/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 52 by guez, Fri Sep 23 12:28:01 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 195 by guez, Wed May 18 17:56:44 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         cbmf1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, &         dnwd01, qcondc1, cape1, da1, phi1, mp1)
        qcondc1, wd1, cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
   
     use dimens_m  
     use dimphy  
     !  
     ! PARAMETERS:  
     !      Name            Type         Usage            Description  
     !   ----------      ----------     -------  ----------------------------  
     !  
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      iflag_con     Integer        Input        version of convect (3/4)  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
     !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
     !      dnwd01        Real           Output       unsaturated downward mass flux  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
     !  
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
     !  
     !..............................END PROLOGUE.............................  
     !  
     !  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: iflag_con  
     integer ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real upwd1(len, nd)  
     real dnwd1(len, nd)  
     real dnwd01(len, nd)  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
10    
11      real, intent(in):: delt      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15      !-------------------------------------------------------------------      ! Several modules corresponding to different physical processes
16      ! --- ARGUMENTS  
17      !-------------------------------------------------------------------      use comconst, only: dtphys
18      ! --- On input:      use cv30_closure_m, only: cv30_closure
19      !      use cv30_compress_m, only: cv30_compress
20      !  t:   Array of absolute temperature (K) of dimension ND, with first      use cv30_feed_m, only: cv30_feed
21      !       index corresponding to lowest model level. Note that this array      use cv30_mixing_m, only: cv30_mixing
22      !       will be altered by the subroutine if dry convective adjustment      use cv30_param_m, only: cv30_param, nl
23      !       occurs and if IPBL is not equal to 0.      use cv30_prelim_m, only: cv30_prelim
24      !      use cv30_tracer_m, only: cv30_tracer
25      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      use cv30_trigger_m, only: cv30_trigger
26      !       index corresponding to lowest model level. Must be defined      use cv30_uncompress_m, only: cv30_uncompress
27      !       at same grid levels as T. Note that this array will be altered      use cv30_undilute1_m, only: cv30_undilute1
28      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      use cv30_undilute2_m, only: cv30_undilute2
29      !      use cv30_unsat_m, only: cv30_unsat
30      !  qs:  Array of saturation specific humidity of dimension ND, with first      use cv30_yield_m, only: cv30_yield
31      !       index corresponding to lowest model level. Must be defined      use cv_thermo_m, only: cv_thermo
32      !       at same grid levels as T. Note that this array will be altered      USE dimphy, ONLY: klev, klon
33      !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
34      !      real, intent(in):: t1(klon, klev) ! temperature (K)
35      !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first      real, intent(in):: q1(klon, klev) ! specific humidity
36      !       index corresponding with the lowest model level. Defined at      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
37      !       same levels as T. Note that this array will be altered if  
38      !       dry convective adjustment occurs and if IPBL is not equal to 0.      real, intent(in):: u1(klon, klev), v1(klon, klev)
39      !      ! zonal wind and meridional velocity (m/s)
40      !  v:   Same as u but for meridional velocity.  
41      !      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
42      !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
43      !       where NTRA is the number of different tracers. If no      real, intent(in):: ph1(klon, klev + 1)
44      !       convective tracer transport is needed, define a dummy      ! Half level pressure (hPa). These pressures are defined at levels
45      !       input array of dimension (ND, 1). Tracers are defined at      ! intermediate between those of P1, T1, Q1 and QS1. The first
46      !       same vertical levels as T. Note that this array will be altered      ! value of PH should be greater than (i.e. at a lower level than)
47      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      ! the first value of the array P1.
48      !  
49      !  p:   Array of pressure (mb) of dimension ND, with first      integer, intent(out):: iflag1(klon)
50      !       index corresponding to lowest model level. Must be defined      ! Flag for Emanuel conditions.
51      !       at same grid levels as T.  
52      !      ! 0: Moist convection occurs.
53      !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
54      !       corresponding to lowest level. These pressures are defined at      ! 1: Moist convection occurs, but a CFL condition on the
55      !       levels intermediate between those of P, T, Q and QS. The first      ! subsidence warming is violated. This does not cause the scheme
56      !       value of PH should be greater than (i.e. at a lower level than)      ! to terminate.
57      !       the first value of the array P.  
58      !      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
59      !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
60      !       NL MUST be less than or equal to ND-1.      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
61      !  
62      !  delt: The model time step (sec) between calls to CONVECT      ! 4: No moist convection; atmosphere is not unstable.
63      !  
64      !----------------------------------------------------------------------------      ! 6: No moist convection because ihmin <= minorig.
65      ! ---   On Output:  
66      !      ! 7: No moist convection because unreasonable parcel level
67      !  iflag: An output integer whose value denotes the following:      ! temperature or specific humidity.
68      !       VALUE   INTERPRETATION  
69      !       -----   --------------      ! 8: No moist convection: lifted condensation level is above the
70      !         0     Moist convection occurs.      ! 200 mbar level.
71      !         1     Moist convection occurs, but a CFL condition  
72      !               on the subsidence warming is violated. This      ! 9: No moist convection: cloud base is higher than the level NL-1.
73      !               does not cause the scheme to terminate.  
74      !         2     Moist convection, but no precip because ep(inb) lt 0.0001      real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
75      !         3     No moist convection because new cbmf is 0 and old cbmf is 0.      real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
     !  
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
     !  
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
     !  
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
     !  
     !  fv:   Same as FU, but for forcing of meridional velocity.  
     !  
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
     !  
     !  precip: Scalar convective precipitation rate (mm/day).  
     !  
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
     !  
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
     !  
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
     !  
     !  det:   Array of detrainment mass flux of dimension ND.  
     !  
     !-------------------------------------------------------------------  
     !  
     !  Local arrays  
     !  
76    
77      integer i, k, n, il, j      real, intent(out):: fu1(klon, klev), fv1(klon, klev)
78        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
79    
80        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
81    
82        real, intent(out):: VPrecip1(klon, klev + 1)
83        ! vertical profile of convective precipitation (kg/m2/s)
84    
85        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
86    
87        real, intent(inout):: w01(klon, klev)
88        ! vertical velocity within adiabatic updraft
89    
90        integer, intent(out):: icb1(klon)
91        integer, intent(inout):: inb1(klon)
92        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94        real, intent(out):: upwd1(klon, klev)
95        ! total upward mass flux (adiabatic + mixed)
96    
97        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
99    
100        real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
102    
103        real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107        ! Local:
108    
109        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110        integer i, k, il
111      integer icbmax      integer icbmax
112      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
113      integer icbs1(klon)      integer icbs1(klon)
   
