/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 49 by guez, Wed Aug 24 11:43:14 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 205 by guez, Tue Jun 21 15:16:03 2016 UTC
# Line 1  Line 1 
1  !  module cv_driver_m
 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_driver.F,v 1.3 2005/04/15 12:36:17 lmdzadmin Exp $  
 !  
       SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con, &  
                          t1,q1,qs1,u1,v1,tra1, &  
                          p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1, &  
                          precip1,VPrecip1, &  
                          cbmf1,sig1,w01, &  
                          icb1,inb1, &  
                          delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1, &  
                          da1,phi1,mp1)  
 !  
       use dimens_m  
       use dimphy  
       implicit none  
 !  
 !.............................START PROLOGUE............................  
 !  
 ! PARAMETERS:  
 !      Name            Type         Usage            Description  
 !   ----------      ----------     -------  ----------------------------  
 !  
 !      len           Integer        Input        first (i) dimension  
 !      nd            Integer        Input        vertical (k) dimension  
 !      ndp1          Integer        Input        nd + 1  
 !      ntra          Integer        Input        number of tracors  
 !      iflag_con     Integer        Input        version of convect (3/4)  
 !      t1            Real           Input        temperature  
 !      q1            Real           Input        specific hum  
 !      qs1           Real           Input        sat specific hum  
 !      u1            Real           Input        u-wind  
 !      v1            Real           Input        v-wind  
 !      tra1          Real           Input        tracors  
 !      p1            Real           Input        full level pressure  
 !      ph1           Real           Input        half level pressure  
 !      iflag1        Integer        Output       flag for Emanuel conditions  
 !      ft1           Real           Output       temp tend  
 !      fq1           Real           Output       spec hum tend  
 !      fu1           Real           Output       u-wind tend  
 !      fv1           Real           Output       v-wind tend  
 !      ftra1         Real           Output       tracor tend  
 !      precip1       Real           Output       precipitation  
 !      VPrecip1      Real           Output       vertical profile of precipitations  
 !      cbmf1         Real           Output       cloud base mass flux  
 !      sig1          Real           In/Out       section adiabatic updraft  
 !      w01           Real           In/Out       vertical velocity within adiab updraft  
 !      delt          Real           Input        time step  
 !      Ma1           Real           Output       mass flux adiabatic updraft  
 !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
 !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
 !      dnwd01        Real           Output       unsaturated downward mass flux  
 !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
 !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
 !      cape1         Real           Output       CAPE  
 !  
 ! S. Bony, Mar 2002:  
 !     * Several modules corresponding to different physical processes  
 !     * Several versions of convect may be used:  
 !        - iflag_con=3: version lmd  (previously named convect3)  
 !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
 !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
 ! S. Bony, Oct 2002:  
 !     * Vectorization of convect3 (ie version lmd)  
 !  
 !..............................END PROLOGUE.............................  
 !  
 !  
   
       integer len  
       integer nd  
       integer ndp1  
       integer noff  
       integer, intent(in):: iflag_con  
       integer ntra  
       real t1(len,nd)  
       real q1(len,nd)  
       real qs1(len,nd)  
       real u1(len,nd)  
       real v1(len,nd)  
       real p1(len,nd)  
       real ph1(len,ndp1)  
       integer iflag1(len)  
       real ft1(len,nd)  
       real fq1(len,nd)  
       real fu1(len,nd)  
       real fv1(len,nd)  
       real precip1(len)  
       real cbmf1(len)  
       real VPrecip1(len,nd+1)  
       real Ma1(len,nd)  
       real upwd1(len,nd)  
       real dnwd1(len,nd)  
       real dnwd01(len,nd)  
   
       real qcondc1(len,nd)     ! cld  
       real wd1(len)            ! gust  
       real cape1(len)  
   
