/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 103 by guez, Fri Aug 29 13:00:05 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 205 by guez, Tue Jun 21 15:16:03 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use comconst, only: dtphys
18      ! - iflag_con = 3: version lmd      use cv30_closure_m, only: cv30_closure
19      ! - iflag_con = 4: version 4.3b      use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21      use clesphys2, only: iflag_con      use cv30_mixing_m, only: cv30_mixing
22      use cv3_compress_m, only: cv3_compress      use cv30_param_m, only: cv30_param, nl
23      use cv3_feed_m, only: cv3_feed      use cv30_prelim_m, only: cv30_prelim
24      use cv3_mixing_m, only: cv3_mixing      use cv30_tracer_m, only: cv30_tracer
25      use cv3_param_m, only: cv3_param      use cv30_trigger_m, only: cv30_trigger
26      use cv3_prelim_m, only: cv3_prelim      use cv30_uncompress_m, only: cv30_uncompress
27      use cv3_tracer_m, only: cv3_tracer      use cv30_undilute1_m, only: cv30_undilute1
28      use cv3_uncompress_m, only: cv3_uncompress      use cv30_undilute2_m, only: cv30_undilute2
29      use cv3_unsat_m, only: cv3_unsat      use cv30_unsat_m, only: cv30_unsat
30      use cv3_yield_m, only: cv3_yield      use cv30_yield_m, only: cv30_yield
     use cv_feed_m, only: cv_feed  
     use cv_uncompress_m, only: cv_uncompress  
31      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
32    
33      real, intent(in):: t1(klon, klev) ! temperature      real, intent(in):: t1(klon, klev) ! temperature, in K
34      real, intent(in):: q1(klon, klev) ! specific hum      real, intent(in):: q1(klon, klev) ! specific humidity
35      real, intent(in):: qs1(klon, klev) ! sat specific hum      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
36      real, intent(in):: u1(klon, klev) ! u-wind  
37      real, intent(in):: v1(klon, klev) ! v-wind      real, intent(in):: u1(klon, klev), v1(klon, klev)
38      real, intent(in):: p1(klon, klev) ! full level pressure      ! zonal wind and meridional velocity (m/s)
39      real, intent(in):: ph1(klon, klev + 1) ! half level pressure  
40      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions      real, intent(in):: p1(klon, klev) ! full level pressure, in hPa
41      real, intent(out):: ft1(klon, klev) ! temp tend  
42      real, intent(out):: fq1(klon, klev) ! spec hum tend      real, intent(in):: ph1(klon, klev + 1)
43      real, intent(out):: fu1(klon, klev) ! u-wind tend      ! Half level pressure, in hPa. These pressures are defined at levels
44      real, intent(out):: fv1(klon, klev) ! v-wind tend      ! intermediate between those of P1, T1, Q1 and QS1. The first
45      real, intent(out):: precip1(klon) ! precipitation      ! value of PH should be greater than (i.e. at a lower level than)
46        ! the first value of the array P1.
47    
48      real, intent(out):: VPrecip1(klon, klev+1)      integer, intent(out):: iflag1(:) ! (klon)
49      ! vertical profile of precipitation      ! Flag for Emanuel conditions.
50    
51      real, intent(inout):: cbmf1(klon) ! cloud base mass flux      ! 0: Moist convection occurs.
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
52    
53      real, intent(inout):: w01(klon, klev)      ! 1: Moist convection occurs, but a CFL condition on the
54      ! vertical velocity within adiabatic updraft      ! subsidence warming is violated. This does not cause the scheme
55        ! to terminate.
56    
57      integer, intent(out):: icb1(klon)      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
     integer, intent(inout):: inb1(klon)  
     real, intent(in):: delt ! time step  
     real Ma1(klon, klev)  
     ! Ma1 Real Output mass flux adiabatic updraft  
     real, intent(out):: upwd1(klon, klev) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux  
58    
59      real qcondc1(klon, klev) ! cld      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
60      ! qcondc1 Real Output in-cld mixing ratio of condensed water  
61      real wd1(klon) ! gust      ! 4: No moist convection; atmosphere is not unstable.
62      ! wd1 Real Output downdraft velocity scale for sfc fluxes  
63      real cape1(klon)      ! 6: No moist convection because ihmin <= minorig.
64      ! cape1 Real Output CAPE  
65        ! 7: No moist convection because unreasonable parcel level
66      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)      ! temperature or specific humidity.
     real, intent(inout):: mp1(klon, klev)  
   
     ! --- ARGUMENTS  
   
     ! --- On input:  
   
     ! t: Array of absolute temperature (K) of dimension KLEV, with first  
     ! index corresponding to lowest model level. Note that this array  
     ! will be altered by the subroutine if dry convective adjustment  
     ! occurs and if IPBL is not equal to 0.  
   
     ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T. Note that this array will be altered  
     ! if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! qs: Array of saturation specific humidity of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T. Note that this array will be altered  
     ! if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first  
     ! index corresponding with the lowest model level. Defined at  
     ! same levels as T. Note that this array will be altered if  
     ! dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! v: Same as u but for meridional velocity.  
   
     ! p: Array of pressure (mb) of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T.  
   
     ! ph: Array of pressure (mb) of dimension KLEV+1, with first index  
     ! corresponding to lowest level. These pressures are defined at  
     ! levels intermediate between those of P, T, Q and QS. The first  
     ! value of PH should be greater than (i.e. at a lower level than)  
     ! the first value of the array P.  
67    
68      ! nl: The maximum number of levels to which convection can penetrate, plus 1      ! 8: No moist convection: lifted condensation level is above the
69      ! NL MUST be less than or equal to KLEV-1.      ! 200 mbar level.
70    
71      ! delt: The model time step (sec) between calls to CONVECT      ! 9: No moist convection: cloud base is higher than the level NL-1.
72    
73      ! --- On Output:      real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
74        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
75    
76      ! iflag: An output integer whose value denotes the following:      real, intent(out):: fu1(klon, klev), fv1(klon, klev)
77      ! VALUE INTERPRETATION      ! forcing (tendency) of zonal and meridional velocity (m/s^2)
     ! ----- --------------  
     ! 0 Moist convection occurs.  
     ! 1 Moist convection occurs, but a CFL condition  
     ! on the subsidence warming is violated. This  
     ! does not cause the scheme to terminate.  
     ! 2 Moist convection, but no precip because ep(inb) lt 0.0001  
     ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.  
     ! 4 No moist convection; atmosphere is not  
     ! unstable  
     ! 6 No moist convection because ihmin le minorig.  
     ! 7 No moist convection because unreasonable  
     ! parcel level temperature or specific humidity.  
     ! 8 No moist convection: lifted condensation  
     ! level is above the 200 mb level.  
     ! 9 No moist convection: cloud base is higher  
     ! then the level NL-1.  
78    
79      ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same      real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
     ! grid levels as T, Q, QS and P.  
80    
81      ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,      real, intent(out):: VPrecip1(klon, klev + 1)
82      ! defined at same grid levels as T, Q, QS and P.      ! vertical profile of convective precipitation (kg/m2/s)
83    
84      ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,      real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
     ! defined at same grid levels as T.  
85    
86      ! fv: Same as FU, but for forcing of meridional velocity.      real, intent(inout):: w01(klon, klev)
87        ! vertical velocity within adiabatic updraft
88    
89      ! precip: Scalar convective precipitation rate (mm/day).      integer, intent(out):: icb1(klon)
90        integer, intent(inout):: inb1(klon)
91        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93      ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).      real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96      ! wd: A convective downdraft velocity scale. For use in surface      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
     ! flux parameterizations. See convect.ps file for details.  
97    
98      ! tprime: A convective downdraft temperature perturbation scale (K).      real, intent(out):: qcondc1(klon, klev)
99      ! For use in surface flux parameterizations. See convect.ps      ! in-cloud mixing ratio of condensed water
     ! file for details.  
100    
101      ! qprime: A convective downdraft specific humidity      real, intent(out):: cape1(klon)
102      ! perturbation scale (gm/gm).      real, intent(out):: da1(:, :) ! (klon, klev)
103      ! For use in surface flux parameterizations. See convect.ps      real, intent(out):: phi1(:, :, :) ! (klon, klev, klev)
     ! file for details.  
104    
105      ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST      real, intent(out):: mp1(:, :) ! (klon, klev) Mass flux of the
106      ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT      ! unsaturated downdraft, defined positive downward, in kg m-2
107      ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"      ! s-1. M_p in Emanuel (1991 928).
     ! by the calling program between calls to CONVECT.  
108    
109      ! det: Array of detrainment mass flux of dimension KLEV.      ! Local:
110    
111      ! Local arrays      real da(klon, klev), phi(klon, klev, klev)
112    
113      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)      real, allocatable:: mp(:, :) ! (ncum, nl) Mass flux of the
114        ! unsaturated downdraft, defined positive downward, in kg m-2
115        ! s-1. M_p in Emanuel (1991 928).
116    
117      integer i, k, il      integer i, k, il
     integer icbmax  
     integer nk1(klon)  
118      integer icbs1(klon)      integer icbs1(klon)
   