114      real plcl1(klon)      real plcl1(klon)
115      real tnk1(klon)      real tnk1(klon)
116      real qnk1(klon)      real qnk1(klon)
117      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
118      real pbase1(klon)      real pbase1(klon)
119      real buoybase1(klon)      real buoybase1(klon)
   
120      real lv1(klon, klev)      real lv1(klon, klev)
121      real cpn1(klon, klev)      real cpn1(klon, klev)
122      real tv1(klon, klev)      real tv1(klon, klev)
# Line 239  contains Line 126  contains
126      real tp1(klon, klev)      real tp1(klon, klev)
127      real tvp1(klon, klev)      real tvp1(klon, klev)
128      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
129      real th1(klon, klev)      real th1(klon, klev)
     !  
130      integer ncum      integer ncum
     !  
     ! (local) compressed fields:  
     !  
     integer nloc  
     parameter (nloc=klon) ! pour l'instant  
   
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
131    
132      !-------------------------------------------------------------------      ! Compressed fields:
133      ! --- SET CONSTANTS AND PARAMETERS      integer idcum(klon)
134        integer iflag(klon), nk(klon)
135        integer, allocatable:: icb(:) ! (ncum)
136        integer nent(klon, klev)
137        integer icbs(klon)
138        integer inb(klon)
139        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
140        real t(klon, klev), q(klon, klev), qs(klon, klev)
141        real u(klon, klev), v(klon, klev)
142        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
143        real p(klon, klev) ! pressure at full level, in hPa
144        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
145        real clw(klon, klev)
146        real pbase(klon), buoybase(klon), th(klon, klev)
147        real tvp(klon, klev)
148        real sig(klon, klev), w0(klon, klev)
149        real hp(klon, klev), ep(klon, klev)
150        real buoy(klon, klev)
151        real cape(klon)
152        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
153        real uent(klon, klev, klev), vent(klon, klev, klev)
154        real ments(klon, klev, klev), qents(klon, klev, klev)
155        real sij(klon, klev, klev), elij(klon, klev, klev)
156        real qp(klon, klev), up(klon, klev), vp(klon, klev)
157        real wt(klon, klev), water(klon, klev)
158        real, allocatable:: evap(:, :) ! (ncum, nl)
159        real, allocatable:: b(:, :) ! (ncum, nl - 1)
160        real ft(klon, klev), fq(klon, klev)
161        real fu(klon, klev), fv(klon, klev)
162        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
163        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
164        real tps(klon, klev)
165        real precip(klon)
166        real VPrecip(klon, klev + 1)
167        real qcondc(klon, klev) ! cld
168    
169      !-------------------------------------------------------------------      !-------------------------------------------------------------------
170    
171      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
172    
173      CALL cv_flag      ! set thermodynamical constants:
174        CALL cv_thermo
175    
176      ! -- set thermodynamical constants:      CALL cv30_param
     !     (common cvthermo)  
177    
178      CALL cv_thermo(iflag_con)      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
179    
180      ! -- set convect parameters      do k = 1, klev
181      !         do i = 1, klon
182      !     includes microphysical parameters and parameters that            ft1(i, k) = 0.
183      !     control the rate of approach to quasi-equilibrium)            fq1(i, k) = 0.
184      !     (common cvparam)            fu1(i, k) = 0.
185              fv1(i, k) = 0.
186      if (iflag_con.eq.3) then            tvp1(i, k) = 0.
187         CALL cv3_param(nd, delt)            tp1(i, k) = 0.
188      endif            clw1(i, k) = 0.
189              clw(i, k) = 0.
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
190            gz1(i, k) = 0.            gz1(i, k) = 0.
191            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
192            Ma1(i, k)=0.0            Ma1(i, k) = 0.
193            upwd1(i, k)=0.0            upwd1(i, k) = 0.
194            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
195            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
196            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
        end do  
     end do  
   