       real da1(len,nd),phi1(len,nd,nd),mp1(len,nd)  
       real da(len,nd),phi(len,nd,nd),mp(len,nd)  
       real, intent(in):: tra1(len,nd,ntra)  
       real ftra1(len,nd,ntra)  
   
       real, intent(in):: delt  
   
 !-------------------------------------------------------------------  
 ! --- ARGUMENTS  
 !-------------------------------------------------------------------  
 ! --- On input:  
 !  
 !  t:   Array of absolute temperature (K) of dimension ND, with first  
 !       index corresponding to lowest model level. Note that this array  
 !       will be altered by the subroutine if dry convective adjustment  
 !       occurs and if IPBL is not equal to 0.  
 !  
 !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  qs:  Array of saturation specific humidity of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
 !       index corresponding with the lowest model level. Defined at  
 !       same levels as T. Note that this array will be altered if  
 !       dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  v:   Same as u but for meridional velocity.  
 !  
 !  tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA),  
 !       where NTRA is the number of different tracers. If no  
 !       convective tracer transport is needed, define a dummy  
 !       input array of dimension (ND,1). Tracers are defined at  
 !       same vertical levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  p:   Array of pressure (mb) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T.  
 !  
 !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
 !       corresponding to lowest level. These pressures are defined at  
 !       levels intermediate between those of P, T, Q and QS. The first  
 !       value of PH should be greater than (i.e. at a lower level than)  
 !       the first value of the array P.  
 !  
 !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
 !       NL MUST be less than or equal to ND-1.  
 !  
 !  delt: The model time step (sec) between calls to CONVECT  
 !  
 !----------------------------------------------------------------------------  
 ! ---   On Output:  
 !  
 !  iflag: An output integer whose value denotes the following:  
 !       VALUE   INTERPRETATION  
 !       -----   --------------  
 !         0     Moist convection occurs.  
 !         1     Moist convection occurs, but a CFL condition  
 !               on the subsidence warming is violated. This  
 !               does not cause the scheme to terminate.  
 !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
 !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
 !         4     No moist convection; atmosphere is not  
 !               unstable  
 !         6     No moist convection because ihmin le minorig.  
 !         7     No moist convection because unreasonable  
 !               parcel level temperature or specific humidity.  
 !         8     No moist convection: lifted condensation  
 !               level is above the 200 mb level.  
 !         9     No moist convection: cloud base is higher  
 !               then the level NL-1.  
 !  
 !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
 !        grid levels as T, Q, QS and P.  
 !  
 !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
 !        defined at same grid levels as T, Q, QS and P.  
 !  
 !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
 !        defined at same grid levels as T.  
 !  
 !  fv:   Same as FU, but for forcing of meridional velocity.  
 !  
 !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
 !        second, defined at same levels as T. Dimensioned (ND,NTRA).  
 !  
 !  precip: Scalar convective precipitation rate (mm/day).  
 !  
 !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
 !  
 !  wd:   A convective downdraft velocity scale. For use in surface  
 !        flux parameterizations. See convect.ps file for details.  
 !  
 !  tprime: A convective downdraft temperature perturbation scale (K).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  qprime: A convective downdraft specific humidity  
 !          perturbation scale (gm/gm).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
 !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
 !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
 !        by the calling program between calls to CONVECT.  
 !  
 !  det:   Array of detrainment mass flux of dimension ND.  
 !  
 !-------------------------------------------------------------------  
 !  
 !  Local arrays  
 !  
   
