/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 134 by guez, Wed Apr 29 15:47:56 2015 UTC revision 201 by guez, Mon Jun 6 17:42:15 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use comconst, only: dtphys
18      ! - iflag_con = 3: version lmd      use cv30_closure_m, only: cv30_closure
19      ! - iflag_con = 4: version 4.3b      use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21      use clesphys2, only: iflag_con      use cv30_mixing_m, only: cv30_mixing
22      use cv3_compress_m, only: cv3_compress      use cv30_param_m, only: cv30_param, nl
23      use cv3_feed_m, only: cv3_feed      use cv30_prelim_m, only: cv30_prelim
24      use cv3_mixing_m, only: cv3_mixing      use cv30_tracer_m, only: cv30_tracer
25      use cv3_param_m, only: cv3_param      use cv30_trigger_m, only: cv30_trigger
26      use cv3_prelim_m, only: cv3_prelim      use cv30_uncompress_m, only: cv30_uncompress
27      use cv3_tracer_m, only: cv3_tracer      use cv30_undilute1_m, only: cv30_undilute1
28      use cv3_uncompress_m, only: cv3_uncompress      use cv30_undilute2_m, only: cv30_undilute2
29      use cv3_unsat_m, only: cv3_unsat      use cv30_unsat_m, only: cv30_unsat
30      use cv3_yield_m, only: cv3_yield      use cv30_yield_m, only: cv30_yield
     use cv_feed_m, only: cv_feed  
     use cv_uncompress_m, only: cv_uncompress  
31      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
32    
33      real, intent(in):: t1(klon, klev) ! temperature      real, intent(in):: t1(klon, klev) ! temperature, in K
34      real, intent(in):: q1(klon, klev) ! specific hum      real, intent(in):: q1(klon, klev) ! specific humidity
35      real, intent(in):: qs1(klon, klev) ! sat specific hum      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
36      real, intent(in):: u1(klon, klev) ! u-wind  
37      real, intent(in):: v1(klon, klev) ! v-wind      real, intent(in):: u1(klon, klev), v1(klon, klev)
38      real, intent(in):: p1(klon, klev) ! full level pressure      ! zonal wind and meridional velocity (m/s)
39      real, intent(in):: ph1(klon, klev + 1) ! half level pressure  
40      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions      real, intent(in):: p1(klon, klev) ! full level pressure, in hPa
41      real, intent(out):: ft1(klon, klev) ! temp tend  
42      real, intent(out):: fq1(klon, klev) ! spec hum tend      real, intent(in):: ph1(klon, klev + 1)
43      real, intent(out):: fu1(klon, klev) ! u-wind tend      ! Half level pressure, in hPa. These pressures are defined at levels
44      real, intent(out):: fv1(klon, klev) ! v-wind tend      ! intermediate between those of P1, T1, Q1 and QS1. The first
45      real, intent(out):: precip1(klon) ! precipitation      ! value of PH should be greater than (i.e. at a lower level than)
46        ! the first value of the array P1.
     real, intent(out):: VPrecip1(klon, klev+1)  
     ! vertical profile of precipitation  
   
     real, intent(inout):: cbmf1(klon) ! cloud base mass flux  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
   
     real, intent(inout):: w01(klon, klev)  
     ! vertical velocity within adiabatic updraft  
   
     integer, intent(out):: icb1(klon)  
     integer, intent(inout):: inb1(klon)  
     real, intent(in):: delt ! time step  
     real Ma1(klon, klev)  
     ! Ma1 Real Output mass flux adiabatic updraft  
     real, intent(out):: upwd1(klon, klev) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux  
47    
48      real qcondc1(klon, klev) ! cld      integer, intent(out):: iflag1(:) ! (klon)
49      ! qcondc1 Real Output in-cld mixing ratio of condensed water      ! Flag for Emanuel conditions.
     real wd1(klon) ! gust  
     ! wd1 Real Output downdraft velocity scale for sfc fluxes  
     real cape1(klon)  
     ! cape1 Real Output CAPE  
50    
51      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)      ! 0: Moist convection occurs.
     real, intent(inout):: mp1(klon, klev)  
52    
53      ! --- ARGUMENTS      ! 1: Moist convection occurs, but a CFL condition on the
54        ! subsidence warming is violated. This does not cause the scheme
55        ! to terminate.
56    
57      ! --- On input:      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
58    
59      ! t: Array of absolute temperature (K) of dimension KLEV, with first      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
     ! index corresponding to lowest model level. Note that this array  
     ! will be altered by the subroutine if dry convective adjustment  
     ! occurs and if IPBL is not equal to 0.  
   
     ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T. Note that this array will be altered  
     ! if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! qs: Array of saturation specific humidity of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T. Note that this array will be altered  
     ! if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first  
     ! index corresponding with the lowest model level. Defined at  
     ! same levels as T. Note that this array will be altered if  
     ! dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! v: Same as u but for meridional velocity.  
   
     ! p: Array of pressure (mb) of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T.  
   
     ! ph: Array of pressure (mb) of dimension KLEV+1, with first index  
     ! corresponding to lowest level. These pressures are defined at  
     ! levels intermediate between those of P, T, Q and QS. The first  
     ! value of PH should be greater than (i.e. at a lower level than)  
     ! the first value of the array P.  
60    
61      ! nl: The maximum number of levels to which convection can penetrate, plus 1      ! 4: No moist convection; atmosphere is not unstable.
     ! NL MUST be less than or equal to KLEV-1.  
62    
63      ! delt: The model time step (sec) between calls to CONVECT      ! 6: No moist convection because ihmin <= minorig.
64    
65      ! --- On Output:      ! 7: No moist convection because unreasonable parcel level
66        ! temperature or specific humidity.
67    
68      ! iflag: An output integer whose value denotes the following:      ! 8: No moist convection: lifted condensation level is above the
69      ! VALUE INTERPRETATION      ! 200 mbar level.
     ! ----- --------------  
     ! 0 Moist convection occurs.  
     ! 1 Moist convection occurs, but a CFL condition  
     ! on the subsidence warming is violated. This  
     ! does not cause the scheme to terminate.  
     ! 2 Moist convection, but no precip because ep(inb) lt 0.0001  
     ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.  
     ! 4 No moist convection; atmosphere is not  
     ! unstable  
     ! 6 No moist convection because ihmin le minorig.  
     ! 7 No moist convection because unreasonable  
     ! parcel level temperature or specific humidity.  
     ! 8 No moist convection: lifted condensation  
     ! level is above the 200 mb level.  
     ! 9 No moist convection: cloud base is higher  
     ! then the level NL-1.  
70    
71      ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same      ! 9: No moist convection: cloud base is higher than the level NL-1.
     ! grid levels as T, Q, QS and P.  
72    
73      ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,      real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
74      ! defined at same grid levels as T, Q, QS and P.      real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
75    
76      ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,      real, intent(out):: fu1(klon, klev), fv1(klon, klev)
77      ! defined at same grid levels as T.      ! forcing (tendency) of zonal and meridional velocity (m/s^2)
78    
79      ! fv: Same as FU, but for forcing of meridional velocity.      real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
80    
81      ! precip: Scalar convective precipitation rate (mm/day).      real, intent(out):: VPrecip1(klon, klev + 1)
82        ! vertical profile of convective precipitation (kg/m2/s)
83    
84      ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).      real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
85    
86      ! wd: A convective downdraft velocity scale. For use in surface      real, intent(inout):: w01(klon, klev)
87      ! flux parameterizations. See convect.ps file for details.      ! vertical velocity within adiabatic updraft
88    
89      ! tprime: A convective downdraft temperature perturbation scale (K).      integer, intent(out):: icb1(klon)
90      ! For use in surface flux parameterizations. See convect.ps      integer, intent(inout):: inb1(klon)
91      ! file for details.      real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93      ! qprime: A convective downdraft specific humidity      real, intent(out):: upwd1(klon, klev)
94      ! perturbation scale (gm/gm).      ! total upward mass flux (adiabatic + mixed)
     ! For use in surface flux parameterizations. See convect.ps  
     ! file for details.  
95    
96      ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97      ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     ! by the calling program between calls to CONVECT.  
98    
99      ! det: Array of detrainment mass flux of dimension KLEV.      real, intent(out):: qcondc1(klon, klev)
100        ! in-cloud mixing ratio of condensed water
101    
102      ! Local arrays      real, intent(out):: cape1(klon)
103        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
104        real, intent(inout):: mp1(klon, klev)
105    
106      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)      ! Local:
107    
108        real da(klon, klev), phi(klon, klev, klev)
109        real, allocatable:: mp(:, :) ! (ncum, nl)
110      integer i, k, il      integer i, k, il
     integer icbmax  
     integer nk1(klon)  
111      integer icbs1(klon)      integer icbs1(klon)
   
