev) ! cld
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
168    
169      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
170    
171        ! SET CONSTANTS AND PARAMETERS
172      CALL cv_thermo      CALL cv_thermo
173        CALL cv30_param
174    
175      ! -- set convect parameters      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
176    
177      !     includes microphysical parameters and parameters that      do k = 1, klev
178      !     control the rate of approach to quasi-equilibrium)         do i = 1, klon
179      !     (common cvparam)            ft1(i, k) = 0.
180              fq1(i, k) = 0.
181      if (iflag_con.eq.3) then            fu1(i, k) = 0.
182         CALL cv3_param(nd, delt)            fv1(i, k) = 0.
183      endif            tvp1(i, k) = 0.
184              tp1(i, k) = 0.
185      if (iflag_con.eq.4) then            clw1(i, k) = 0.
186         CALL cv_param(nd)            clw(i, k) = 0.
187      endif            gz1(i, k) = 0.
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k = 1, nd  
        do  i = 1, len  
           ft1(i, k) = 0.0  
           fq1(i, k) = 0.0  
           fu1(i, k) = 0.0  
           fv1(i, k) = 0.0  
           tvp1(i, k) = 0.0  
           tp1(i, k) = 0.0  
           clw1(i, k) = 0.0  
           !ym  
           clw(i, k) = 0.0  
           gz1(i, k)  =  0.  
188            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
189            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
190            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
191            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
192            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
193            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
194         end do         end do
195      end do      end do
196    
197      do  i = 1, len      precip1 = 0.
198         precip1(i) = 0.0      cape1 = 0.
199         iflag1(i) = 0      VPrecip1(:, klev + 1) = 0.
200         wd1(i) = 0.0  
201         cape1(i) = 0.0      do il = 1, klon
202         VPrecip1(i, nd+1) = 0.0         sig1(il, klev) = sig1(il, klev) + 1.
203      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
204        enddo
205      if (iflag_con.eq.3) then  
206         do il = 1, len      CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
207            sig1(il, nd) = sig1(il, nd) + 1.           gz1, h1, hm1, th1)
208            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, nk1, icb1, iflag1, tnk1, qnk1, &
209         enddo           gznk1, plcl1)
210      endif      CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, tp1, tvp1, &
211             clw1, icbs1)
212      !--------------------------------------------------------------------      CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
213      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY           iflag1, sig1, w01)
214      !--------------------------------------------------------------------  
215        ncum = count(iflag1 == 0)
216      if (iflag_con.eq.3) then  
217         CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &      IF (ncum > 0) THEN
218              h1, hm1, th1)         ! Moist convective adjustment is necessary
219      endif         allocate(idcum(ncum), plcl(ncum))
220           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
221      if (iflag_con.eq.4) then         idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
222         CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &         CALL cv30_compress(iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, gznk1, &
223              , lv1, cpn1, tv1, gz1, h1, hm1)              pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, cpn1, &
224      endif              p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, nk, icb, icbs, plcl, &
225                tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
226      !--------------------------------------------------------------------              cpn, p, ph, tv, tp, tvp, clw, sig, w0)
227      ! --- CONVECTIVE FEED         CALL cv30_undilute2(icb, icbs(:ncum), nk, tnk, qnk, gznk, t, qs, gz, &
228      !--------------------------------------------------------------------              p, h, tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb(:ncum), &
229                tp, tvp, clw, hp, ep, buoy)
230      if (iflag_con.eq.3) then         CALL cv30_closure(icb, inb(:ncum), pbase, p, ph(:ncum, :), tv, buoy, &
231         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &              sig, w0, cape, m)
232              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na         CALL cv30_mixing(icb, nk(:ncum), inb(:ncum), t, q, qs, u, v, h, lv, &
233      endif              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
234                ments, qents)
235      if (iflag_con.eq.4) then         CALL cv30_unsat(icb, inb(:ncum), t(:ncum, :nl), q(:ncum, :nl), &
236         CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &              qs(:ncum, :nl), gz, u, v, p, ph(:ncum, :), th(:ncum, :nl - 1), &
237              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)              tv, lv, cpn, ep(:ncum, :), clw(:ncum, :), m(:ncum, :), &
238      endif              ment(:ncum, :, :), elij(:ncum, :, :), dtphys, plcl, mp, &
239                qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt(:ncum, :nl), &
240      !--------------------------------------------------------------------              water(:ncum, :nl), evap, b)
241      ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part         CALL cv30_yield(icb, inb(:ncum), dtphys, t, q, u, v, gz, p, ph, h, hp, &
242      ! (up through ICB for convect4, up through ICB+1 for convect3)              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
243      !     Calculates the lifted parcel virtual temperature at nk, the              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
244      !     actual temperature, and the adiabatic liquid water content.              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
245      !--------------------------------------------------------------------              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
246           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
247      if (iflag_con.eq.3) then         CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
248         CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &              fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
249              , tp1, tvp1, clw1, icbs1) ! nd->na              iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
250      endif              Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
251        ENDIF
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
   
     ncum = 0  
     do  i = 1, len  
        if(iflag1(i).eq.0)then  
           ncum = ncum+1  
           idcum(ncum) = i  
        endif  
     end do  
   
     IF (ncum.gt.0) THEN  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- COMPRESS THE FIELDS  
        !        (-> vectorization over convective gridpoints)  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &  
                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &  
                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &  
                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &  
                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &  
                tvp, clw, sig, w0)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_compress( len, nloc, ncum, nd &  
                , iflag1, nk1, icb1 &  
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, &  
                VPrecip, sig, w0, ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, &  
                qcondc, wd, cape, da, phi, mp, iflag1, precip1, VPrecip1, &  
                sig1, w01, ft1, fq1, fu1, fv1, inb1, Ma1, upwd1, dnwd1, &  
                dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
252    
253    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
254    

Legend:
Removed from v.99  
changed lines
  Added in v.196

  ViewVC Help
Powered by ViewVC 1.1.21