/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 69 by guez, Mon Feb 18 16:33:12 2013 UTC trunk/Sources/phylmd/cv_driver.f revision 195 by guez, Wed May 18 17:56:44 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd01, qcondc1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17      use clesphys2, only: iflag_con      use comconst, only: dtphys
18      use cv3_param_m, only: cv3_param      use cv30_closure_m, only: cv30_closure
19        use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21        use cv30_mixing_m, only: cv30_mixing
22        use cv30_param_m, only: cv30_param, nl
23        use cv30_prelim_m, only: cv30_prelim
24        use cv30_tracer_m, only: cv30_tracer
25        use cv30_trigger_m, only: cv30_trigger
26        use cv30_uncompress_m, only: cv30_uncompress
27        use cv30_undilute1_m, only: cv30_undilute1
28        use cv30_undilute2_m, only: cv30_undilute2
29        use cv30_unsat_m, only: cv30_unsat
30        use cv30_yield_m, only: cv30_yield
31        use cv_thermo_m, only: cv_thermo
32      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
33    
34      ! PARAMETERS:      real, intent(in):: t1(klon, klev) ! temperature (K)
35      !      Name            Type         Usage            Description      real, intent(in):: q1(klon, klev) ! specific humidity
36      !   ----------      ----------     -------  ----------------------------      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
   
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
37    
38      real, intent(in):: delt      real, intent(in):: u1(klon, klev), v1(klon, klev)
39        ! zonal wind and meridional velocity (m/s)
40    
41      !-------------------------------------------------------------------      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
     ! --- ARGUMENTS  
     !-------------------------------------------------------------------  
     ! --- On input:  
42    
43      !  t:   Array of absolute temperature (K) of dimension ND, with first      real, intent(in):: ph1(klon, klev + 1)
44      !       index corresponding to lowest model level. Note that this array      ! Half level pressure (hPa). These pressures are defined at levels
45      !       will be altered by the subroutine if dry convective adjustment      ! intermediate between those of P1, T1, Q1 and QS1. The first
46      !       occurs and if IPBL is not equal to 0.      ! value of PH should be greater than (i.e. at a lower level than)
47        ! the first value of the array P1.
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
48    
49      !  det:   Array of detrainment mass flux of dimension ND.      integer, intent(out):: iflag1(klon)
50        ! Flag for Emanuel conditions.
51    
52      !-------------------------------------------------------------------      ! 0: Moist convection occurs.
53    
54        ! 1: Moist convection occurs, but a CFL condition on the
55        ! subsidence warming is violated. This does not cause the scheme
56        ! to terminate.
57    
58        ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
59    
60        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
61    
62        ! 4: No moist convection; atmosphere is not unstable.
63    
64        ! 6: No moist convection because ihmin <= minorig.
65    
66        ! 7: No moist convection because unreasonable parcel level
67        ! temperature or specific humidity.
68    
69        ! 8: No moist convection: lifted condensation level is above the
70        ! 200 mbar level.
71    
72        ! 9: No moist convection: cloud base is higher than the level NL-1.
73    
74        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
75        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
76    
77        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
78        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
79    
80        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
81    
82        real, intent(out):: VPrecip1(klon, klev + 1)
83        ! vertical profile of convective precipitation (kg/m2/s)
84    
85        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
86    
87        real, intent(inout):: w01(klon, klev)
88        ! vertical velocity within adiabatic updraft
89    
90      !  Local arrays      integer, intent(out):: icb1(klon)
91        integer, intent(inout):: inb1(klon)
92        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94      integer i, k, n, il, j      real, intent(out):: upwd1(klon, klev)
95        ! total upward mass flux (adiabatic + mixed)
96    
97        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
99    
100        real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
102    
103        real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107        ! Local:
108    
109        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110        integer i, k, il
111      integer icbmax      integer icbmax
112      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
113      integer icbs1(klon)      integer icbs1(klon)
   