       integer i,k,n,il,j  
       integer icbmax  
       integer nk1(klon)  
       integer icb1(klon)  
       integer inb1(klon)  
       integer icbs1(klon)  
   
       real plcl1(klon)  
       real tnk1(klon)  
       real qnk1(klon)  
       real gznk1(klon)  
       real pnk1(klon)  
       real qsnk1(klon)  
       real pbase1(klon)  
       real buoybase1(klon)  
   
       real lv1(klon,klev)  
       real cpn1(klon,klev)  
       real tv1(klon,klev)  
       real gz1(klon,klev)  
       real hm1(klon,klev)  
       real h1(klon,klev)  
       real tp1(klon,klev)  
       real tvp1(klon,klev)  
       real clw1(klon,klev)  
       real sig1(klon,klev)  
       real w01(klon,klev)  
       real th1(klon,klev)  
 !  
       integer ncum  
 !  
 ! (local) compressed fields:  
 !  
       integer nloc  
       parameter (nloc=klon) ! pour l'instant  
   
       integer idcum(nloc)  
       integer iflag(nloc),nk(nloc),icb(nloc)  
       integer nent(nloc,klev)  
       integer icbs(nloc)  
       integer inb(nloc), inbis(nloc)  
   
       real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc)  
       real t(nloc,klev),q(nloc,klev),qs(nloc,klev)  
       real u(nloc,klev),v(nloc,klev)  
       real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev)  
       real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev)  
       real clw(nloc,klev)  
       real dph(nloc,klev)  
       real pbase(nloc), buoybase(nloc), th(nloc,klev)  
       real tvp(nloc,klev)  
       real sig(nloc,klev), w0(nloc,klev)  
       real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev)  
       real frac(nloc), buoy(nloc,klev)  
       real cape(nloc)  
       real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev)  
       real uent(nloc,klev,klev), vent(nloc,klev,klev)  
       real ments(nloc,klev,klev), qents(nloc,klev,klev)  
       real sij(nloc,klev,klev), elij(nloc,klev,klev)  
       real qp(nloc,klev), up(nloc,klev), vp(nloc,klev)  
       real wt(nloc,klev), water(nloc,klev), evap(nloc,klev)  
       real b(nloc,klev), ft(nloc,klev), fq(nloc,klev)  
       real fu(nloc,klev), fv(nloc,klev)  
       real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev)  
       real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev)  
       real tps(nloc,klev), qprime(nloc), tprime(nloc)  
       real precip(nloc)  
       real VPrecip(nloc,klev+1)  
       real tra(nloc,klev,ntra), trap(nloc,klev,ntra)  
       real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra)  
       real qcondc(nloc,klev)  ! cld  
       real wd(nloc)           ! gust  
   
 !-------------------------------------------------------------------  
 ! --- SET CONSTANTS AND PARAMETERS  
 !-------------------------------------------------------------------  
   
 ! -- set simulation flags:  
 !   (common cvflag)  
   
        CALL cv_flag  
   
 ! -- set thermodynamical constants:  
 !     (common cvthermo)  
   
        CALL cv_thermo(iflag_con)  
   
 ! -- set convect parameters  
 !  
 !     includes microphysical parameters and parameters that  
 !     control the rate of approach to quasi-equilibrium)  
 !     (common cvparam)  
   
       if (iflag_con.eq.3) then  
        CALL cv3_param(nd,delt)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
       endif  
   
 !---------------------------------------------------------------------  
 ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
 !---------------------------------------------------------------------  
   
       do 20 k=1,nd  
         do 10 i=1,len  
          ft1(i,k)=0.0  
          fq1(i,k)=0.0  
          fu1(i,k)=0.0  
          fv1(i,k)=0.0  
          tvp1(i,k)=0.0  
          tp1(i,k)=0.0  
          clw1(i,k)=0.0  
 !ym  
          clw(i,k)=0.0  
          gz1(i,k) = 0.  
          VPrecip1(i,k) = 0.  
          Ma1(i,k)=0.0  
          upwd1(i,k)=0.0  
          dnwd1(i,k)=0.0  
          dnwd01(i,k)=0.0  
          qcondc1(i,k)=0.0  
  10     continue  
  20   continue  
   
       do 30 j=1,ntra  
        do 31 k=1,nd  
         do 32 i=1,len  
          ftra1(i,k,j)=0.0  
  32     continue  
  31    continue  
  30   continue  
   
