/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f revision 14 by guez, Mon Jul 28 14:48:09 2008 UTC trunk/Sources/phylmd/cv_driver.f revision 189 by guez, Tue Mar 29 15:20:23 2016 UTC
# Line 1  Line 1 
1  !  module cv_driver_m
 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_driver.F,v 1.3 2005/04/15 12:36:17 lmdzadmin Exp $  
 !  
       SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con,  
      &                   t1,q1,qs1,u1,v1,tra1,  
      &                   p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1,  
      &                   precip1,VPrecip1,  
      &                   cbmf1,sig1,w01,  
      &                   icb1,inb1,  
      &                   delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1,  
      &                   da1,phi1,mp1)  
 C  
       use dimens_m  
       use dimphy  
       implicit none  
 C  
 C.............................START PROLOGUE............................  
 C  
 C PARAMETERS:  
 C      Name            Type         Usage            Description  
 C   ----------      ----------     -------  ----------------------------  
 C  
 C      len           Integer        Input        first (i) dimension  
 C      nd            Integer        Input        vertical (k) dimension  
 C      ndp1          Integer        Input        nd + 1  
 C      ntra          Integer        Input        number of tracors  
 C      iflag_con     Integer        Input        version of convect (3/4)  
 C      t1            Real           Input        temperature  
 C      q1            Real           Input        specific hum  
 C      qs1           Real           Input        sat specific hum  
 C      u1            Real           Input        u-wind  
 C      v1            Real           Input        v-wind  
 C      tra1          Real           Input        tracors  
 C      p1            Real           Input        full level pressure  
 C      ph1           Real           Input        half level pressure  
 C      iflag1        Integer        Output       flag for Emanuel conditions  
 C      ft1           Real           Output       temp tend  
 C      fq1           Real           Output       spec hum tend  
 C      fu1           Real           Output       u-wind tend  
 C      fv1           Real           Output       v-wind tend  
 C      ftra1         Real           Output       tracor tend  
 C      precip1       Real           Output       precipitation  
 C      VPrecip1      Real           Output       vertical profile of precipitations  
 C      cbmf1         Real           Output       cloud base mass flux  
 C      sig1          Real           In/Out       section adiabatic updraft  
 C      w01           Real           In/Out       vertical velocity within adiab updraft  
 C      delt          Real           Input        time step  
 C      Ma1           Real           Output       mass flux adiabatic updraft  
 C      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
 C      dnwd1         Real           Output       saturated downward mass flux (mixed)  
 C      dnwd01        Real           Output       unsaturated downward mass flux  
 C      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
 C      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
 C      cape1         Real           Output       CAPE  
 C  
 C S. Bony, Mar 2002:  
 C       * Several modules corresponding to different physical processes  
 C       * Several versions of convect may be used:  
 C               - iflag_con=3: version lmd  (previously named convect3)  
 C               - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
 C   + tard:     - iflag_con=5: version lmd with ice (previously named convectg)  
 C S. Bony, Oct 2002:  
 C       * Vectorization of convect3 (ie version lmd)  
 C  
 C..............................END PROLOGUE.............................  
 c  
 c  
   
       integer len  
       integer nd  
       integer ndp1  
       integer noff  
       integer, intent(in):: iflag_con  
       integer ntra  
       real t1(len,nd)  
       real q1(len,nd)  
       real qs1(len,nd)  
       real u1(len,nd)  
       real v1(len,nd)  
       real p1(len,nd)  
       real ph1(len,ndp1)  
       integer iflag1(len)  
       real ft1(len,nd)  
       real fq1(len,nd)  
       real fu1(len,nd)  
       real fv1(len,nd)  
       real precip1(len)  
       real cbmf1(len)  
       real VPrecip1(len,nd+1)  
       real Ma1(len,nd)  
       real upwd1(len,nd)  
       real dnwd1(len,nd)  
       real dnwd01(len,nd)  
   
       real qcondc1(len,nd)     ! cld  
       real wd1(len)            ! gust  
       real cape1(len)      
   
       real da1(len,nd),phi1(len,nd,nd),mp1(len,nd)  
       real da(len,nd),phi(len,nd,nd),mp(len,nd)  
       real, intent(in):: tra1(len,nd,ntra)  
       real ftra1(len,nd,ntra)  
   
