--- trunk/Sources/phylmd/cv_driver.f 2016/03/15 17:51:30 181 +++ trunk/Sources/phylmd/cv_driver.f 2016/03/22 16:31:39 188 @@ -4,9 +4,9 @@ contains - SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, & - fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, & - Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1) + SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, & + fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, & + dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1) ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17 ! Main driver for convection @@ -14,35 +14,91 @@ ! Several modules corresponding to different physical processes - use cv3_compress_m, only: cv3_compress - use cv3_feed_m, only: cv3_feed - use cv3_mixing_m, only: cv3_mixing - use cv3_param_m, only: cv3_param - use cv3_prelim_m, only: cv3_prelim - use cv3_tracer_m, only: cv3_tracer - use cv3_uncompress_m, only: cv3_uncompress - use cv3_unsat_m, only: cv3_unsat - use cv3_yield_m, only: cv3_yield + use cv30_closure_m, only: cv30_closure + use cv30_compress_m, only: cv30_compress + use cv30_feed_m, only: cv30_feed + use cv30_mixing_m, only: cv30_mixing + use cv30_param_m, only: cv30_param, nl + use cv30_prelim_m, only: cv30_prelim + use cv30_tracer_m, only: cv30_tracer + use cv30_uncompress_m, only: cv30_uncompress + use cv30_undilute2_m, only: cv30_undilute2 + use cv30_unsat_m, only: cv30_unsat + use cv30_yield_m, only: cv30_yield USE dimphy, ONLY: klev, klon - real, intent(in):: t1(klon, klev) ! temperature - real, intent(in):: q1(klon, klev) ! specific hum - real, intent(in):: qs1(klon, klev) ! sat specific hum - real, intent(in):: u1(klon, klev) ! u-wind - real, intent(in):: v1(klon, klev) ! v-wind - real, intent(in):: p1(klon, klev) ! full level pressure - real, intent(in):: ph1(klon, klev + 1) ! half level pressure - integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions - real, intent(out):: ft1(klon, klev) ! temp tend - real, intent(out):: fq1(klon, klev) ! spec hum tend - real, intent(out):: fu1(klon, klev) ! u-wind tend - real, intent(out):: fv1(klon, klev) ! v-wind tend - real, intent(out):: precip1(klon) ! precipitation + real, intent(in):: t1(klon, klev) + ! temperature (K), with first index corresponding to lowest model + ! level + + real, intent(in):: q1(klon, klev) + ! Specific humidity, with first index corresponding to lowest + ! model level. Must be defined at same grid levels as T1. + + real, intent(in):: qs1(klon, klev) + ! Saturation specific humidity, with first index corresponding to + ! lowest model level. Must be defined at same grid levels as + ! T1. + + real, intent(in):: u1(klon, klev), v1(klon, klev) + ! Zonal wind and meridional velocity (m/s), witth first index + ! corresponding with the lowest model level. Defined at same + ! levels as T1. + + real, intent(in):: p1(klon, klev) + ! Full level pressure (mb) of dimension KLEV, with first index + ! corresponding to lowest model level. Must be defined at same + ! grid levels as T1. + + real, intent(in):: ph1(klon, klev + 1) + ! Half level pressure (mb), with first index corresponding to + ! lowest level. These pressures are defined at levels intermediate + ! between those of P1, T1, Q1 and QS1. The first value of PH + ! should be greater than (i.e. at a lower level than) the first + ! value of the array P1. + + integer, intent(out):: iflag1(klon) + ! Flag for Emanuel conditions. + + ! 0: Moist convection occurs. + + ! 1: Moist convection occurs, but a CFL condition on the + ! subsidence warming is violated. This does not cause the scheme + ! to terminate. + + ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4 + + ! 3: No moist convection because new cbmf is 0 and old cbmf is 0. + + ! 4: No moist convection; atmosphere is not unstable + + ! 6: No moist convection because ihmin le minorig. + + ! 7: No moist convection because unreasonable parcel level + ! temperature or specific humidity. + + ! 8: No moist convection: lifted condensation level is above the + ! 200 mb level. + + ! 9: No moist convection: cloud base is higher then the level NL-1. + + real, intent(out):: ft1(klon, klev) + ! Temperature tendency (K/s), defined at same grid levels as T1, + ! Q1, QS1 and P1. + + real, intent(out):: fq1(klon, klev) + ! Specific humidity tendencies (s-1), defined at same grid levels + ! as T1, Q1, QS1 and P1. + + real, intent(out):: fu1(klon, klev), fv1(klon, klev) + ! Forcing (tendency) of zonal and meridional velocity (m/s^2), + ! defined at same grid levels as T1. + + real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day) real, intent(out):: VPrecip1(klon, klev + 1) - ! vertical profile of precipitation + ! vertical profile of convective precipitation (kg/m2/s) - real, intent(inout):: cbmf1(klon) ! cloud base mass flux real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft real, intent(inout):: w01(klon, klev) @@ -50,9 +106,9 @@ integer, intent(out):: icb1(klon) integer, intent(inout):: inb1(klon) - real, intent(in):: delt ! time step - real Ma1(klon, klev) - ! Ma1 Real Output mass flux adiabatic updraft + real, intent(in):: delt ! the model time step (sec) between calls + + real Ma1(klon, klev) ! Output mass flux adiabatic updraft real, intent(out):: upwd1(klon, klev) ! total upward mass flux (adiab + mixed) @@ -60,113 +116,18 @@ real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed) real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux - real qcondc1(klon, klev) ! cld - ! qcondc1 Real Output in-cld mixing ratio of condensed water + real qcondc1(klon, klev) ! Output in-cld mixing ratio of condensed water + real wd1(klon) ! gust - ! wd1 Real Output downdraft velocity scale for sfc fluxes - real cape1(klon) - ! cape1 Real Output CAPE + ! Output downdraft velocity scale for surface fluxes + ! A convective downdraft velocity scale. For use in surface + ! flux parameterizations. See convect.ps file for details. + real cape1(klon) ! Output real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev) real, intent(inout):: mp1(klon, klev) - ! ARGUMENTS - - ! On input: - - ! t: Array of absolute temperature (K) of dimension KLEV, with first - ! index corresponding to lowest model level. Note that this array - ! will be altered by the subroutine if dry convective adjustment - ! occurs and if IPBL is not equal to 0. - - ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. Note that this array will be altered - ! if dry convective adjustment occurs and if IPBL is not equal to 0. - - ! qs: Array of saturation specific humidity of dimension KLEV, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. Note that this array will be altered - ! if dry convective adjustment occurs and if IPBL is not equal to 0. - - ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first - ! index corresponding with the lowest model level. Defined at - ! same levels as T. Note that this array will be altered if - ! dry convective adjustment occurs and if IPBL is not equal to 0. - - ! v: Same as u but for meridional velocity. - - ! p: Array of pressure (mb) of dimension KLEV, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. - - ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index - ! corresponding to lowest level. These pressures are defined at - ! levels intermediate between those of P, T, Q and QS. The first - ! value of PH should be greater than (i.e. at a lower level than) - ! the first value of the array P. - - ! nl: The maximum number of levels to which convection can penetrate, plus 1 - ! NL MUST be less than or equal to KLEV-1. - - ! delt: The model time step (sec) between calls to CONVECT - - ! On Output: - - ! iflag: An output integer whose value denotes the following: - ! VALUE INTERPRETATION - ! ----- -------------- - ! 0 Moist convection occurs. - ! 1 Moist convection occurs, but a CFL condition - ! on the subsidence warming is violated. This - ! does not cause the scheme to terminate. - ! 2 Moist convection, but no precip because ep(inb) lt 0.0001 - ! 3 No moist convection because new cbmf is 0 and old cbmf is 0. - ! 4 No moist convection; atmosphere is not - ! unstable - ! 6 No moist convection because ihmin le minorig. - ! 7 No moist convection because unreasonable - ! parcel level temperature or specific humidity. - ! 8 No moist convection: lifted condensation - ! level is above the 200 mb level. - ! 9 No moist convection: cloud base is higher - ! then the level NL-1. - - ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same - ! grid levels as T, Q, QS and P. - - ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV, - ! defined at same grid levels as T, Q, QS and P. - - ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV, - ! defined at same grid levels as T. - - ! fv: Same as FU, but for forcing of meridional velocity. - - ! precip: Scalar convective precipitation rate (mm/day). - - ! VPrecip: Vertical profile of convective precipitation (kg/m2/s). - - ! wd: A convective downdraft velocity scale. For use in surface - ! flux parameterizations. See convect.ps file for details. - - ! tprime: A convective downdraft temperature perturbation scale (K). - ! For use in surface flux parameterizations. See convect.ps - ! file for details. - - ! qprime: A convective downdraft specific humidity - ! perturbation scale (gm/gm). - ! For use in surface flux parameterizations. See convect.ps - ! file for details. - - ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST - ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT - ! ITS NEXT CALL. That is, the value of CBMF must be "remembered" - ! by the calling program between calls to CONVECT. - - ! det: Array of detrainment mass flux of dimension KLEV. - - ! Local arrays + ! Local: real da(klon, klev), phi(klon, klev, klev), mp(klon, klev) @@ -195,26 +156,25 @@ integer ncum - ! (local) compressed fields: + ! Compressed fields: integer idcum(klon) integer iflag(klon), nk(klon), icb(klon) integer nent(klon, klev) integer icbs(klon) - integer inb(klon), inbis(klon) + integer inb(klon) - real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon) + real plcl(klon), tnk(klon), qnk(klon), gznk(klon) real t(klon, klev), q(klon, klev), qs(klon, klev) real u(klon, klev), v(klon, klev) real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev) real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev) real clw(klon, klev) - real dph(klon, klev) real pbase(klon), buoybase(klon), th(klon, klev) real tvp(klon, klev) real sig(klon, klev), w0(klon, klev) real hp(klon, klev), ep(klon, klev), sigp(klon, klev) - real frac(klon), buoy(klon, klev) + real buoy(klon, klev) real cape(klon) real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev) real uent(klon, klev, klev), vent(klon, klev, klev) @@ -222,11 +182,12 @@ real sij(klon, klev, klev), elij(klon, klev, klev) real qp(klon, klev), up(klon, klev), vp(klon, klev) real wt(klon, klev), water(klon, klev), evap(klon, klev) - real b(klon, klev), ft(klon, klev), fq(klon, klev) + real, allocatable:: b(:, :) ! (ncum, nl) + real ft(klon, klev), fq(klon, klev) real fu(klon, klev), fv(klon, klev) real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev) real Ma(klon, klev), mike(klon, klev), tls(klon, klev) - real tps(klon, klev), qprime(klon), tprime(klon) + real