/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 49 by guez, Wed Aug 24 11:43:14 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 201 by guez, Mon Jun 6 17:42:15 2016 UTC
# Line 1  Line 1 
1  !  module cv_driver_m
 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_driver.F,v 1.3 2005/04/15 12:36:17 lmdzadmin Exp $  
 !  
       SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con, &  
                          t1,q1,qs1,u1,v1,tra1, &  
                          p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1, &  
                          precip1,VPrecip1, &  
                          cbmf1,sig1,w01, &  
                          icb1,inb1, &  
                          delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1, &  
                          da1,phi1,mp1)  
 !  
       use dimens_m  
       use dimphy  
       implicit none  
 !  
 !.............................START PROLOGUE............................  
 !  
 ! PARAMETERS:  
 !      Name            Type         Usage            Description  
 !   ----------      ----------     -------  ----------------------------  
 !  
 !      len           Integer        Input        first (i) dimension  
 !      nd            Integer        Input        vertical (k) dimension  
 !      ndp1          Integer        Input        nd + 1  
 !      ntra          Integer        Input        number of tracors  
 !      iflag_con     Integer        Input        version of convect (3/4)  
 !      t1            Real           Input        temperature  
 !      q1            Real           Input        specific hum  
 !      qs1           Real           Input        sat specific hum  
 !      u1            Real           Input        u-wind  
 !      v1            Real           Input        v-wind  
 !      tra1          Real           Input        tracors  
 !      p1            Real           Input        full level pressure  
 !      ph1           Real           Input        half level pressure  
 !      iflag1        Integer        Output       flag for Emanuel conditions  
 !      ft1           Real           Output       temp tend  
 !      fq1           Real           Output       spec hum tend  
 !      fu1           Real           Output       u-wind tend  
 !      fv1           Real           Output       v-wind tend  
 !      ftra1         Real           Output       tracor tend  
 !      precip1       Real           Output       precipitation  
 !      VPrecip1      Real           Output       vertical profile of precipitations  
 !      cbmf1         Real           Output       cloud base mass flux  
 !      sig1          Real           In/Out       section adiabatic updraft  
 !      w01           Real           In/Out       vertical velocity within adiab updraft  
 !      delt          Real           Input        time step  
 !      Ma1           Real           Output       mass flux adiabatic updraft  
 !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
 !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
 !      dnwd01        Real           Output       unsaturated downward mass flux  
 !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
 !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
 !      cape1         Real           Output       CAPE  
 !  
 ! S. Bony, Mar 2002:  
 !     * Several modules corresponding to different physical processes  
 !     * Several versions of convect may be used:  
 !        - iflag_con=3: version lmd  (previously named convect3)  
 !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
 !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
 ! S. Bony, Oct 2002:  
 !     * Vectorization of convect3 (ie version lmd)  
 !  
 !..............................END PROLOGUE.............................  
 !  
 !  
   
       integer len  
       integer nd  
       integer ndp1  
       integer noff  
       integer, intent(in):: iflag_con  
       integer ntra  
       real t1(len,nd)  
       real q1(len,nd)  
       real qs1(len,nd)  
       real u1(len,nd)  
       real v1(len,nd)  
       real p1(len,nd)  
       real ph1(len,ndp1)  
       integer iflag1(len)  
       real ft1(len,nd)  
       real fq1(len,nd)  
       real fu1(len,nd)  
       real fv1(len,nd)  
       real precip1(len)  
       real cbmf1(len)  
       real VPrecip1(len,nd+1)  
       real Ma1(len,nd)  
       real upwd1(len,nd)  
       real dnwd1(len,nd)  
       real dnwd01(len,nd)  
   
       real qcondc1(len,nd)     ! cld  
       real wd1(len)            ! gust  
       real cape1(len)  
   
       real da1(len,nd),phi1(len,nd,nd),mp1(len,nd)  
       real da(len,nd),phi(len,nd,nd),mp(len,nd)  
       real, intent(in):: tra1(len,nd,ntra)  
       real ftra1(len,nd,ntra)  
   