       real, intent(in):: delt  
   
 !-------------------------------------------------------------------  
 ! --- ARGUMENTS  
 !-------------------------------------------------------------------  
 ! --- On input:  
 !  
 !  t:   Array of absolute temperature (K) of dimension ND, with first  
 !       index corresponding to lowest model level. Note that this array  
 !       will be altered by the subroutine if dry convective adjustment  
 !       occurs and if IPBL is not equal to 0.  
 !  
 !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  qs:  Array of saturation specific humidity of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
 !       index corresponding with the lowest model level. Defined at  
 !       same levels as T. Note that this array will be altered if  
 !       dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  v:   Same as u but for meridional velocity.  
 !  
 !  tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA),  
 !       where NTRA is the number of different tracers. If no  
 !       convective tracer transport is needed, define a dummy  
 !       input array of dimension (ND,1). Tracers are defined at  
 !       same vertical levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  p:   Array of pressure (mb) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T.  
 !  
 !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
 !       corresponding to lowest level. These pressures are defined at  
 !       levels intermediate between those of P, T, Q and QS. The first  
 !       value of PH should be greater than (i.e. at a lower level than)  
 !       the first value of the array P.  
 !  
 !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
 !       NL MUST be less than or equal to ND-1.  
 !  
 !  delt: The model time step (sec) between calls to CONVECT  
 !  
 !----------------------------------------------------------------------------  
 ! ---   On Output:  
 !  
 !  iflag: An output integer whose value denotes the following:  
 !       VALUE   INTERPRETATION  
 !       -----   --------------  
 !         0     Moist convection occurs.  
 !         1     Moist convection occurs, but a CFL condition  
 !               on the subsidence warming is violated. This  
 !               does not cause the scheme to terminate.  
 !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
 !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
 !         4     No moist convection; atmosphere is not  
 !               unstable  
 !         6     No moist convection because ihmin le minorig.  
 !         7     No moist convection because unreasonable  
 !               parcel level temperature or specific humidity.  
 !         8     No moist convection: lifted condensation  
 !               level is above the 200 mb level.  
 !         9     No moist convection: cloud base is higher  
 !               then the level NL-1.  
 !  
 !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
 !        grid levels as T, Q, QS and P.  
 !  
 !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
 !        defined at same grid levels as T, Q, QS and P.  
 !  
 !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
 !        defined at same grid levels as T.  
 !  
 !  fv:   Same as FU, but for forcing of meridional velocity.  
 !  
 !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
 !        second, defined at same levels as T. Dimensioned (ND,NTRA).  
 !  
 !  precip: Scalar convective precipitation rate (mm/day).  
 !  
 !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
 !  
 !  wd:   A convective downdraft velocity scale. For use in surface  
 !        flux parameterizations. See convect.ps file for details.  
 !  
 !  tprime: A convective downdraft temperature perturbation scale (K).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  qprime: A convective downdraft specific humidity  
 !          perturbation scale (gm/gm).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
 !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
 !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
 !        by the calling program between calls to CONVECT.  
 !  
 !  det:   Array of detrainment mass flux of dimension ND.  
 !  
 !-------------------------------------------------------------------  
 c  
 c  Local arrays  
 c  
   
       integer i,k,n,il,j  
       integer icbmax  
       integer nk1(klon)  
       integer icb1(klon)  
       integer inb1(klon)  
       integer icbs1(klon)  
   
       real plcl1(klon)  
       real tnk1(klon)  
       real qnk1(klon)  
       real gznk1(klon)  
       real pnk1(klon)  
       real qsnk1(klon)  
       real pbase1(klon)  
       real buoybase1(klon)  
   
       real lv1(klon,klev)  
       real cpn1(klon,klev)  
       real tv1(klon,klev)  
       real gz1(klon,klev)  
       real hm1(klon,klev)  
       real h1(klon,klev)  
       real tp1(klon,klev)  
       real tvp1(klon,klev)  
       real clw1(klon,klev)  
       real sig1(klon,klev)  
       real w01(klon,klev)  
       real th1(klon,klev)  
 c  
       integer ncum  
 c  
 c (local) compressed fields:  
 c  
       integer nloc  
       parameter (nloc=klon) ! pour l'instant  
   