tps(klon, klev) real precip(klon) real VPrecip(klon, klev + 1) real qcondc(klon, klev) ! cld @@ -236,53 +197,44 @@ ! SET CONSTANTS AND PARAMETERS - ! set simulation flags: - ! (common cvflag) - - CALL cv_flag - ! set thermodynamical constants: ! (common cvthermo) - CALL cv_thermo ! set convect parameters - ! includes microphysical parameters and parameters that ! control the rate of approach to quasi-equilibrium) ! (common cvparam) - - CALL cv3_param(klev, delt) + CALL cv30_param(delt) ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS do k = 1, klev do i = 1, klon - ft1(i, k) = 0.0 - fq1(i, k) = 0.0 - fu1(i, k) = 0.0 - fv1(i, k) = 0.0 - tvp1(i, k) = 0.0 - tp1(i, k) = 0.0 - clw1(i, k) = 0.0 - !ym - clw(i, k) = 0.0 + ft1(i, k) = 0. + fq1(i, k) = 0. + fu1(i, k) = 0. + fv1(i, k) = 0. + tvp1(i, k) = 0. + tp1(i, k) = 0. + clw1(i, k) = 0. + clw(i, k) = 0. gz1(i, k) = 0. VPrecip1(i, k) = 0. - Ma1(i, k) = 0.0 - upwd1(i, k) = 0.0 - dnwd1(i, k) = 0.0 - dnwd01(i, k) = 0.0 - qcondc1(i, k) = 0.0 + Ma1(i, k) = 0. + upwd1(i, k) = 0. + dnwd1(i, k) = 0. + dnwd01(i, k) = 0. + qcondc1(i, k) = 0. end do end do do i = 1, klon - precip1(i) = 0.0 + precip1(i) = 0. iflag1(i) = 0 - wd1(i) = 0.0 - cape1(i) = 0.0 - VPrecip1(i, klev + 1) = 0.0 + wd1(i) = 0. + cape1(i) = 0. + VPrecip1(i, klev + 1) = 0. end do do il = 1, klon @@ -291,26 +243,22 @@ enddo ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY - - CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, & + CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, & gz1, h1, hm1, th1) ! CONVECTIVE FEED - - CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, & + CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, & icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part ! (up through ICB for convect4, up through ICB + 1 for convect3) ! Calculates the lifted parcel virtual temperature at nk, the ! actual temperature, and the adiabatic liquid water content. - - CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, & + CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, & tp1, tvp1, clw1, icbs1) ! klev->na ! TRIGGERING - - CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, & + CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, & buoybase1, iflag1, sig1, w01) ! klev->na ! Moist convective adjustment is necessary @@ -324,72 +272,57 @@ end do IF (ncum > 0) THEN + allocate(b(ncum, nl)) + ! COMPRESS THE FIELDS ! (-> vectorization over convective gridpoints) - - CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, & + CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, & plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, & v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, & sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, & buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, & tvp, clw, sig, w0) - ! UNDILUTE (ADIABATIC) UPDRAFT / second part : - ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES - ! & - ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE - ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD - ! & - ! FIND THE LEVEL OF NEUTRAL BUOYANCY - - CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, & - t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, & - tvp, clw, hp, ep, sigp, buoy) !na->klev + CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, & + h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, & + ep, sigp, buoy) ! CLOSURE - - CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, & + CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, & buoy, sig, w0, cape, m) ! na->klev ! MIXING - - CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, & + CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, & v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, & sij, elij, ments, qents) - ! UNSATURATED (PRECIPITATING) DOWNDRAFTS - - CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, & - v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, & - plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev - - ! YIELD - ! (tendencies, precipitation, variables of interface with other - ! processes, etc) - - CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, & - gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, & - wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, & - tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, & - dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev + ! Unsaturated (precipitating) downdrafts + CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, & + tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, mp, qp, & + up, vp, wt, water, evap, b) + + ! Yield (tendencies, precipitation, variables of interface with + ! other processes, etc) + CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, & + h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, & + water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, & + nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, & + upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd) ! passive tracers - - CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi) + CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi) ! UNCOMPRESS THE FIELDS ! set iflag1 = 42 for non convective points - do i = 1, klon - iflag1(i) = 42 - end do + iflag1 = 42 - CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, & + CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, & ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, & da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, & fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, & cape1, da1, phi1, mp1) - ENDIF ! ncum>0 + ENDIF end SUBROUTINE cv_driver