       real, intent(in):: delt  
   
 !-------------------------------------------------------------------  
 ! --- ARGUMENTS  
 !-------------------------------------------------------------------  
 ! --- On input:  
 !  
 !  t:   Array of absolute temperature (K) of dimension ND, with first  
 !       index corresponding to lowest model level. Note that this array  
 !       will be altered by the subroutine if dry convective adjustment  
 !       occurs and if IPBL is not equal to 0.  
 !  
 !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  qs:  Array of saturation specific humidity of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
 !       index corresponding with the lowest model level. Defined at  
 !       same levels as T. Note that this array will be altered if  
 !       dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  v:   Same as u but for meridional velocity.  
 !  
 !  tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA),  
 !       where NTRA is the number of different tracers. If no  
 !       convective tracer transport is needed, define a dummy  
 !       input array of dimension (ND,1). Tracers are defined at  
 !       same vertical levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  p:   Array of pressure (mb) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T.  
 !  
 !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
 !       corresponding to lowest level. These pressures are defined at  
 !       levels intermediate between those of P, T, Q and QS. The first  
 !       value of PH should be greater than (i.e. at a lower level than)  
 !       the first value of the array P.  
 !  
 !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
 !       NL MUST be less than or equal to ND-1.  
 !  
 !  delt: The model time step (sec) between calls to CONVECT  
 !  
 !----------------------------------------------------------------------------  
 ! ---   On Output:  
 !  
 !  iflag: An output integer whose value denotes the following:  
 !       VALUE   INTERPRETATION  
 !       -----   --------------  
 !         0     Moist convection occurs.  
 !         1     Moist convection occurs, but a CFL condition  
 !               on the subsidence warming is violated. This  
 !               does not cause the scheme to terminate.  
 !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
 !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
 !         4     No moist convection; atmosphere is not  
 !               unstable  
 !         6     No moist convection because ihmin le minorig.  
 !         7     No moist convection because unreasonable  
 !               parcel level temperature or specific humidity.  
 !         8     No moist convection: lifted condensation  
 !               level is above the 200 mb level.  
 !         9     No moist convection: cloud base is higher  
 !               then the level NL-1.  
 !  
 !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
 !        grid levels as T, Q, QS and P.  
 !  
 !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
 !        defined at same grid levels as T, Q, QS and P.  
 !  
 !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
 !        defined at same grid levels as T.  
 !  
 !  fv:   Same as FU, but for forcing of meridional velocity.  
 !  
 !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
 !        second, defined at same levels as T. Dimensioned (ND,NTRA).  
 !  
 !  precip: Scalar convective precipitation rate (mm/day).  
 !  
 !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
 !  
 !  wd:   A convective downdraft velocity scale. For use in surface  
 !        flux parameterizations. See convect.ps file for details.  
 !  
 !  tprime: A convective downdraft temperature perturbation scale (K).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  qprime: A convective downdraft specific humidity  
 !          perturbation scale (gm/gm).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
 !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
 !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
 !        by the calling program between calls to CONVECT.  
 !  
 !  det:   Array of detrainment mass flux of dimension ND.  
 !  
 !-------------------------------------------------------------------  
 !  
 !  Local arrays  
 !  
   
       integer i,k,n,il,j  
       integer icbmax  
       integer nk1(klon)  
       integer icb1(klon)  
       integer inb1(klon)  
       integer icbs1(klon)  
   
       real plcl1(klon)  
       real tnk1(klon)  
       real qnk1(klon)  
       real gznk1(klon)  
       real pnk1(klon)  
       real qsnk1(klon)  
       real pbase1(klon)  
       real buoybase1(klon)  
   
       real lv1(klon,klev)  
       real cpn1(klon,klev)  
       real tv1(klon,klev)  
       real gz1(klon,klev)  
       real hm1(klon,klev)  
       real h1(klon,klev)  
       real tp1(klon,klev)  
       real tvp1(klon,klev)  
       real clw1(klon,klev)  
       real sig1(klon,klev)  
       real w01(klon,klev)  
       real th1(klon,klev)  
 !  
       integer ncum  
 !  
 ! (local) compressed fields:  
 !  
       integer nloc  
       parameter (nloc=klon) ! pour l'instant  
   
       integer idcum(nloc)  
       integer iflag(nloc),nk(nloc),icb(nloc)  
       integer nent(nloc,klev)  
       integer icbs(nloc)  
       integer inb(nloc), inbis(nloc)  
   