112      real plcl1(klon)      real plcl1(klon)
113      real tnk1(klon)      real tnk1(klon)
114      real qnk1(klon)      real qnk1(klon)
# Line 186  contains Line 116  contains
116      real pbase1(klon)      real pbase1(klon)
117      real buoybase1(klon)      real buoybase1(klon)
118    
119      real lv1(klon, klev)      real lv1(klon, nl)
120      real cpn1(klon, klev)      ! specific latent heat of vaporization of water, in J kg-1
121    
122        real cpn1(klon, nl)
123        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
124    
125      real tv1(klon, klev)      real tv1(klon, klev)
126      real gz1(klon, klev)      real gz1(klon, klev)
127      real hm1(klon, klev)      real hm1(klon, klev)
# Line 195  contains Line 129  contains
129      real tp1(klon, klev)      real tp1(klon, klev)
130      real tvp1(klon, klev)      real tvp1(klon, klev)
131      real clw1(klon, klev)      real clw1(klon, klev)
132      real th1(klon, klev)      real th1(klon, nl) ! potential temperature, in K
   
133      integer ncum      integer ncum
134    
135      ! (local) compressed fields:      ! Compressed fields:
136        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
137      integer idcum(klon)      integer, allocatable:: icb(:) ! (ncum)
     integer iflag(klon), nk(klon), icb(klon)  
138      integer nent(klon, klev)      integer nent(klon, klev)
139      integer icbs(klon)      integer icbs(klon)
     integer inb(klon), inbis(klon)  
140    
141      real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon)      integer, allocatable:: inb(:) ! (ncum)
142        ! first model level above the level of neutral buoyancy of the
143        ! parcel (1 <= inb <= nl - 1)
144    
145        real, allocatable:: plcl(:) ! (ncum)
146        real tnk(klon), qnk(klon), gznk(klon)
147      real t(klon, klev), q(klon, klev), qs(klon, klev)      real t(klon, klev), q(klon, klev), qs(klon, klev)
148      real u(klon, klev), v(klon, klev)      real u(klon, klev), v(klon, klev)
149      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)      real gz(klon, klev), h(klon, klev)
150      real p(klon, klev), ph(klon, klev+1), tv(klon, klev), tp(klon, klev)  
151        real, allocatable:: lv(:, :) ! (ncum, nl)
152        ! specific latent heat of vaporization of water, in J kg-1
153    
154        real, allocatable:: cpn(:, :) ! (ncum, nl)
155        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
156    
157        real p(klon, klev) ! pressure at full level, in hPa
158        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
159      real clw(klon, klev)      real clw(klon, klev)
160      real dph(klon, klev)      real pbase(klon), buoybase(klon)
161      real pbase(klon), buoybase(klon), th(klon, klev)      real, allocatable:: th(:, :) ! (ncum, nl)
162      real tvp(klon, klev)      real tvp(klon, klev)
163      real sig(klon, klev), w0(klon, klev)      real sig(klon, klev), w0(klon, klev)
164      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)      real hp(klon, klev), ep(klon, klev)
165      real frac(klon), buoy(klon, klev)      real buoy(klon, klev)
166      real cape(klon)      real cape(klon)
167      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
168      real uent(klon, klev, klev), vent(klon, klev, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
169      real ments(klon, klev, klev), qents(klon, klev, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
170      real sij(klon, klev, klev), elij(klon, klev, klev)      real sij(klon, klev, klev), elij(klon, klev, klev)
171      real qp(klon, klev), up(klon, klev), vp(klon, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
172      real wt(klon, klev), water(klon, klev), evap(klon, klev)      real wt(klon, klev), water(klon, klev)
173      real b(klon, klev), ft(klon, klev), fq(klon, klev)      real, allocatable:: evap(:, :) ! (ncum, nl)
174        real, allocatable:: b(:, :) ! (ncum, nl - 1)
175        real ft(klon, klev), fq(klon, klev)
176      real fu(klon, klev), fv(klon, klev)      real fu(klon, klev), fv(klon, klev)
177      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
178      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
179      real tps(klon, klev), qprime(klon), tprime(klon)      real tps(klon, klev)
180      real precip(klon)      real precip(klon)
181      real VPrecip(klon, klev+1)      real VPrecip(klon, klev + 1)
182      real qcondc(klon, klev) ! cld      real qcondc(klon, klev) ! cld
     real wd(klon) ! gust  
183    
184      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
   