       do 60 i=1,len  
         precip1(i)=0.0  
         iflag1(i)=0  
         wd1(i)=0.0  
         cape1(i)=0.0  
         VPrecip1(i,nd+1)=0.0  
  60   continue  
   
       if (iflag_con.eq.3) then  
         do il=1,len  
          sig1(il,nd)=sig1(il,nd)+1.  
          sig1(il,nd)=amin1(sig1(il,nd),12.1)  
         enddo  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_prelim(len,nd,ndp1,t1,q1,p1,ph1             &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1,th1)! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1 &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CONVECTIVE FEED  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1            &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1 &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
 ! (up through ICB for convect4, up through ICB+1 for convect3)  
 !     Calculates the lifted parcel virtual temperature at nk, the  
 !     actual temperature, and the adiabatic liquid water content.  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1   &  
                               ,tp1,tvp1,clw1,icbs1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax &  
                               ,tp1,tvp1,clw1)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- TRIGGERING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1       &  
                        ,pbase1,buoybase1,iflag1,sig1,w01) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1)  
       endif  
   
 !=====================================================================  
 ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
 !=====================================================================  
   
       ncum=0  
       do 400 i=1,len  
         if(iflag1(i).eq.0)then  
            ncum=ncum+1  
            idcum(ncum)=i  
         endif  
  400  continue  
   