       integer idcum(nloc)  
       integer iflag(nloc),nk(nloc),icb(nloc)  
       integer nent(nloc,klev)  
       integer icbs(nloc)  
       integer inb(nloc), inbis(nloc)  
   
       real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc)  
       real t(nloc,klev),q(nloc,klev),qs(nloc,klev)  
       real u(nloc,klev),v(nloc,klev)  
       real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev)  
       real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev)  
       real clw(nloc,klev)  
       real dph(nloc,klev)  
       real pbase(nloc), buoybase(nloc), th(nloc,klev)  
       real tvp(nloc,klev)  
       real sig(nloc,klev), w0(nloc,klev)  
       real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev)  
       real frac(nloc), buoy(nloc,klev)  
       real cape(nloc)  
       real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev)  
       real uent(nloc,klev,klev), vent(nloc,klev,klev)  
       real ments(nloc,klev,klev), qents(nloc,klev,klev)  
       real sij(nloc,klev,klev), elij(nloc,klev,klev)  
       real qp(nloc,klev), up(nloc,klev), vp(nloc,klev)  
       real wt(nloc,klev), water(nloc,klev), evap(nloc,klev)  
       real b(nloc,klev), ft(nloc,klev), fq(nloc,klev)  
       real fu(nloc,klev), fv(nloc,klev)  
       real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev)  
       real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev)  
       real tps(nloc,klev), qprime(nloc), tprime(nloc)  
       real precip(nloc)  
       real VPrecip(nloc,klev+1)  
       real tra(nloc,klev,ntra), trap(nloc,klev,ntra)  
       real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra)  
       real qcondc(nloc,klev)  ! cld  
       real wd(nloc)           ! gust  
   
 !-------------------------------------------------------------------  
 ! --- SET CONSTANTS AND PARAMETERS  
 !-------------------------------------------------------------------  
   
 c -- set simulation flags:  
 c   (common cvflag)  
   
        CALL cv_flag  
   
 c -- set thermodynamical constants:  
 c       (common cvthermo)  
   
        CALL cv_thermo(iflag_con)  
   
 c -- set convect parameters  
 c  
 c       includes microphysical parameters and parameters that  
 c       control the rate of approach to quasi-equilibrium)  
 c       (common cvparam)  
   
       if (iflag_con.eq.3) then  
        CALL cv3_param(nd,delt)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
       endif  
   
 !---------------------------------------------------------------------  
 ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
 !---------------------------------------------------------------------  
   
       do 20 k=1,nd  
         do 10 i=1,len  
          ft1(i,k)=0.0  
          fq1(i,k)=0.0  
          fu1(i,k)=0.0  
          fv1(i,k)=0.0  
          tvp1(i,k)=0.0  
          tp1(i,k)=0.0  
          clw1(i,k)=0.0  
 cym  
          clw(i,k)=0.0      
          gz1(i,k) = 0.  
          VPrecip1(i,k) = 0.  
          Ma1(i,k)=0.0  
          upwd1(i,k)=0.0  
          dnwd1(i,k)=0.0  
          dnwd01(i,k)=0.0  
          qcondc1(i,k)=0.0  
  10     continue  
  20   continue  
   
       do 30 j=1,ntra  
        do 31 k=1,nd  
         do 32 i=1,len  
          ftra1(i,k,j)=0.0  
  32     continue      
  31    continue      
  30   continue      
   
       do 60 i=1,len  
         precip1(i)=0.0  
         iflag1(i)=0  
         wd1(i)=0.0  
         cape1(i)=0.0  
         VPrecip1(i,nd+1)=0.0  
  60   continue  
   
       if (iflag_con.eq.3) then  
         do il=1,len  
          sig1(il,nd)=sig1(il,nd)+1.  
          sig1(il,nd)=amin1(sig1(il,nd),12.1)  
         enddo  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_prelim(len,nd,ndp1,t1,q1,p1,ph1            ! nd->na  
      o               ,lv1,cpn1,tv1,gz1,h1,hm1,th1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1  
      o               ,lv1,cpn1,tv1,gz1,h1,hm1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CONVECTIVE FEED  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1           ! nd->na  
      o         ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1  
      o         ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
 ! (up through ICB for convect4, up through ICB+1 for convect3)  
 !     Calculates the lifted parcel virtual temperature at nk, the  
 !     actual temperature, and the adiabatic liquid water content.  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1  ! nd->na  
      o                        ,tp1,tvp1,clw1,icbs1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax  
      :                        ,tp1,tvp1,clw1)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- TRIGGERING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1      ! nd->na  
      o                 ,pbase1,buoybase1,iflag1,sig1,w01)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1)  
       endif  
   