       real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc)  
       real t(nloc,klev),q(nloc,klev),qs(nloc,klev)  
       real u(nloc,klev),v(nloc,klev)  
       real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev)  
       real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev)  
       real clw(nloc,klev)  
       real dph(nloc,klev)  
       real pbase(nloc), buoybase(nloc), th(nloc,klev)  
       real tvp(nloc,klev)  
       real sig(nloc,klev), w0(nloc,klev)  
       real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev)  
       real frac(nloc), buoy(nloc,klev)  
       real cape(nloc)  
       real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev)  
       real uent(nloc,klev,klev), vent(nloc,klev,klev)  
       real ments(nloc,klev,klev), qents(nloc,klev,klev)  
       real sij(nloc,klev,klev), elij(nloc,klev,klev)  
       real qp(nloc,klev), up(nloc,klev), vp(nloc,klev)  
       real wt(nloc,klev), water(nloc,klev), evap(nloc,klev)  
       real b(nloc,klev), ft(nloc,klev), fq(nloc,klev)  
       real fu(nloc,klev), fv(nloc,klev)  
       real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev)  
       real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev)  
       real tps(nloc,klev), qprime(nloc), tprime(nloc)  
       real precip(nloc)  
       real VPrecip(nloc,klev+1)  
       real tra(nloc,klev,ntra), trap(nloc,klev,ntra)  
       real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra)  
       real qcondc(nloc,klev)  ! cld  
       real wd(nloc)           ! gust  
   
 !-------------------------------------------------------------------  
 ! --- SET CONSTANTS AND PARAMETERS  
 !-------------------------------------------------------------------  
   
 ! -- set simulation flags:  
 !   (common cvflag)  
   
        CALL cv_flag  
   
 ! -- set thermodynamical constants:  
 !     (common cvthermo)  
   
        CALL cv_thermo(iflag_con)  
   
 ! -- set convect parameters  
 !  
 !     includes microphysical parameters and parameters that  
 !     control the rate of approach to quasi-equilibrium)  
 !     (common cvparam)  
   
       if (iflag_con.eq.3) then  
        CALL cv3_param(nd,delt)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
       endif  
   
 !---------------------------------------------------------------------  
 ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
 !---------------------------------------------------------------------  
   
       do 20 k=1,nd  
         do 10 i=1,len  
          ft1(i,k)=0.0  
          fq1(i,k)=0.0  
          fu1(i,k)=0.0  
          fv1(i,k)=0.0  
          tvp1(i,k)=0.0  
          tp1(i,k)=0.0  
          clw1(i,k)=0.0  
 !ym  
          clw(i,k)=0.0  
          gz1(i,k) = 0.  
          VPrecip1(i,k) = 0.  
          Ma1(i,k)=0.0  
          upwd1(i,k)=0.0  
          dnwd1(i,k)=0.0  
          dnwd01(i,k)=0.0  
          qcondc1(i,k)=0.0  
  10     continue  
  20   continue  
   
       do 30 j=1,ntra  
        do 31 k=1,nd  
         do 32 i=1,len  
          ftra1(i,k,j)=0.0  
  32     continue  
  31    continue  
  30   continue  
   
       do 60 i=1,len  
         precip1(i)=0.0  
         iflag1(i)=0  
         wd1(i)=0.0  
         cape1(i)=0.0  
         VPrecip1(i,nd+1)=0.0  
  60   continue  
   
       if (iflag_con.eq.3) then  
         do il=1,len  
          sig1(il,nd)=sig1(il,nd)+1.  
          sig1(il,nd)=amin1(sig1(il,nd),12.1)  
         enddo  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_prelim(len,nd,ndp1,t1,q1,p1,ph1             &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1,th1)! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1 &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CONVECTIVE FEED  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1            &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1 &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
 ! (up through ICB for convect4, up through ICB+1 for convect3)  
 !     Calculates the lifted parcel virtual temperature at nk, the  
 !     actual temperature, and the adiabatic liquid water content.  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1   &  
                               ,tp1,tvp1,clw1,icbs1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax &  
                               ,tp1,tvp1,clw1)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- TRIGGERING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1       &  
                        ,pbase1,buoybase1,iflag1,sig1,w01) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1)  
       endif  
   
 !=====================================================================  
 ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
 !=====================================================================  
   
       ncum=0  
       do 400 i=1,len  
         if(iflag1(i).eq.0)then  
            ncum=ncum+1  
            idcum(ncum)=i  
         endif  
  400  continue  
   