119      real plcl1(klon)      real plcl1(klon)
120      real tnk1(klon)      real tnk1(klon)
121      real qnk1(klon)      real qnk1(klon)
# Line 186  contains Line 123  contains
123      real pbase1(klon)      real pbase1(klon)
124      real buoybase1(klon)      real buoybase1(klon)
125    
126      real lv1(klon, klev)      real lv1(klon, nl)
127      real cpn1(klon, klev)      ! specific latent heat of vaporization of water, in J kg-1
128    
129        real cpn1(klon, nl)
130        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
131    
132      real tv1(klon, klev)      real tv1(klon, klev)
133      real gz1(klon, klev)      real gz1(klon, klev)
134      real hm1(klon, klev)      real hm1(klon, klev)
# Line 195  contains Line 136  contains
136      real tp1(klon, klev)      real tp1(klon, klev)
137      real tvp1(klon, klev)      real tvp1(klon, klev)
138      real clw1(klon, klev)      real clw1(klon, klev)
139      real th1(klon, klev)      real th1(klon, nl) ! potential temperature, in K
   
140      integer ncum      integer ncum
141    
142      ! (local) compressed fields:      ! Compressed fields:
143        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
144      integer idcum(klon)      integer, allocatable:: icb(:) ! (ncum)
     integer iflag(klon), nk(klon), icb(klon)  
145      integer nent(klon, klev)      integer nent(klon, klev)
146      integer icbs(klon)      integer icbs(klon)
     integer inb(klon), inbis(klon)  
147    
148      real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon)      integer, allocatable:: inb(:) ! (ncum)
149        ! first model level above the level of neutral buoyancy of the
150        ! parcel (1 <= inb <= nl - 1)
151    
152        real, allocatable:: plcl(:) ! (ncum)
153        real tnk(klon), qnk(klon), gznk(klon)
154      real t(klon, klev), q(klon, klev), qs(klon, klev)      real t(klon, klev), q(klon, klev), qs(klon, klev)
155      real u(klon, klev), v(klon, klev)      real u(klon, klev), v(klon, klev)
156      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)      real gz(klon, klev), h(klon, klev)
157      real p(klon, klev), ph(klon, klev+1), tv(klon, klev), tp(klon, klev)  
158        real, allocatable:: lv(:, :) ! (ncum, nl)
159        ! specific latent heat of vaporization of water, in J kg-1
160    
161        real, allocatable:: cpn(:, :) ! (ncum, nl)
162        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
163    
164        real p(klon, klev) ! pressure at full level, in hPa
165        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
166      real clw(klon, klev)      real clw(klon, klev)
167      real dph(klon, klev)      real pbase(klon), buoybase(klon)
168      real pbase(klon), buoybase(klon), th(klon, klev)      real, allocatable:: th(:, :) ! (ncum, nl)
169      real tvp(klon, klev)      real tvp(klon, klev)
170      real sig(klon, klev), w0(klon, klev)      real sig(klon, klev), w0(klon, klev)
171      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)      real hp(klon, klev), ep(klon, klev)
172      real frac(klon), buoy(klon, klev)      real buoy(klon, klev)
173      real cape(klon)      real cape(klon)
174      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
175      real uent(klon, klev, klev), vent(klon, klev, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
176      real ments(klon, klev, klev), qents(klon, klev, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
177      real sij(klon, klev, klev), elij(klon, klev, klev)      real sij(klon, klev, klev), elij(klon, klev, klev)
178      real qp(klon, klev), up(klon, klev), vp(klon, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
179      real wt(klon, klev), water(klon, klev), evap(klon, klev)      real wt(klon, klev), water(klon, klev)
180      real b(klon, klev), ft(klon, klev), fq(klon, klev)      real, allocatable:: evap(:, :) ! (ncum, nl)
181        real, allocatable:: b(:, :) ! (ncum, nl - 1)
182        real ft(klon, klev), fq(klon, klev)
183      real fu(klon, klev), fv(klon, klev)      real fu(klon, klev), fv(klon, klev)
184      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)      real upwd(klon, klev), dnwd(klon, klev)
185      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
186      real tps(klon, klev), qprime(klon), tprime(klon)      real tps(klon, klev)
187      real precip(klon)      real precip(klon)
188      real VPrecip(klon, klev+1)      real VPrecip(klon, klev + 1)
189      real qcondc(klon, klev) ! cld      real qcondc(klon, klev) ! cld
     real wd(klon) ! gust  
190    
191      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
   
     ! -- set simulation flags:  
     ! (common cvflag)  
192    
193      CALL cv_flag      ! SET CONSTANTS AND PARAMETERS
194        CALL cv30_param
195    
196      ! -- set thermodynamical constants:      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
     ! (common cvthermo)  
197    
198      CALL cv_thermo      da1 = 0.
199        mp1 = 0.
200      ! -- set convect parameters      phi1 = 0.
   