 !=====================================================================  
 ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
 !=====================================================================  
   
       ncum=0  
       do 400 i=1,len  
         if(iflag1(i).eq.0)then  
            ncum=ncum+1  
            idcum(ncum)=i  
         endif  
  400  continue  
   
 c       print*,'klon, ncum = ',len,ncum  
   
       IF (ncum.gt.0) THEN  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- COMPRESS THE FIELDS  
 !               (-> vectorization over convective gridpoints)  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_compress( len,nloc,ncum,nd,ntra  
      :    ,iflag1,nk1,icb1,icbs1  
      :    ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1  
      :    ,t1,q1,qs1,u1,v1,gz1,th1  
      :    ,tra1  
      :    ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  
      :    ,sig1,w01  
      o    ,iflag,nk,icb,icbs  
      o    ,plcl,tnk,qnk,gznk,pbase,buoybase  
      o    ,t,q,qs,u,v,gz,th  
      o    ,tra  
      o    ,h,lv,cpn,p,ph,tv,tp,tvp,clw  
      o    ,sig,w0  )  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_compress( len,nloc,ncum,nd  
      :    ,iflag1,nk1,icb1  
      :    ,cbmf1,plcl1,tnk1,qnk1,gznk1  
      :    ,t1,q1,qs1,u1,v1,gz1  
      :    ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  
      o    ,iflag,nk,icb  
      o    ,cbmf,plcl,tnk,qnk,gznk  
      o    ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw  
      o    ,dph )  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
 ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
 ! ---   &  
 ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
 ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
 ! ---   &  
 ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute2(nloc,ncum,nd,icb,icbs,nk        !na->nd  
      :                        ,tnk,qnk,gznk,t,q,qs,gz  
      :                        ,p,h,tv,lv,pbase,buoybase,plcl  
      o                        ,inb,tp,tvp,clw,hp,ep,sigp,buoy)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute2(nloc,ncum,nd,icb,nk  
      :                        ,tnk,qnk,gznk,t,q,qs,gz  
      :                        ,p,dph,h,tv,lv  
      o             ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- CLOSURE  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_closure(nloc,ncum,nd,icb,inb              ! na->nd  
      :                       ,pbase,p,ph,tv,buoy  
      o                       ,sig,w0,cape,m)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_closure(nloc,ncum,nd,nk,icb  
      :                ,tv,tvp,p,ph,dph,plcl,cpn  
      o                ,iflag,cbmf)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- MIXING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb    ! na->nd  
      :                     ,ph,t,q,qs,u,v,tra,h,lv,qnk  
      :                     ,hp,tv,tvp,ep,clw,m,sig  
      o ,ment,qent,uent,vent, nent,sij,elij,ments,qents,traent)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis  
      :                     ,ph,t,q,qs,u,v,h,lv,qnk  
      :                     ,hp,tv,tvp,ep,clw,cbmf  
      o                     ,m,ment,qent,uent,vent,nent,sij,elij)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_unsat(nloc,ncum,nd,nd,ntra,icb,inb    ! na->nd  
      :               ,t,q,qs,gz,u,v,tra,p,ph  
      :               ,th,tv,lv,cpn,ep,sigp,clw  
      :               ,m,ment,elij,delt,plcl  
      o          ,mp,qp,up,vp,trap,wt,water,evap,b)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph  
      :                   ,h,lv,ep,sigp,clw,m,ment,elij  
      o                   ,iflag,mp,qp,up,vp,wt,water,evap)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- YIELD  
 !     (tendencies, precipitation, variables of interface with other  
 !      processes, etc)  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_yield(nloc,ncum,nd,nd,ntra            ! na->nd  
      :                     ,icb,inb,delt  
      :                     ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th  
      :                     ,ep,clw,m,tp,mp,qp,up,vp,trap  
      :                     ,wt,water,evap,b  
      :                     ,ment,qent,uent,vent,nent,elij,traent,sig  
      :                     ,tv,tvp  
      o                     ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra  
      o                     ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt  
      :              ,t,q,u,v,gz,p,ph,h,hp,lv,cpn  
      :              ,ep,clw,frac,m,mp,qp,up,vp  
      :              ,wt,water,evap  
      :              ,ment,qent,uent,vent,nent,elij  
      :              ,tv,tvp  
      o              ,iflag,wd,qprime,tprime  
      o              ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- passive tracers  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_tracer(nloc,len,ncum,nd,nd,  
      :                  ment,sij,da,phi)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- UNCOMPRESS THE FIELDS  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 c set iflag1 =42 for non convective points  
       do  i=1,len  
         iflag1(i)=42  
       end do  
 c  
       if (iflag_con.eq.3) then  
        CALL cv3_uncompress(nloc,len,ncum,nd,ntra,idcum  
      :          ,iflag  
      :          ,precip,VPrecip,sig,w0  
      :          ,ft,fq,fu,fv,ftra  
      :          ,inb  
      :          ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape  
      :          ,da,phi,mp  
      o          ,iflag1  
      o          ,precip1,VPrecip1,sig1,w01  
      o          ,ft1,fq1,fu1,fv1,ftra1  
      o          ,inb1  
      o          ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1  
      o          ,da1,phi1,mp1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_uncompress(nloc,len,ncum,nd,idcum  
      :          ,iflag  
      :          ,precip,cbmf  
      :          ,ft,fq,fu,fv  
      :          ,Ma,qcondc              
      o          ,iflag1  
      o          ,precip1,cbmf1  
      o          ,ft1,fq1,fu1,fv1  
      o          ,Ma1,qcondc1 )            
       endif  
   