     ! -- set simulation flags:  
     ! (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     ! (common cvthermo)  
   
     CALL cv_thermo  
   
     ! -- set convect parameters  
185    
186      ! includes microphysical parameters and parameters that      ! SET CONSTANTS AND PARAMETERS
187      ! control the rate of approach to quasi-equilibrium)      CALL cv30_param
     ! (common cvparam)  
188    
189      if (iflag_con == 3) CALL cv3_param(klev, delt)      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
   
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
190    
191      do k = 1, klev      do k = 1, klev
192         do i = 1, klon         do i = 1, klon
193            ft1(i, k) = 0.0            ft1(i, k) = 0.
194            fq1(i, k) = 0.0            fq1(i, k) = 0.
195            fu1(i, k) = 0.0            fu1(i, k) = 0.
196            fv1(i, k) = 0.0            fv1(i, k) = 0.
197            tvp1(i, k) = 0.0            tvp1(i, k) = 0.
198            tp1(i, k) = 0.0            tp1(i, k) = 0.
199            clw1(i, k) = 0.0            clw1(i, k) = 0.
200            !ym            clw(i, k) = 0.
           clw(i, k) = 0.0  
201            gz1(i, k) = 0.            gz1(i, k) = 0.
202            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
203            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
204            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
205            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
206            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
207            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
208         end do         end do
209      end do      end do
210    
211      do i = 1, klon      precip1 = 0.
212         precip1(i) = 0.0      cape1 = 0.
213         iflag1(i) = 0      VPrecip1(:, klev + 1) = 0.
214         wd1(i) = 0.0  
215         cape1(i) = 0.0      do il = 1, klon
216         VPrecip1(i, klev+1) = 0.0         sig1(il, klev) = sig1(il, klev) + 1.
217      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
218        enddo
219    
220        CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
221        CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
222             gznk1, plcl1)
223        CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
224             icbs1)
225        CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
226             iflag1, sig1, w01)
227    
228      if (iflag_con == 3) then      ncum = count(iflag1 == 0)
        do il = 1, klon  
           sig1(il, klev) = sig1(il, klev) + 1.  
           sig1(il, klev) = min(sig1(il, klev), 12.1)  
        enddo  
     endif  
   
     ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
   
     if (iflag_con == 3) then  
        CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &  
             gz1, h1, hm1, th1)  
     else  
        ! iflag_con == 4  
        CALL cv_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &  
             gz1, h1, hm1)  
     endif  
   
     ! --- CONVECTIVE FEED  
   
     if (iflag_con == 3) then  
        CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, hm1, gz1, nk1, icb1, &  
             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na  
     else  
        ! iflag_con == 4  
        CALL cv_feed(klon, klev, t1, q1, qs1, p1, hm1, gz1, nk1, icb1, icbmax, &  
             iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     ! Calculates the lifted parcel virtual temperature at nk, the  
     ! actual temperature, and the adiabatic liquid water content.  
   
     if (iflag_con == 3) then  
        CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &  
             tp1, tvp1, clw1, icbs1) ! klev->na  
     else  
        ! iflag_con == 4  
        CALL cv_undilute1(klon, klev, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax, &  
             tp1, tvp1, clw1)  
     endif  
   
     ! --- TRIGGERING  
   
     if (iflag_con == 3) then  
        CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! klev->na  
     else  
        ! iflag_con == 4  
        CALL cv_trigger(klon, klev, icb1, cbmf1, tv1, tvp1, iflag1)  
     end if  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
   
