/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f90 revision 76 by guez, Fri Nov 15 18:45:49 2013 UTC trunk/Sources/phylmd/cv_driver.f revision 196 by guez, Mon May 23 13:50:39 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd01, qcondc1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
     ! S. Bony, Mar 2002:  
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use comconst, only: dtphys
18      ! - iflag_con=3: version lmd  (previously named convect3)      use cv30_closure_m, only: cv30_closure
19      ! - iflag_con=4: version 4.3b (vect. version, previously convect1/2)      use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21        use cv30_mixing_m, only: cv30_mixing
22        use cv30_param_m, only: cv30_param, nl
23        use cv30_prelim_m, only: cv30_prelim
24        use cv30_tracer_m, only: cv30_tracer
25        use cv30_trigger_m, only: cv30_trigger
26        use cv30_uncompress_m, only: cv30_uncompress
27        use cv30_undilute1_m, only: cv30_undilute1
28        use cv30_undilute2_m, only: cv30_undilute2
29        use cv30_unsat_m, only: cv30_unsat
30        use cv30_yield_m, only: cv30_yield
31        use cv_thermo_m, only: cv_thermo
32        USE dimphy, ONLY: klev, klon
33    
34      ! Plus tard :      real, intent(in):: t1(klon, klev) ! temperature (K)
35      ! - iflag_con=5: version lmd with ice (previously named convectg)      real, intent(in):: q1(klon, klev) ! specific humidity
36        real, intent(in):: qs1(klon, klev) ! saturation specific humidity
37    
38      ! S. Bony, Oct 2002:      real, intent(in):: u1(klon, klev), v1(klon, klev)
39      ! Vectorization of convect3 (ie version lmd)      ! zonal wind and meridional velocity (m/s)
40    
41      use clesphys2, only: iflag_con      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
     use cv3_param_m, only: cv3_param  
     USE dimphy, ONLY: klev, klon  
42    
43      ! PARAMETERS:      real, intent(in):: ph1(klon, klev + 1)
44      !      Name            Type         Usage            Description      ! Half level pressure (hPa). These pressures are defined at levels
45      !   ----------      ----------     -------  ----------------------------      ! intermediate between those of P1, T1, Q1 and QS1. The first
46        ! value of PH should be greater than (i.e. at a lower level than)
47      !      len           Integer        Input        first (i) dimension      ! the first value of the array P1.
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     integer len  
     integer nd  
     integer ndp1  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real ftra1(len, nd, ntra)  
     real precip1(len)  
     real VPrecip1(len, nd+1)  
     real cbmf1(len)  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
48    
49      real, intent(inout):: w01(klon, klev)      integer, intent(out):: iflag1(:) ! (klon)
50      ! vertical velocity within adiabatic updraft      ! Flag for Emanuel conditions.
51    
52      integer icb1(klon)      ! 0: Moist convection occurs.
     integer inb1(klon)  
     real, intent(in):: delt  
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
53    
54      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      ! 1: Moist convection occurs, but a CFL condition on the
55        ! subsidence warming is violated. This does not cause the scheme
56        ! to terminate.
57    
58      !-------------------------------------------------------------------      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
     ! --- ARGUMENTS  
     !-------------------------------------------------------------------  
     ! --- On input:  
59    
60      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
61    
62      !  det:   Array of detrainment mass flux of dimension ND.      ! 4: No moist convection; atmosphere is not unstable.
63    
64      !-------------------------------------------------------------------      ! 6: No moist convection because ihmin <= minorig.
65    
66        ! 7: No moist convection because unreasonable parcel level
67        ! temperature or specific humidity.
68    
69        ! 8: No moist convection: lifted condensation level is above the
70        ! 200 mbar level.
71    
72        ! 9: No moist convection: cloud base is higher than the level NL-1.
73    
74        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
75        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
76    
77        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
78        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
79    
80        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
81    
82        real, intent(out):: VPrecip1(klon, klev + 1)
83        ! vertical profile of convective precipitation (kg/m2/s)
84    
85        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
86    
87        real, intent(inout):: w01(klon, klev)
88        ! vertical velocity within adiabatic updraft
89    
90        integer, intent(out):: icb1(klon)
91        integer, intent(inout):: inb1(klon)
92        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94        real, intent(out):: upwd1(klon, klev)
95        ! total upward mass flux (adiabatic + mixed)
96    
97        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
99    
100        real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
102    
103      !  Local arrays      real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107      integer noff      ! Local:
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
108    
109      integer i, k, n, il, j      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110      integer icbmax      integer i, k, il
111      integer nk1(klon)      integer nk1(klon)
112      integer icbs1(klon)      integer icbs1(klon)
   