       ENDIF ! ncum>0  
   
 9999  continue  
   
       return  
       end  
   
 !==================================================================  
       SUBROUTINE cv_flag  
       implicit none  
   
       include "cvflag.h"  
   
 c -- si .TRUE., on rend la gravite plus explicite et eventuellement  
 c differente de 10.0 dans convect3:  
       cvflag_grav = .TRUE.  
   
       return  
       end  
   
 !==================================================================  
       SUBROUTINE cv_thermo(iflag_con)  
       use YOMCST  
           implicit none  
   
 c-------------------------------------------------------------  
 c Set thermodynamical constants for convectL  
 c-------------------------------------------------------------  
   
       include "cvthermo.h"  
   
       integer, intent(in):: iflag_con  
   
   
 c original set from convect:  
       if (iflag_con.eq.4) then  
        cpd=1005.7  
        cpv=1870.0  
        cl=4190.0  
        rrv=461.5  
        rrd=287.04  
        lv0=2.501E6  
        g=9.8  
        t0=273.15  
        grav=g  
       endif  
   
 c constants consistent with LMDZ:  
       if (iflag_con.eq.3) then  
        cpd = RCPD  
        cpv = RCPV  
        cl  = RCW  
        rrv = RV  
        rrd = RD  
        lv0 = RLVTT  
        g   = RG     ! not used in convect3  
 c ori      t0  = RTT  
        t0  = 273.15 ! convect3 (RTT=273.16)  
 c maf       grav= 10.    ! implicitely or explicitely used in convect3  
        grav= g    ! implicitely or explicitely used in convect3  
       endif  
   
       rowl=1000.0 !(a quelle variable de YOMCST cela correspond-il?)  
   