 !       print*,'klon, ncum = ',len,ncum  
   
       IF (ncum.gt.0) THEN  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- COMPRESS THE FIELDS  
 !        (-> vectorization over convective gridpoints)  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_compress( len,nloc,ncum,nd,ntra &  
           ,iflag1,nk1,icb1,icbs1 &  
           ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 &  
           ,t1,q1,qs1,u1,v1,gz1,th1 &  
           ,tra1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  &  
           ,sig1,w01 &  
           ,iflag,nk,icb,icbs &  
           ,plcl,tnk,qnk,gznk,pbase,buoybase &  
           ,t,q,qs,u,v,gz,th &  
           ,tra &  
           ,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,sig,w0  )  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_compress( len,nloc,ncum,nd &  
           ,iflag1,nk1,icb1 &  
           ,cbmf1,plcl1,tnk1,qnk1,gznk1 &  
           ,t1,q1,qs1,u1,v1,gz1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 &  
           ,iflag,nk,icb &  
           ,cbmf,plcl,tnk,qnk,gznk &  
           ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,dph )  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
 ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
 ! ---   &  
 ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
 ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
 ! ---   &  
 ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute2(nloc,ncum,nd,icb,icbs,nk         &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,h,tv,lv,pbase,buoybase,plcl &  
                               ,inb,tp,tvp,clw,hp,ep,sigp,buoy) !na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute2(nloc,ncum,nd,icb,nk &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,dph,h,tv,lv &  
                    ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- CLOSURE  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_closure(nloc,ncum,nd,icb,inb               &  
                              ,pbase,p,ph,tv,buoy &  
                              ,sig,w0,cape,m) ! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_closure(nloc,ncum,nd,nk,icb &  
                       ,tv,tvp,p,ph,dph,plcl,cpn &  
                       ,iflag,cbmf)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- MIXING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb     &  
                            ,ph,t,q,qs,u,v,tra,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,m,sig &  
        ,ment,qent,uent,vent, nent,sij,elij,ments,qents,traent)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis &  
                            ,ph,t,q,qs,u,v,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,cbmf &  
                            ,m,ment,qent,uent,vent,nent,sij,elij)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_unsat(nloc,ncum,nd,nd,ntra,icb,inb     &  
                      ,t,q,qs,gz,u,v,tra,p,ph &  
                      ,th,tv,lv,cpn,ep,sigp,clw &  
                      ,m,ment,elij,delt,plcl &  
                 ,mp,qp,up,vp,trap,wt,water,evap,b)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph &  
                          ,h,lv,ep,sigp,clw,m,ment,elij &  
                          ,iflag,mp,qp,up,vp,wt,water,evap)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- YIELD  
 !     (tendencies, precipitation, variables of interface with other  
 !      processes, etc)  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_yield(nloc,ncum,nd,nd,ntra             &  
                            ,icb,inb,delt &  
                            ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th &  
                            ,ep,clw,m,tp,mp,qp,up,vp,trap &  
                            ,wt,water,evap,b &  
                            ,ment,qent,uent,vent,nent,elij,traent,sig &  
                            ,tv,tvp &  
                            ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra &  
                            ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt &  
                     ,t,q,u,v,gz,p,ph,h,hp,lv,cpn &  
                     ,ep,clw,frac,m,mp,qp,up,vp &  
                     ,wt,water,evap &  
                     ,ment,qent,uent,vent,nent,elij &  
                     ,tv,tvp &  
                     ,iflag,wd,qprime,tprime &  
                     ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- passive tracers  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_tracer(nloc,len,ncum,nd,nd, &  
                         ment,sij,da,phi)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- UNCOMPRESS THE FIELDS  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! set iflag1 =42 for non convective points  
       do  i=1,len  
         iflag1(i)=42  
       end do  
 !  
       if (iflag_con.eq.3) then  
        CALL cv3_uncompress(nloc,len,ncum,nd,ntra,idcum &  
                 ,iflag &  
                 ,precip,VPrecip,sig,w0 &  
                 ,ft,fq,fu,fv,ftra &  
                 ,inb  &  
                 ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape &  
                 ,da,phi,mp &  
                 ,iflag1 &  
                 ,precip1,VPrecip1,sig1,w01 &  
                 ,ft1,fq1,fu1,fv1,ftra1 &  
                 ,inb1 &  
                 ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1  &  
                 ,da1,phi1,mp1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_uncompress(nloc,len,ncum,nd,idcum &  
                 ,iflag &  
                 ,precip,cbmf &  
                 ,ft,fq,fu,fv &  
                 ,Ma,qcondc             &  
                 ,iflag1 &  
                 ,precip1,cbmf1 &  
                 ,ft1,fq1,fu1,fv1 &  