 !       print*,'klon, ncum = ',len,ncum  
   
       IF (ncum.gt.0) THEN  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- COMPRESS THE FIELDS  
 !        (-> vectorization over convective gridpoints)  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_compress( len,nloc,ncum,nd,ntra &  
           ,iflag1,nk1,icb1,icbs1 &  
           ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 &  
           ,t1,q1,qs1,u1,v1,gz1,th1 &  
           ,tra1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  &  
           ,sig1,w01 &  
           ,iflag,nk,icb,icbs &  
           ,plcl,tnk,qnk,gznk,pbase,buoybase &  
           ,t,q,qs,u,v,gz,th &  
           ,tra &  
           ,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,sig,w0  )  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_compress( len,nloc,ncum,nd &  
           ,iflag1,nk1,icb1 &  
           ,cbmf1,plcl1,tnk1,qnk1,gznk1 &  
           ,t1,q1,qs1,u1,v1,gz1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 &  
           ,iflag,nk,icb &  
           ,cbmf,plcl,tnk,qnk,gznk &  
           ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,dph )  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
 ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
 ! ---   &  
 ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
 ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
 ! ---   &  
 ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute2(nloc,ncum,nd,icb,icbs,nk         &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,h,tv,lv,pbase,buoybase,plcl &  
                               ,inb,tp,tvp,clw,hp,ep,sigp,buoy) !na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute2(nloc,ncum,nd,icb,nk &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,dph,h,tv,lv &  
                    ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- CLOSURE  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_closure(nloc,ncum,nd,icb,inb               &  
                              ,pbase,p,ph,tv,buoy &  
                              ,sig,w0,cape,m) ! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_closure(nloc,ncum,nd,nk,icb &  
                       ,tv,tvp,p,ph,dph,plcl,cpn &  
                       ,iflag,cbmf)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- MIXING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb     &  
                            ,ph,t,q,qs,u,v,tra,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,m,sig &  
        ,ment,qent,uent,vent, nent,sij,elij,ments,qents,traent)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis &  
                            ,ph,t,q,qs,u,v,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,cbmf &  
                            ,m,ment,qent,uent,vent,nent,sij,elij)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_unsat(nloc,ncum,nd,nd,ntra,icb,inb     &  
                      ,t,q,qs,gz,u,v,tra,p,ph &  
                      ,th,tv,lv,cpn,ep,sigp,clw &  
                      ,m,ment,elij,delt,plcl &  
                 ,mp,qp,up,vp,trap,wt,water,evap,b)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph &  
                          ,h,lv,ep,sigp,clw,m,ment,elij &  
                          ,iflag,mp,qp,up,vp,wt,water,evap)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- YIELD  
 !     (tendencies, precipitation, variables of interface with other  
 !      processes, etc)  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_yield(nloc,ncum,nd,nd,ntra             &  
                            ,icb,inb,delt &  
                            ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th &  
                            ,ep,clw,m,tp,mp,qp,up,vp,trap &  
                            ,wt,water,evap,b &  
                            ,ment,qent,uent,vent,nent,elij,traent,sig &  
                            ,tv,tvp &  
                            ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra &  
                            ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt &  
                     ,t,q,u,v,gz,p,ph,h,hp,lv,cpn &  
                     ,ep,clw,frac,m,mp,qp,up,vp &  
                     ,wt,water,evap &  
                     ,ment,qent,uent,vent,nent,elij &  
                     ,tv,tvp &  
                     ,iflag,wd,qprime,tprime &  
                     ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- passive tracers  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_tracer(nloc,len,ncum,nd,nd, &  
                         ment,sij,da,phi)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- UNCOMPRESS THE FIELDS  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! set iflag1 =42 for non convective points  
       do  i=1,len  
         iflag1(i)=42  
       end do  
 !  
       if (iflag_con.eq.3) then  
        CALL cv3_uncompress(nloc,len,ncum,nd,ntra,idcum &  
                 ,iflag &  
                 ,precip,VPrecip,sig,w0 &  
                 ,ft,fq,fu,fv,ftra &  
                 ,inb  &  
                 ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape &  
                 ,da,phi,mp &  
                 ,iflag1 &  
                 ,precip1,VPrecip1,sig1,w01 &  
                 ,ft1,fq1,fu1,fv1,ftra1 &  
                 ,inb1 &  
                 ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1  &  
                 ,da1,phi1,mp1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_uncompress(nloc,len,ncum,nd,idcum &  
                 ,iflag &  
                 ,precip,cbmf &  
                 ,ft,fq,fu,fv &  