       clmcpv=cl-cpv  
       clmcpd=cl-cpd  
       cpdmcp=cpd-cpv  
       cpvmcpd=cpv-cpd  
       cpvmcl=cl-cpv ! for convect3  
       eps=rrd/rrv  
       epsi=1.0/eps  
       epsim1=epsi-1.0  
 c      ginv=1.0/g  
       ginv=1.0/grav  
       hrd=0.5*rrd  
2    
3        return    implicit none
       end  
4    
5    contains
6    
7      SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8           fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, &
9           dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        use cv30_closure_m, only: cv30_closure
18        use cv30_compress_m, only: cv30_compress
19        use cv30_feed_m, only: cv30_feed
20        use cv30_mixing_m, only: cv30_mixing
21        use cv30_param_m, only: cv30_param, nl
22        use cv30_prelim_m, only: cv30_prelim
23        use cv30_tracer_m, only: cv30_tracer
24        use cv30_trigger_m, only: cv30_trigger
25        use cv30_uncompress_m, only: cv30_uncompress
26        use cv30_undilute2_m, only: cv30_undilute2
27        use cv30_unsat_m, only: cv30_unsat
28        use cv30_yield_m, only: cv30_yield
29        USE dimphy, ONLY: klev, klon
30    
31        real, intent(in):: t1(klon, klev) ! temperature (K)
32        real, intent(in):: q1(klon, klev) ! specific humidity
33        real, intent(in):: qs1(klon, klev) ! saturation specific humidity
34    
35        real, intent(in):: u1(klon, klev), v1(klon, klev)
36        ! zonal wind and meridional velocity (m/s)
37    
38        real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
39    
40        real, intent(in):: ph1(klon, klev + 1)
41        ! Half level pressure (hPa). These pressures are defined at levels
42        ! intermediate between those of P1, T1, Q1 and QS1. The first
43        ! value of PH should be greater than (i.e. at a lower level than)
44        ! the first value of the array P1.
45    
46        integer, intent(out):: iflag1(klon)
47        ! Flag for Emanuel conditions.
48    
49        ! 0: Moist convection occurs.
50    
51        ! 1: Moist convection occurs, but a CFL condition on the
52        ! subsidence warming is violated. This does not cause the scheme
53        ! to terminate.
54    
55        ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
56    
57        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
58    
59        ! 4: No moist convection; atmosphere is not unstable
60    
61        ! 6: No moist convection because ihmin le minorig.
62    
63        ! 7: No moist convection because unreasonable parcel level
64        ! temperature or specific humidity.
65    
66        ! 8: No moist convection: lifted condensation level is above the
67        ! 200 mb level.
68    
69        ! 9: No moist convection: cloud base is higher then the level NL-1.
70    
71        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
72        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
73    
74        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
75        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
76    
77        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
78    
79        real, intent(out):: VPrecip1(klon, klev + 1)
80        ! vertical profile of convective precipitation (kg/m2/s)
81    
82        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
83    
84        real, intent(inout):: w01(klon, klev)
85        ! vertical velocity within adiabatic updraft
86    
87        integer, intent(out):: icb1(klon)
88        integer, intent(inout):: inb1(klon)
89        real, intent(in):: delt ! the model time step (sec) between calls
90    
91        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93        real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
98    
99        real, intent(out):: qcondc1(klon, klev)
100        ! in-cloud mixing ratio of condensed water
101    
102        real, intent(out):: cape1(klon)
103        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
104        real, intent(inout):: mp1(klon, klev)
105    
106        ! Local:
107    
108        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
109        integer i, k, il
110        integer icbmax
111        integer nk1(klon)
112        integer icbs1(klon)
113        real plcl1(klon)
114        real tnk1(klon)
115        real qnk1(klon)
116        real gznk1(klon)
117        real pbase1(klon)
118        real buoybase1(klon)
119        real lv1(klon, klev)
120        real cpn1(klon, klev)
121        real tv1(klon, klev)
122        real gz1(klon, klev)
123        real hm1(klon, klev)
124        real h1(klon, klev)
125        real tp1(klon, klev)
126        real tvp1(klon, klev)
127        real clw1(klon, klev)
128        real th1(klon, klev)
129        integer ncum
130    
131        ! Compressed fields:
132        integer idcum(klon)
133        integer iflag(klon), nk(klon), icb(klon)
134        integer nent(klon, klev)
135        integer icbs(klon)
136        integer inb(klon)
137        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
138        real t(klon, klev), q(klon, klev), qs(klon, klev)
139        real u(klon, klev), v(klon, klev)
140        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
141        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
142        real clw(klon, klev)
143        real pbase(klon), buoybase(klon), th(klon, klev)
144        real tvp(klon, klev)
145        real sig(klon, klev), w0(klon, klev)
146        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
147        real buoy(klon, klev)
148        real cape(klon)
149        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