     ncum = 0  
     do i = 1, klon  
        if(iflag1(i) == 0)then  
           ncum = ncum+1  
           idcum(ncum) = i  
        endif  
     end do  
229    
230      IF (ncum > 0) THEN      IF (ncum > 0) THEN
231         ! --- COMPRESS THE FIELDS         ! Moist convective adjustment is necessary
232         ! (-> vectorization over convective gridpoints)         allocate(idcum(ncum), plcl(ncum), inb(ncum))
233           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
234         if (iflag_con == 3) then         allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl))
235            CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &         idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
236                 plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &         CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, &
237                 v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &              gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
238                 sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, &
239                 buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &              tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
240                 tvp, clw, sig, w0)              cpn, p, ph, tv, tp, tvp, clw, sig, w0)
241         else         CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
242            ! iflag_con == 4              tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, &
243            CALL cv_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, cbmf1, &              clw, hp, ep, buoy)
244                 plcl1, tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, &         CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, &
245                 cpn1, p1, ph1, tv1, tp1, tvp1, clw1, iflag, nk, icb, cbmf, &              sig, w0, cape, m)
246                 plcl, tnk, qnk, gznk, t, q, qs, u, v, gz, h, lv, cpn, p, ph, &         CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, &
247                 tv, tp, tvp, clw, dph)              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
248         endif              ments, qents)
249           CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), &
250         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
251         ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES              ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), &
252         ! --- &              clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), &
253         ! --- COMPUTE THE PRECIPITATION EFFICIENCIES AND THE              dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), &
254         ! --- FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD              wt(:ncum, :nl), water(:ncum, :nl), evap, b)
255         ! --- &         CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, &
256         ! --- FIND THE LEVEL OF NEUTRAL BUOYANCY              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
257                wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
258         if (iflag_con == 3) then              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
259            CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
260                 t, q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
261                 tvp, clw, hp, ep, sigp, buoy) !na->klev         CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
262         else              fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
263            ! iflag_con == 4              iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
264            CALL cv_undilute2(klon, ncum, klev, icb, nk, tnk, qnk, gznk, t, q, &              Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
265                 qs, gz, p, dph, h, tv, lv, inb, inbis, tp, tvp, clw, hp, ep, &      ENDIF
                sigp, frac)  
        endif  
   
        ! --- CLOSURE  
   
        if (iflag_con == 3) then  
           CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &  
                buoy, sig, w0, cape, m) ! na->klev  
        else  
           ! iflag_con == 4  
           CALL cv_closure(klon, ncum, klev, nk, icb, tv, tvp, p, ph, dph, &  
                plcl, cpn, iflag, cbmf)  
        endif  
   
        ! --- MIXING  
   
        if (iflag_con == 3) then  
           CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        else  
           ! iflag_con == 4  
           CALL cv_mixing(klon, ncum, klev, icb, nk, inb, inbis, ph, t, q, qs, &  
                u, v, h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, &  
                uent, vent, nent, sij, elij)  
        endif  
   
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
   
        if (iflag_con == 3) then  
           CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &  
                v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &  
                plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev  
        else  
           ! iflag_con == 4  
           CALL cv_unsat(klon, ncum, klev, inb, t, q, qs, gz, u, v, p, ph, h, &  
                lv, ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, &  
                water, evap)  
        endif  
   
        ! --- YIELD  
        ! (tendencies, precipitation, variables of interface with other  
        ! processes, etc)  
   
        if (iflag_con == 3) then  
           CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &  
                gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &  
                wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &  
                tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &  
                dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev  
        else  
           ! iflag_con == 4  
           CALL cv_yield(klon, ncum, klev, nk, icb, inb, delt, t, q, u, v, gz, &  
                p, ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, &  
                water, evap, ment, qent, uent, vent, nent, elij, tv, tvp, &  
                iflag, wd, qprime, tprime, precip, cbmf, ft, fq, fu, fv, Ma, &  
                qcondc)  
        endif  
   
        ! --- passive tracers  
   
        if (iflag_con == 3) CALL cv3_tracer(klon, klon, ncum, klev, klev, &  
             ment, sij, da, phi)  
   
        ! --- UNCOMPRESS THE FIELDS  
   
        ! set iflag1 = 42 for non convective points  
        do i = 1, klon  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con == 3) then  
           CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &  
                ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &  
                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &  
                fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &  
                cape1, da1, phi1, mp1)  
        else  
           ! iflag_con == 4  
           CALL cv_uncompress(idcum(:ncum), iflag, precip, cbmf, ft, fq, fu, &  
                fv, Ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, &  
                Ma1, qcondc1)  
        endif  
     ENDIF ! ncum>0  
266    
267    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
268    

Legend:
Removed from v.134  
changed lines
  Added in v.201

  ViewVC Help
Powered by ViewVC 1.1.21