     do  j=1, ntra  
        do  k=1, nd  
           do  i=1, len  
              ftra1(i, k, j)=0.0  
           end do  
197         end do         end do
198      end do      end do
199    
200      do  i=1, len      precip1 = 0.
201         precip1(i)=0.0      iflag1 = 0
202         iflag1(i)=0      cape1 = 0.
203         wd1(i)=0.0      VPrecip1(:, klev + 1) = 0.
204         cape1(i)=0.0  
205         VPrecip1(i, nd+1)=0.0      do il = 1, klon
206      end do         sig1(il, klev) = sig1(il, klev) + 1.
207           sig1(il, klev) = min(sig1(il, klev), 12.1)
208      if (iflag_con.eq.3) then      enddo
209         do il=1, len  
210            sig1(il, nd)=sig1(il, nd)+1.      CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
211            sig1(il, nd)=amin1(sig1(il, nd), 12.1)           gz1, h1, hm1, th1)
212         enddo      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, nk1, icb1, icbmax, iflag1, &
213      endif           tnk1, qnk1, gznk1, plcl1)
214        CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, tp1, tvp1, &
215      !--------------------------------------------------------------------           clw1, icbs1)
216      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY      CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
217      !--------------------------------------------------------------------           iflag1, sig1, w01)
218    
219      if (iflag_con.eq.3) then      ! Moist convective adjustment is necessary
220         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
221              h1, hm1, th1)! nd->na      ncum = 0
222      endif      do i = 1, klon
223           if (iflag1(i) == 0) then
224      if (iflag_con.eq.4) then            ncum = ncum + 1
225         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &            idcum(ncum) = i
             , lv1, cpn1, tv1, gz1, h1, hm1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
226         endif         endif
227      end do      end do
228    
229      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
230           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum))
231      IF (ncum.gt.0) THEN         CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
232                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
233         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
234         ! --- COMPRESS THE FIELDS              icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
235         !        (-> vectorization over convective gridpoints)              th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
236         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         CALL cv30_undilute2(icb, icbs(:ncum), nk, tnk, qnk, gznk, t, qs, gz, &
237                p, h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, &
238         if (iflag_con.eq.3) then              hp, ep, buoy)
239            CALL cv3_compress( len, nloc, ncum, nd, ntra &         CALL cv30_closure(icb, inb(:ncum), pbase, p, ph, tv, buoy, sig, w0, &
240                 , iflag1, nk1, icb1, icbs1 &              cape, m)
241                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &         CALL cv30_mixing(icb, nk(:ncum), inb(:ncum), t, q, qs, u, v, h, lv, &
242                 , t1, q1, qs1, u1, v1, gz1, th1 &              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
243                 , tra1 &              ments, qents)
244                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &         CALL cv30_unsat(icb, inb(:ncum), t(:ncum, :nl), q(:ncum, :nl), &
245                 , sig1, w01 &              qs(:ncum, :nl), gz, u, v, p, ph, th(:ncum, :nl - 1), tv, lv, cpn, &
246                 , iflag, nk, icb, icbs &              ep(:ncum, :), clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), &
247                 , plcl, tnk, qnk, gznk, pbase, buoybase &              elij(:ncum, :, :), dtphys, plcl, mp, qp(:ncum, :nl), &
248                 , t, q, qs, u, v, gz, th &              up(:ncum, :nl), vp(:ncum, :nl), wt(:ncum, :nl), &
249                 , tra &              water(:ncum, :nl), evap, b)
250                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &         CALL cv30_yield(icb, inb(:ncum), dtphys, t, q, u, v, gz, p, ph, h, hp, &
251                 , sig, w0  )              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
252         endif              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
253                vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
254         if (iflag_con.eq.4) then              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
255            CALL cv_compress( len, nloc, ncum, nd &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
256                 , iflag1, nk1, icb1 &  
257                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         ! UNCOMPRESS THE FIELDS
258                 , t1, q1, qs1, u1, v1, gz1 &         iflag1 = 42 ! for non convective points
259                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
260                 , iflag, nk, icb &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
261                 , cbmf, plcl, tnk, qnk, gznk &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
262                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
263                 , dph )              phi1, mp1)
264         endif      ENDIF
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
        !  
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
265    
266    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
267    

Legend:
Removed from v.52  
changed lines
  Added in v.195

  ViewVC Help
Powered by ViewVC 1.1.21