113      real plcl1(klon)      real plcl1(klon)
114      real tnk1(klon)      real tnk1(klon)
115      real qnk1(klon)      real qnk1(klon)
116      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
117      real pbase1(klon)      real pbase1(klon)
118      real buoybase1(klon)      real buoybase1(klon)
   
119      real lv1(klon, klev)      real lv1(klon, klev)
120      real cpn1(klon, klev)      real cpn1(klon, klev)
121      real tv1(klon, klev)      real tv1(klon, klev)
# Line 241  contains Line 126  contains
126      real tvp1(klon, klev)      real tvp1(klon, klev)
127      real clw1(klon, klev)      real clw1(klon, klev)
128      real th1(klon, klev)      real th1(klon, klev)
   
129      integer ncum      integer ncum
130    
131      ! (local) compressed fields:      ! Compressed fields:
132        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
133        integer nk(klon)
134        integer, allocatable:: icb(:) ! (ncum)
135        integer nent(klon, klev)
136        integer icbs(klon)
137        integer inb(klon)
138        real, allocatable:: plcl(:) ! (ncum)
139        real tnk(klon), qnk(klon), gznk(klon)
140        real t(klon, klev), q(klon, klev), qs(klon, klev)
141        real u(klon, klev), v(klon, klev)
142        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
143        real p(klon, klev) ! pressure at full level, in hPa
144        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
145        real clw(klon, klev)
146        real pbase(klon), buoybase(klon), th(klon, klev)
147        real tvp(klon, klev)
148        real sig(klon, klev), w0(klon, klev)
149        real hp(klon, klev), ep(klon, klev)
150        real buoy(klon, klev)
151        real cape(klon)
152        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
153        real uent(klon, klev, klev), vent(klon, klev, klev)
154        real ments(klon, klev, klev), qents(klon, klev, klev)
155        real sij(klon, klev, klev), elij(klon, klev, klev)
156        real qp(klon, klev), up(klon, klev), vp(klon, klev)
157        real wt(klon, klev), water(klon, klev)
158        real, allocatable:: evap(:, :) ! (ncum, nl)
159        real, allocatable:: b(:, :) ! (ncum, nl - 1)
160        real ft(klon, klev), fq(klon, klev)
161        real fu(klon, klev), fv(klon, klev)
162        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
163        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
164        real tps(klon, klev)
165        real precip(klon)
166        real VPrecip(klon, klev + 1)
167        real qcondc(klon, klev) ! cld
168    
     integer nloc  
     parameter (nloc=klon) ! pour l'instant  
   
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
169      !-------------------------------------------------------------------      !-------------------------------------------------------------------
170    
171      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
   
172      CALL cv_thermo      CALL cv_thermo
173        CALL cv30_param
174    
175      ! -- set convect parameters      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
176    
177      !     includes microphysical parameters and parameters that      do k = 1, klev
178      !     control the rate of approach to quasi-equilibrium)         do i = 1, klon
179      !     (common cvparam)            ft1(i, k) = 0.
180              fq1(i, k) = 0.
181      if (iflag_con.eq.3) then            fu1(i, k) = 0.
182         CALL cv3_param(nd, delt)            fv1(i, k) = 0.
183      endif            tvp1(i, k) = 0.
184              tp1(i, k) = 0.
185      if (iflag_con.eq.4) then            clw1(i, k) = 0.
186         CALL cv_param(nd)            clw(i, k) = 0.
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
187            gz1(i, k) = 0.            gz1(i, k) = 0.
188            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
189            Ma1(i, k)=0.0            Ma1(i, k) = 0.
190            upwd1(i, k)=0.0            upwd1(i, k) = 0.
191            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
192            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
193            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
        end do  
     end do  
   