                 ,Ma,qcondc             &  
                 ,iflag1 &  
                 ,precip1,cbmf1 &  
                 ,ft1,fq1,fu1,fv1 &  
                 ,Ma1,qcondc1 )  
       endif  
2    
3        ENDIF ! ncum>0    implicit none
4    
5  9999  continue  contains
6    
7        return    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8        end         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9           dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        use comconst, only: dtphys
18        use cv30_closure_m, only: cv30_closure
19        use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21        use cv30_mixing_m, only: cv30_mixing
22        use cv30_param_m, only: cv30_param, nl
23        use cv30_prelim_m, only: cv30_prelim
24        use cv30_tracer_m, only: cv30_tracer
25        use cv30_trigger_m, only: cv30_trigger
26        use cv30_uncompress_m, only: cv30_uncompress
27        use cv30_undilute1_m, only: cv30_undilute1
28        use cv30_undilute2_m, only: cv30_undilute2
29        use cv30_unsat_m, only: cv30_unsat
30        use cv30_yield_m, only: cv30_yield
31        USE dimphy, ONLY: klev, klon
32    
33        real, intent(in):: t1(klon, klev) ! temperature, in K
34        real, intent(in):: q1(klon, klev) ! specific humidity
35        real, intent(in):: qs1(klon, klev) ! saturation specific humidity
36    
37        real, intent(in):: u1(klon, klev), v1(klon, klev)
38        ! zonal wind and meridional velocity (m/s)
39    
40        real, intent(in):: p1(klon, klev) ! full level pressure, in hPa
41    
42        real, intent(in):: ph1(klon, klev + 1)
43        ! Half level pressure, in hPa. These pressures are defined at levels
44        ! intermediate between those of P1, T1, Q1 and QS1. The first
45        ! value of PH should be greater than (i.e. at a lower level than)
46        ! the first value of the array P1.
47    
48        integer, intent(out):: iflag1(:) ! (klon)
49        ! Flag for Emanuel conditions.
50    
51        ! 0: Moist convection occurs.
52    
53        ! 1: Moist convection occurs, but a CFL condition on the
54        ! subsidence warming is violated. This does not cause the scheme
55        ! to terminate.
56    
57        ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
58    
59        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
60    
61        ! 4: No moist convection; atmosphere is not unstable.
62    
63        ! 6: No moist convection because ihmin <= minorig.
64    
65        ! 7: No moist convection because unreasonable parcel level
66        ! temperature or specific humidity.
67    
68        ! 8: No moist convection: lifted condensation level is above the
69        ! 200 mbar level.
70    
71        ! 9: No moist convection: cloud base is higher than the level NL-1.
72    
73        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
74        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
75    
76        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
77        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
78    
79        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
80    
81        real, intent(out):: VPrecip1(klon, klev + 1)
82        ! vertical profile of convective precipitation (kg/m2/s)
83    
84        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
85    
86        real, intent(inout):: w01(klon, klev)
87        ! vertical velocity within adiabatic updraft
88    
89        integer, intent(out):: icb1(klon)
90        integer, intent(inout):: inb1(klon)
91        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93        real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
98    
99        real, intent(out):: qcondc1(klon, klev)
100        ! in-cloud mixing ratio of condensed water
101    
102        real, intent(out):: cape1(klon)
103        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
104        real, intent(inout):: mp1(klon, klev)
105    
106        ! Local:
107    
108        real da(klon, klev), phi(klon, klev, klev)
109        real, allocatable:: mp(:, :) ! (ncum, nl)
110        integer i, k, il
111        integer icbs1(klon)
112        real plcl1(klon)
113        real tnk1(klon)
114        real qnk1(klon)
115        real gznk1(klon)
116        real pbase1(klon)
117        real buoybase1(klon)
118    
119        real lv1(klon, nl)
120        ! specific latent heat of vaporization of water, in J kg-1
121    
122        real cpn1(klon, nl)
123        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
124    
125        real tv1(klon, klev)
126        real gz1(klon, klev)
127        real hm1(klon, klev)
128        real h1(klon, klev)
129        real tp1(klon, klev)
130        real tvp1(klon, klev)
131        real clw1(klon, klev)
132        real th1(klon, nl) ! potential temperature, in K
133        integer ncum
134    
135        ! Compressed fields:
136        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
137        integer, allocatable:: icb(:) ! (ncum)
138        integer nent(klon, klev)
139        integer icbs(klon)
140    
141        integer, allocatable:: inb(:) ! (ncum)
142        ! first model level above the level of neutral buoyancy of the
143        ! parcel (1 <= inb <= nl - 1)
144    
145        real, allocatable:: plcl(:) ! (ncum)
146        real tnk(klon), qnk(klon), gznk(klon)
147        real t(klon, klev), q(klon, klev), qs(klon, klev)
148        real u(klon, klev), v(klon, klev)
149        real gz(klon, klev), h(klon, klev)
150    