                 ,Ma1,qcondc1 )  
       endif  
2    
3        ENDIF ! ncum>0    implicit none
4    
5  9999  continue  contains
6    
7        return    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8        end         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9           qcondc1, cape1, da1, phi1, mp1)
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        use comconst, only: dtphys
18        use cv30_closure_m, only: cv30_closure
19        use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21        use cv30_mixing_m, only: cv30_mixing
22        use cv30_param_m, only: cv30_param, nl
23        use cv30_prelim_m, only: cv30_prelim
24        use cv30_tracer_m, only: cv30_tracer
25        use cv30_trigger_m, only: cv30_trigger
26        use cv30_uncompress_m, only: cv30_uncompress
27        use cv30_undilute1_m, only: cv30_undilute1
28        use cv30_undilute2_m, only: cv30_undilute2
29        use cv30_unsat_m, only: cv30_unsat
30        use cv30_yield_m, only: cv30_yield
31        USE dimphy, ONLY: klev, klon
32    
33        real, intent(in):: t1(klon, klev) ! temperature, in K
34        real, intent(in):: q1(klon, klev) ! specific humidity
35        real, intent(in):: qs1(klon, klev) ! saturation specific humidity
36    
37        real, intent(in):: u1(klon, klev), v1(klon, klev)
38        ! zonal wind and meridional velocity (m/s)
39    
40        real, intent(in):: p1(klon, klev) ! full level pressure, in hPa
41    
42        real, intent(in):: ph1(klon, klev + 1)
43        ! Half level pressure, in hPa. These pressures are defined at levels
44        ! intermediate between those of P1, T1, Q1 and QS1. The first
45        ! value of PH should be greater than (i.e. at a lower level than)
46        ! the first value of the array P1.
47    
48        integer, intent(out):: iflag1(:) ! (klon)
49        ! Flag for Emanuel conditions.
50    
51        ! 0: Moist convection occurs.
52    
53        ! 1: Moist convection occurs, but a CFL condition on the
54        ! subsidence warming is violated. This does not cause the scheme
55        ! to terminate.
56    
57        ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
58    
59        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
60    
61        ! 4: No moist convection; atmosphere is not unstable.
62    
63        ! 6: No moist convection because ihmin <= minorig.
64    
65        ! 7: No moist convection because unreasonable parcel level
66        ! temperature or specific humidity.
67    
68        ! 8: No moist convection: lifted condensation level is above the
69        ! 200 mbar level.
70    
71        ! 9: No moist convection: cloud base is higher than the level NL-1.
72    
73        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
74        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
75    
76        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
77        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
78    
79        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
80    
81        real, intent(out):: VPrecip1(klon, klev + 1)
82        ! vertical profile of convective precipitation (kg/m2/s)
83    
84        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
85    
86        real, intent(inout):: w01(klon, klev)
87        ! vertical velocity within adiabatic updraft
88    
89        integer, intent(out):: icb1(klon)
90        integer, intent(inout):: inb1(klon)
91        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93        real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97    
98        real, intent(out):: qcondc1(klon, klev)
99        ! in-cloud mixing ratio of condensed water
100    
101        real, intent(out):: cape1(klon)
102        real, intent(out):: da1(:, :) ! (klon, klev)
103        real, intent(out):: phi1(:, :, :) ! (klon, klev, klev)
104    
105        real, intent(out):: mp1(:, :) ! (klon, klev) Mass flux of the
106        ! unsaturated downdraft, defined positive downward, in kg m-2
107        ! s-1. M_p in Emanuel (1991 928).
108    
109        ! Local:
110    
111        real da(klon, klev), phi(klon, klev, klev)
112    
113        real, allocatable:: mp(:, :) ! (ncum, nl) Mass flux of the
114        ! unsaturated downdraft, defined positive downward, in kg m-2
115        ! s-1. M_p in Emanuel (1991 928).
116    
117        integer i, k, il
118        integer icbs1(klon)
119        real plcl1(klon)
120        real tnk1(klon)
121        real qnk1(klon)
122        real gznk1(klon)
123        real pbase1(klon)
124        real buoybase1(klon)
125    
126        real lv1(klon, nl)
127        ! specific latent heat of vaporization of water, in J kg-1
128    
129        real cpn1(klon, nl)
130        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
131    
132        real tv1(klon, klev)
133        real gz1(klon, klev)
134        real hm1(klon, klev)
135        real h1(klon, klev)
136        real tp1(klon, klev)
137        real tvp1(klon, klev)
138        real clw1(klon, klev)
139        real th1(klon, nl) ! potential temperature, in K
140        integer ncum
141    
142        ! Compressed fields:
143        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
144        integer, allocatable:: icb(:) ! (ncum)
145        integer nent(klon, klev)
146        integer icbs(klon)
147    
148        integer, allocatable:: inb(:) ! (ncum)
149        ! first model level above the level of neutral buoyancy of the
150        ! parcel (1 <= inb <= nl - 1)
151    
152        real, allocatable:: plcl(:) ! (ncum)
153        real tnk(klon), qnk(klon), gznk(klon)
154        real t(klon, klev), q(klon, klev), qs(klon, klev)