     do  j=1, ntra  
        do  k=1, nd  
           do  i=1, len  
              ftra1(i, k, j)=0.0  
           end do  
194         end do         end do
195      end do      end do
196    
197      do  i=1, len      precip1 = 0.
198         precip1(i)=0.0      cape1 = 0.
199         iflag1(i)=0      VPrecip1(:, klev + 1) = 0.
200         wd1(i)=0.0  
201         cape1(i)=0.0      do il = 1, klon
202         VPrecip1(i, nd+1)=0.0         sig1(il, klev) = sig1(il, klev) + 1.
203      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
204        enddo
205      if (iflag_con.eq.3) then  
206         do il=1, len      CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
207            sig1(il, nd)=sig1(il, nd) + 1.           gz1, h1, hm1, th1)
208            sig1(il, nd) = min(sig1(il, nd), 12.1)      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, nk1, icb1, iflag1, tnk1, qnk1, &
209         enddo           gznk1, plcl1)
210      endif      CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, tp1, tvp1, &
211             clw1, icbs1)
212      !--------------------------------------------------------------------      CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
213      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY           iflag1, sig1, w01)
214      !--------------------------------------------------------------------  
215        ncum = count(iflag1 == 0)
216      if (iflag_con.eq.3) then  
217         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &      IF (ncum > 0) THEN
218              h1, hm1, th1)! nd->na         ! Moist convective adjustment is necessary
219      endif         allocate(idcum(ncum), plcl(ncum))
220           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
221      if (iflag_con.eq.4) then         idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
222         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &         CALL cv30_compress(iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, gznk1, &
223              , lv1, cpn1, tv1, gz1, h1, hm1)              pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, cpn1, &
224      endif              p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, nk, icb, icbs, plcl, &
225                tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
226      !--------------------------------------------------------------------              cpn, p, ph, tv, tp, tvp, clw, sig, w0)
227      ! --- CONVECTIVE FEED         CALL cv30_undilute2(icb, icbs(:ncum), nk, tnk, qnk, gznk, t, qs, gz, &
228      !--------------------------------------------------------------------              p, h, tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb(:ncum), &
229                tp, tvp, clw, hp, ep, buoy)
230      if (iflag_con.eq.3) then         CALL cv30_closure(icb, inb(:ncum), pbase, p, ph(:ncum, :), tv, buoy, &
231         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &              sig, w0, cape, m)
232              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na         CALL cv30_mixing(icb, nk(:ncum), inb(:ncum), t, q, qs, u, v, h, lv, &
233      endif              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
234                ments, qents)
235      if (iflag_con.eq.4) then         CALL cv30_unsat(icb, inb(:ncum), t(:ncum, :nl), q(:ncum, :nl), &
236         CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &              qs(:ncum, :nl), gz, u, v, p, ph(:ncum, :), th(:ncum, :nl - 1), &
237              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)              tv, lv, cpn, ep(:ncum, :), clw(:ncum, :), m(:ncum, :), &
238      endif              ment(:ncum, :, :), elij(:ncum, :, :), dtphys, plcl, mp, &
239                qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt(:ncum, :nl), &
240      !--------------------------------------------------------------------              water(:ncum, :nl), evap, b)
241      ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part         CALL cv30_yield(icb, inb(:ncum), dtphys, t, q, u, v, gz, p, ph, h, hp, &
242      ! (up through ICB for convect4, up through ICB+1 for convect3)              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
243      !     Calculates the lifted parcel virtual temperature at nk, the              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
244      !     actual temperature, and the adiabatic liquid water content.              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
245      !--------------------------------------------------------------------              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
246           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
247      if (iflag_con.eq.3) then         CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
248         CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &              fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
249              , tp1, tvp1, clw1, icbs1) ! nd->na              iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
250      endif              Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
251        ENDIF
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
        endif  
     end do  
   
     !       print*, 'klon, ncum = ', len, ncum  
   
     IF (ncum.gt.0) THEN  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- COMPRESS THE FIELDS  
        !        (-> vectorization over convective gridpoints)  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, &  
                icbs1, plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, &  
                qs1, u1, v1, gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, &  
                tvp1, clw1, sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, &  
                gznk, pbase, buoybase, t, q, qs, u, v, gz, th, tra, h, lv, &  
                cpn, p, ph, tv, tp, tvp, clw, sig, w0)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_compress( len, nloc, ncum, nd &  
                , iflag1, nk1, icb1 &  
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
252    
253    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
254    

Legend:
Removed from v.76  
changed lines
  Added in v.196

  ViewVC Help
Powered by ViewVC 1.1.21