     ! includes microphysical parameters and parameters that  
     ! control the rate of approach to quasi-equilibrium)  
     ! (common cvparam)  
   
     if (iflag_con == 3) CALL cv3_param(klev, delt)  
   
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
201    
202      do k = 1, klev      do k = 1, klev
203         do i = 1, klon         do i = 1, klon
204            ft1(i, k) = 0.0            ft1(i, k) = 0.
205            fq1(i, k) = 0.0            fq1(i, k) = 0.
206            fu1(i, k) = 0.0            fu1(i, k) = 0.
207            fv1(i, k) = 0.0            fv1(i, k) = 0.
208            tvp1(i, k) = 0.0            tvp1(i, k) = 0.
209            tp1(i, k) = 0.0            tp1(i, k) = 0.
210            clw1(i, k) = 0.0            clw1(i, k) = 0.
211            !ym            clw(i, k) = 0.
           clw(i, k) = 0.0  
212            gz1(i, k) = 0.            gz1(i, k) = 0.
213            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
214            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
215            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
216            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
217            dnwd01(i, k) = 0.0            qcondc1(i, k) = 0.
           qcondc1(i, k) = 0.0  
218         end do         end do
219      end do      end do
220    
221      do i = 1, klon      precip1 = 0.
222         precip1(i) = 0.0      cape1 = 0.
223         iflag1(i) = 0      VPrecip1(:, klev + 1) = 0.
224         wd1(i) = 0.0  
225         cape1(i) = 0.0      do il = 1, klon
226         VPrecip1(i, klev+1) = 0.0         sig1(il, klev) = sig1(il, klev) + 1.
227      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
228        enddo
229    
230        CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
231        CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
232             gznk1, plcl1)
233        CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
234             icbs1)
235        CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
236             iflag1, sig1, w01)
237    
238      if (iflag_con == 3) then      ncum = count(iflag1 == 0)
        do il = 1, klon  
           sig1(il, klev) = sig1(il, klev) + 1.  
           sig1(il, klev) = min(sig1(il, klev), 12.1)  
        enddo  
     endif  
   
     ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
   
     if (iflag_con == 3) then  
        CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &  
             gz1, h1, hm1, th1)  
     else  
        ! iflag_con == 4  
        CALL cv_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &  
             gz1, h1, hm1)  
     endif  
   
     ! --- CONVECTIVE FEED  
   
     if (iflag_con == 3) then  
        CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, hm1, gz1, nk1, icb1, &  
             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na  
     else  
        ! iflag_con == 4  
        CALL cv_feed(klon, klev, t1, q1, qs1, p1, hm1, gz1, nk1, icb1, icbmax, &  
             iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     ! Calculates the lifted parcel virtual temperature at nk, the  
     ! actual temperature, and the adiabatic liquid water content.  
   
     if (iflag_con == 3) then  
        CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &  
             tp1, tvp1, clw1, icbs1) ! klev->na  
     else  
        ! iflag_con == 4  
        CALL cv_undilute1(klon, klev, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax, &  
             tp1, tvp1, clw1)  
     endif  
   
     ! --- TRIGGERING  
   
     if (iflag_con == 3) then  
        CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! klev->na  
     else  
        ! iflag_con == 4  
        CALL cv_trigger(klon, klev, icb1, cbmf1, tv1, tvp1, iflag1)  
     end if  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
   