150        real uent(klon, klev, klev), vent(klon, klev, klev)
151        real ments(klon, klev, klev), qents(klon, klev, klev)
152        real sij(klon, klev, klev), elij(klon, klev, klev)
153        real qp(klon, klev), up(klon, klev), vp(klon, klev)
154        real wt(klon, klev), water(klon, klev), evap(klon, klev)
155        real, allocatable:: b(:, :) ! (ncum, nl - 1)
156        real ft(klon, klev), fq(klon, klev)
157        real fu(klon, klev), fv(klon, klev)
158        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
159        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
160        real tps(klon, klev)
161        real precip(klon)
162        real VPrecip(klon, klev + 1)
163        real qcondc(klon, klev) ! cld
164    
165        !-------------------------------------------------------------------
166    
167        ! SET CONSTANTS AND PARAMETERS
168    
169        ! set thermodynamical constants:
170        ! (common cvthermo)
171        CALL cv_thermo
172    
173        ! set convect parameters
174        ! includes microphysical parameters and parameters that
175        ! control the rate of approach to quasi-equilibrium)
176        ! (common cvparam)
177        CALL cv30_param(delt)
178    
179        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
180    
181        do k = 1, klev
182           do i = 1, klon
183              ft1(i, k) = 0.
184              fq1(i, k) = 0.
185              fu1(i, k) = 0.
186              fv1(i, k) = 0.
187              tvp1(i, k) = 0.
188              tp1(i, k) = 0.
189              clw1(i, k) = 0.
190              clw(i, k) = 0.
191              gz1(i, k) = 0.
192              VPrecip1(i, k) = 0.
193              Ma1(i, k) = 0.
194              upwd1(i, k) = 0.
195              dnwd1(i, k) = 0.
196              dnwd01(i, k) = 0.
197              qcondc1(i, k) = 0.
198           end do
199        end do
200    
201        do i = 1, klon
202           precip1(i) = 0.
203           iflag1(i) = 0
204           cape1(i) = 0.
205           VPrecip1(i, klev + 1) = 0.
206        end do
207    
208        do il = 1, klon
209           sig1(il, klev) = sig1(il, klev) + 1.
210           sig1(il, klev) = min(sig1(il, klev), 12.1)
211        enddo
212    
213        ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
214        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
215             gz1, h1, hm1, th1)
216    
217        ! CONVECTIVE FEED
218        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
219             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
220    
221        CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
222             tp1, tvp1, clw1, icbs1) ! klev->na
223    
224        ! TRIGGERING
225        CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
226             buoybase1, iflag1, sig1, w01) ! klev->na
227    
228        ! Moist convective adjustment is necessary
229    
230        ncum = 0
231        do i = 1, klon
232           if (iflag1(i) == 0) then
233              ncum = ncum + 1
234              idcum(ncum) = i
235           endif
236        end do
237    
238        IF (ncum > 0) THEN
239           allocate(b(ncum, nl - 1))
240           CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
241                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
242                cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
243                icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
244                th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
245           CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
246                h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
247                ep, sigp, buoy)
248    
249           ! CLOSURE
250           CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
251                buoy, sig, w0, cape, m) ! na->klev
252    
253           ! MIXING
254           CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
255                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
256                sij, elij, ments, qents)
257    
258           ! Unsaturated (precipitating) downdrafts
259           CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, &
260                tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, mp, &
261                qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt, water, evap, b)
262    
263           ! Yield (tendencies, precipitation, variables of interface with
264           ! other processes, etc)
265           CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, &
266                h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, &
267                water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, &
268                nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, &
269                upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
270    
271           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
272    
273           ! UNCOMPRESS THE FIELDS
274           iflag1 = 42 ! for non convective points
275           CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
276                ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
277                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
278                fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
279                phi1, mp1)
280        ENDIF
281    
282      end SUBROUTINE cv_driver
283    
284    end module cv_driver_m

Legend:
Removed from v.14  
changed lines
  Added in v.189

  ViewVC Help
Powered by ViewVC 1.1.21