155        real u(klon, klev), v(klon, klev)
156        real gz(klon, klev), h(klon, klev)
157    
158        real, allocatable:: lv(:, :) ! (ncum, nl)
159        ! specific latent heat of vaporization of water, in J kg-1
160    
161        real, allocatable:: cpn(:, :) ! (ncum, nl)
162        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
163    
164        real p(klon, klev) ! pressure at full level, in hPa
165        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
166        real clw(klon, klev)
167        real pbase(klon), buoybase(klon)
168        real, allocatable:: th(:, :) ! (ncum, nl)
169        real tvp(klon, klev)
170        real sig(klon, klev), w0(klon, klev)
171        real hp(klon, klev), ep(klon, klev)
172        real buoy(klon, klev)
173        real cape(klon)
174        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
175        real uent(klon, klev, klev), vent(klon, klev, klev)
176        real ments(klon, klev, klev), qents(klon, klev, klev)
177        real sij(klon, klev, klev), elij(klon, klev, klev)
178        real qp(klon, klev), up(klon, klev), vp(klon, klev)
179        real wt(klon, klev), water(klon, klev)
180        real, allocatable:: evap(:, :) ! (ncum, nl)
181        real, allocatable:: b(:, :) ! (ncum, nl - 1)
182        real ft(klon, klev), fq(klon, klev)
183        real fu(klon, klev), fv(klon, klev)
184        real upwd(klon, klev), dnwd(klon, klev)
185        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
186        real tps(klon, klev)
187        real precip(klon)
188        real VPrecip(klon, klev + 1)
189        real qcondc(klon, klev) ! cld
190    
191        !-------------------------------------------------------------------
192    
193        ! SET CONSTANTS AND PARAMETERS
194        CALL cv30_param
195    
196        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
197    
198        da1 = 0.
199        mp1 = 0.
200        phi1 = 0.
201    
202        do k = 1, klev
203           do i = 1, klon
204              ft1(i, k) = 0.
205              fq1(i, k) = 0.
206              fu1(i, k) = 0.
207              fv1(i, k) = 0.
208              tvp1(i, k) = 0.
209              tp1(i, k) = 0.
210              clw1(i, k) = 0.
211              clw(i, k) = 0.
212              gz1(i, k) = 0.
213              VPrecip1(i, k) = 0.
214              Ma1(i, k) = 0.
215              upwd1(i, k) = 0.
216              dnwd1(i, k) = 0.
217              qcondc1(i, k) = 0.
218           end do
219        end do
220    
221        precip1 = 0.
222        cape1 = 0.
223        VPrecip1(:, klev + 1) = 0.
224    
225        do il = 1, klon
226           sig1(il, klev) = sig1(il, klev) + 1.
227           sig1(il, klev) = min(sig1(il, klev), 12.1)
228        enddo
229    
230        CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
231        CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
232             gznk1, plcl1)
233        CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
234             icbs1)
235        CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
236             iflag1, sig1, w01)
237    
238        ncum = count(iflag1 == 0)
239    
240        IF (ncum > 0) THEN
241           ! Moist convective adjustment is necessary
242           allocate(idcum(ncum), plcl(ncum), inb(ncum))
243           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
244           allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl))
245           idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
246           CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, &
247                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
248                cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, &
249                tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
250                cpn, p, ph, tv, tp, tvp, clw, sig, w0)
251           CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
252                tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, &
253                clw, hp, ep, buoy)
254           CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, &
255                sig, w0, cape, m)
256           CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, &
257                hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
258                ments, qents)
259           CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), &
260                qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
261                ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), &
262                clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), &
263                dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), &
264                wt(:ncum, :nl), water(:ncum, :nl), evap, b)
265           CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, &
266                lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
267                wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
268                vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
269                fu, fv, upwd, dnwd, ma, mike, tls, tps, qcondc)
270           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
271           CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
272                fu, fv, inb, Ma, upwd, dnwd, qcondc, cape, da, phi, mp, iflag1, &
273                precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, Ma1, &
274                upwd1, dnwd1, qcondc1, cape1, da1, phi1, mp1)
275        ENDIF
276    
277      end SUBROUTINE cv_driver
278    
279    end module cv_driver_m

Legend:
Removed from v.49  
changed lines
  Added in v.205

  ViewVC Help
Powered by ViewVC 1.1.21