     ncum = 0  
     do i = 1, klon  
        if(iflag1(i) == 0)then  
           ncum = ncum+1  
           idcum(ncum) = i  
        endif  
     end do  
239    
240      IF (ncum > 0) THEN      IF (ncum > 0) THEN
241         ! --- COMPRESS THE FIELDS         ! Moist convective adjustment is necessary
242         ! (-> vectorization over convective gridpoints)         allocate(idcum(ncum), plcl(ncum), inb(ncum))
243           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
244         if (iflag_con == 3) then         allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl))
245            CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &         idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
246                 plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &         CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, &
247                 v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &              gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
248                 sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, &
249                 buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &              tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
250                 tvp, clw, sig, w0)              cpn, p, ph, tv, tp, tvp, clw, sig, w0)
251         else         CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
252            ! iflag_con == 4              tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, &
253            CALL cv_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, cbmf1, &              clw, hp, ep, buoy)
254                 plcl1, tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, &         CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, &
255                 cpn1, p1, ph1, tv1, tp1, tvp1, clw1, iflag, nk, icb, cbmf, &              sig, w0, cape, m)
256                 plcl, tnk, qnk, gznk, t, q, qs, u, v, gz, h, lv, cpn, p, ph, &         CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, &
257                 tv, tp, tvp, clw, dph)              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
258         endif              ments, qents)
259           CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), &
260         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
261         ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES              ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), &
262         ! --- &              clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), &
263         ! --- COMPUTE THE PRECIPITATION EFFICIENCIES AND THE              dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), &
264         ! --- FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD              wt(:ncum, :nl), water(:ncum, :nl), evap, b)
265         ! --- &         CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, &
266         ! --- FIND THE LEVEL OF NEUTRAL BUOYANCY              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
267                wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
268         if (iflag_con == 3) then              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
269            CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &              fu, fv, upwd, dnwd, ma, mike, tls, tps, qcondc)
270                 t, q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
271                 tvp, clw, hp, ep, sigp, buoy) !na->klev         CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
272         else              fu, fv, inb, Ma, upwd, dnwd, qcondc, cape, da, phi, mp, iflag1, &
273            ! iflag_con == 4              precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, Ma1, &
274            CALL cv_undilute2(klon, ncum, klev, icb, nk, tnk, qnk, gznk, t, q, &              upwd1, dnwd1, qcondc1, cape1, da1, phi1, mp1)
275                 qs, gz, p, dph, h, tv, lv, inb, inbis, tp, tvp, clw, hp, ep, &      ENDIF
                sigp, frac)  
        endif  
   
        ! --- CLOSURE  
   
        if (iflag_con == 3) then  
           CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &  
                buoy, sig, w0, cape, m) ! na->klev  
        else  
           ! iflag_con == 4  
           CALL cv_closure(klon, ncum, klev, nk, icb, tv, tvp, p, ph, dph, &  
                plcl, cpn, iflag, cbmf)  
        endif  
   
        ! --- MIXING  
   
        if (iflag_con == 3) then  
           CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        else  
           ! iflag_con == 4  
           CALL cv_mixing(klon, ncum, klev, icb, nk, inb, inbis, ph, t, q, qs, &  
                u, v, h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, &  
                uent, vent, nent, sij, elij)  
        endif  
   
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
   
        if (iflag_con == 3) then  
           CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &  
                v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &  
                plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev  
        else  
           ! iflag_con == 4  
           CALL cv_unsat(klon, ncum, klev, inb, t, q, qs, gz, u, v, p, ph, h, &  
                lv, ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, &  
                water, evap)  
        endif  
   
        ! --- YIELD  
        ! (tendencies, precipitation, variables of interface with other  
        ! processes, etc)  
   
        if (iflag_con == 3) then  
           CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &  
                gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &  
                wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &  
                tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &  
                dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev  
        else  
           ! iflag_con == 4  
           CALL cv_yield(klon, ncum, klev, nk, icb, inb, delt, t, q, u, v, gz, &  
                p, ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, &  
                water, evap, ment, qent, uent, vent, nent, elij, tv, tvp, &  
                iflag, wd, qprime, tprime, precip, cbmf, ft, fq, fu, fv, Ma, &  
                qcondc)  
        endif  
   
        ! --- passive tracers  
   
        if (iflag_con == 3) CALL cv3_tracer(klon, klon, ncum, klev, klev, &  
             ment, sij, da, phi)  
   
        ! --- UNCOMPRESS THE FIELDS  
   
        ! set iflag1 = 42 for non convective points  
        do i = 1, klon  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con == 3) then  
           CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &  
                ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &  
                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &  
                fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &  
                cape1, da1, phi1, mp1)  
        else  
           ! iflag_con == 4  
           CALL cv_uncompress(idcum(:ncum), iflag, precip, cbmf, ft, fq, fu, &  
                fv, Ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, &  
                Ma1, qcondc1)  
        endif  
     ENDIF ! ncum>0  
276    
277    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
278    

Legend:
Removed from v.103  
changed lines
  Added in v.205

  ViewVC Help
Powered by ViewVC 1.1.21