114      real plcl1(klon)      real plcl1(klon)
115      real tnk1(klon)      real tnk1(klon)
116      real qnk1(klon)      real qnk1(klon)
117      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
118      real pbase1(klon)      real pbase1(klon)
119      real buoybase1(klon)      real buoybase1(klon)
   
120      real lv1(klon, klev)      real lv1(klon, klev)
121      real cpn1(klon, klev)      real cpn1(klon, klev)
122      real tv1(klon, klev)      real tv1(klon, klev)
# Line 232  contains Line 126  contains
126      real tp1(klon, klev)      real tp1(klon, klev)
127      real tvp1(klon, klev)      real tvp1(klon, klev)
128      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
129      real th1(klon, klev)      real th1(klon, klev)
   
130      integer ncum      integer ncum
131    
132      ! (local) compressed fields:      ! Compressed fields:
133        integer idcum(klon)
134      integer nloc      integer iflag(klon), nk(klon)
135      parameter (nloc=klon) ! pour l'instant      integer, allocatable:: icb(:) ! (ncum)
136        integer nent(klon, klev)
137      integer idcum(nloc)      integer icbs(klon)
138      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon)
139      integer nent(nloc, klev)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
140      integer icbs(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
141      integer inb(nloc), inbis(nloc)      real u(klon, klev), v(klon, klev)
142        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
143      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real p(klon, klev) ! pressure at full level, in hPa
144      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
145      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
146      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
147      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real tvp(klon, klev)
148      real clw(nloc, klev)      real sig(klon, klev), w0(klon, klev)
149      real dph(nloc, klev)      real hp(klon, klev), ep(klon, klev)
150      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real buoy(klon, klev)
151      real tvp(nloc, klev)      real cape(klon)
152      real sig(nloc, klev), w0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
153      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
154      real frac(nloc), buoy(nloc, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
155      real cape(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
156      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
157      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real wt(klon, klev), water(klon, klev)
158      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real, allocatable:: evap(:, :) ! (ncum, nl)
159      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real, allocatable:: b(:, :) ! (ncum, nl - 1)
160      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real ft(klon, klev), fq(klon, klev)
161      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real fu(klon, klev), fv(klon, klev)
162      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
163      real fu(nloc, klev), fv(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
164      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real tps(klon, klev)
165      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real precip(klon)
166      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real VPrecip(klon, klev + 1)
167      real precip(nloc)      real qcondc(klon, klev) ! cld
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
168    
169      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
   
     ! -- set simulation flags:  
     !   (common cvflag)  
   
     CALL cv_flag  
170    
171      ! -- set thermodynamical constants:      ! SET CONSTANTS AND PARAMETERS
     !     (common cvthermo)  
172    
173        ! set thermodynamical constants:
174      CALL cv_thermo      CALL cv_thermo
175    
176      ! -- set convect parameters      CALL cv30_param
177    
178      !     includes microphysical parameters and parameters that      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
179      !     control the rate of approach to quasi-equilibrium)  
180      !     (common cvparam)      do k = 1, klev
181           do i = 1, klon
182      if (iflag_con.eq.3) then            ft1(i, k) = 0.
183         CALL cv3_param(nd, delt)            fq1(i, k) = 0.
184      endif            fu1(i, k) = 0.
185              fv1(i, k) = 0.
186      if (iflag_con.eq.4) then            tvp1(i, k) = 0.
187         CALL cv_param(nd)            tp1(i, k) = 0.
188      endif            clw1(i, k) = 0.
189              clw(i, k) = 0.
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
190            gz1(i, k) = 0.            gz1(i, k) = 0.
191            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
192            Ma1(i, k)=0.0            Ma1(i, k) = 0.
193            upwd1(i, k)=0.0            upwd1(i, k) = 0.
194            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
195            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
196            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
197         end do         end do
198      end do      end do
199    
200      do  j=1, ntra      precip1 = 0.
201         do  k=1, nd      iflag1 = 0
202            do  i=1, len      cape1 = 0.
203               ftra1(i, k, j)=0.0      VPrecip1(:, klev + 1) = 0.
204            end do  
205         end do      do il = 1, klon
206      end do         sig1(il, klev) = sig1(il, klev) + 1.
207           sig1(il, klev) = min(sig1(il, klev), 12.1)
208      do  i=1, len      enddo
209         precip1(i)=0.0  
210         iflag1(i)=0      CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
211         wd1(i)=0.0           gz1, h1, hm1, th1)
212         cape1(i)=0.0      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, nk1, icb1, icbmax, iflag1, &
213         VPrecip1(i, nd+1)=0.0           tnk1, qnk1, gznk1, plcl1)
214      end do      CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, tp1, tvp1, &
215             clw1, icbs1)
216      if (iflag_con.eq.3) then      CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
217         do il=1, len           iflag1, sig1, w01)
218            sig1(il, nd)=sig1(il, nd)+1.  
219            sig1(il, nd)=amin1(sig1(il, nd), 12.1)      ! Moist convective adjustment is necessary
220         enddo  
221      endif      ncum = 0
222        do i = 1, klon
223      !--------------------------------------------------------------------         if (iflag1(i) == 0) then
224      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY            ncum = ncum + 1
225      !--------------------------------------------------------------------            idcum(ncum) = i
   