151        real, allocatable:: lv(:, :) ! (ncum, nl)
152        ! specific latent heat of vaporization of water, in J kg-1
153    
154        real, allocatable:: cpn(:, :) ! (ncum, nl)
155        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
156    
157        real p(klon, klev) ! pressure at full level, in hPa
158        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
159        real clw(klon, klev)
160        real pbase(klon), buoybase(klon)
161        real, allocatable:: th(:, :) ! (ncum, nl)
162        real tvp(klon, klev)
163        real sig(klon, klev), w0(klon, klev)
164        real hp(klon, klev), ep(klon, klev)
165        real buoy(klon, klev)
166        real cape(klon)
167        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
168        real uent(klon, klev, klev), vent(klon, klev, klev)
169        real ments(klon, klev, klev), qents(klon, klev, klev)
170        real sij(klon, klev, klev), elij(klon, klev, klev)
171        real qp(klon, klev), up(klon, klev), vp(klon, klev)
172        real wt(klon, klev), water(klon, klev)
173        real, allocatable:: evap(:, :) ! (ncum, nl)
174        real, allocatable:: b(:, :) ! (ncum, nl - 1)
175        real ft(klon, klev), fq(klon, klev)
176        real fu(klon, klev), fv(klon, klev)
177        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
178        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
179        real tps(klon, klev)
180        real precip(klon)
181        real VPrecip(klon, klev + 1)
182        real qcondc(klon, klev) ! cld
183    
184        !-------------------------------------------------------------------
185    
186        ! SET CONSTANTS AND PARAMETERS
187        CALL cv30_param
188    
189        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
190    
191        do k = 1, klev
192           do i = 1, klon
193              ft1(i, k) = 0.
194              fq1(i, k) = 0.
195              fu1(i, k) = 0.
196              fv1(i, k) = 0.
197              tvp1(i, k) = 0.
198              tp1(i, k) = 0.
199              clw1(i, k) = 0.
200              clw(i, k) = 0.
201              gz1(i, k) = 0.
202              VPrecip1(i, k) = 0.
203              Ma1(i, k) = 0.
204              upwd1(i, k) = 0.
205              dnwd1(i, k) = 0.
206              dnwd01(i, k) = 0.
207              qcondc1(i, k) = 0.
208           end do
209        end do
210    
211        precip1 = 0.
212        cape1 = 0.
213        VPrecip1(:, klev + 1) = 0.
214    
215        do il = 1, klon
216           sig1(il, klev) = sig1(il, klev) + 1.
217           sig1(il, klev) = min(sig1(il, klev), 12.1)
218        enddo
219    
220        CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
221        CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
222             gznk1, plcl1)
223        CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
224             icbs1)
225        CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
226             iflag1, sig1, w01)
227    
228        ncum = count(iflag1 == 0)
229    
230        IF (ncum > 0) THEN
231           ! Moist convective adjustment is necessary
232           allocate(idcum(ncum), plcl(ncum), inb(ncum))
233           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
234           allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl))
235           idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
236           CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, &
237                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
238                cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, &
239                tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
240                cpn, p, ph, tv, tp, tvp, clw, sig, w0)
241           CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
242                tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, &
243                clw, hp, ep, buoy)
244           CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, &
245                sig, w0, cape, m)
246           CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, &
247                hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
248                ments, qents)
249           CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), &
250                qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
251                ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), &
252                clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), &
253                dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), &
254                wt(:ncum, :nl), water(:ncum, :nl), evap, b)
255           CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, &
256                lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
257                wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
258                vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
259                fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
260           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
261           CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
262                fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
263                iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
264                Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
265        ENDIF
266    
267      end SUBROUTINE cv_driver
268    
269    end module cv_driver_m

Legend:
Removed from v.49  
changed lines
  Added in v.201

  ViewVC Help
Powered by ViewVC 1.1.21