     if (iflag_con.eq.3) then  
        CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
             h1, hm1, th1)! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &  
             , lv1, cpn1, tv1, gz1, h1, hm1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
226         endif         endif
227      end do      end do
228    
229      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
230           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum))
231      IF (ncum.gt.0) THEN         CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
232                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
233         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
234         ! --- COMPRESS THE FIELDS              icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
235         !        (-> vectorization over convective gridpoints)              th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
236         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         CALL cv30_undilute2(icb, icbs(:ncum), nk, tnk, qnk, gznk, t, qs, gz, &
237                p, h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, &
238         if (iflag_con.eq.3) then              hp, ep, buoy)
239            CALL cv3_compress( len, nloc, ncum, nd, ntra &         CALL cv30_closure(icb, inb(:ncum), pbase, p, ph, tv, buoy, sig, w0, &
240                 , iflag1, nk1, icb1, icbs1 &              cape, m)
241                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &         CALL cv30_mixing(icb, nk(:ncum), inb(:ncum), t, q, qs, u, v, h, lv, &
242                 , t1, q1, qs1, u1, v1, gz1, th1 &              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
243                 , tra1 &              ments, qents)
244                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &         CALL cv30_unsat(icb, inb(:ncum), t(:ncum, :nl), q(:ncum, :nl), &
245                 , sig1, w01 &              qs(:ncum, :nl), gz, u, v, p, ph, th(:ncum, :nl - 1), tv, lv, cpn, &
246                 , iflag, nk, icb, icbs &              ep(:ncum, :), clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), &
247                 , plcl, tnk, qnk, gznk, pbase, buoybase &              elij(:ncum, :, :), dtphys, plcl, mp, qp(:ncum, :nl), &
248                 , t, q, qs, u, v, gz, th &              up(:ncum, :nl), vp(:ncum, :nl), wt(:ncum, :nl), &
249                 , tra &              water(:ncum, :nl), evap, b)
250                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &         CALL cv30_yield(icb, inb(:ncum), dtphys, t, q, u, v, gz, p, ph, h, hp, &
251                 , sig, w0  )              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
252         endif              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
253                vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
254         if (iflag_con.eq.4) then              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
255            CALL cv_compress( len, nloc, ncum, nd &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
256                 , iflag1, nk1, icb1 &  
257                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         ! UNCOMPRESS THE FIELDS
258                 , t1, q1, qs1, u1, v1, gz1 &         iflag1 = 42 ! for non convective points
259                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
260                 , iflag, nk, icb &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
261                 , cbmf, plcl, tnk, qnk, gznk &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
262                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
263                 , dph )              phi1, mp1)
264         endif      ENDIF
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
265    
266    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
267    

Legend:
Removed from v.69  
changed lines
  Added in v.195

  ViewVC Help
Powered by ViewVC 1.1.21