--- trunk/phylmd/cv_driver.f 2014/03/05 14:57:53 82 +++ trunk/Sources/phylmd/cv_driver.f 2016/06/21 15:16:03 205 @@ -4,235 +4,131 @@ contains - SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, & - ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, & - sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, & - cape1, da1, phi1, mp1) - - ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17 + SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, & + fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, & + qcondc1, cape1, da1, phi1, mp1) + ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17 ! Main driver for convection - - ! S. Bony, Mar 2002: + ! Author: S. Bony, March 2002 ! Several modules corresponding to different physical processes - ! Several versions of convect may be used: - ! - iflag_con=3: version lmd (previously named convect3) - ! - iflag_con=4: version 4.3b (vect. version, previously convect1/2) + use comconst, only: dtphys + use cv30_closure_m, only: cv30_closure + use cv30_compress_m, only: cv30_compress + use cv30_feed_m, only: cv30_feed + use cv30_mixing_m, only: cv30_mixing + use cv30_param_m, only: cv30_param, nl + use cv30_prelim_m, only: cv30_prelim + use cv30_tracer_m, only: cv30_tracer + use cv30_trigger_m, only: cv30_trigger + use cv30_uncompress_m, only: cv30_uncompress + use cv30_undilute1_m, only: cv30_undilute1 + use cv30_undilute2_m, only: cv30_undilute2 + use cv30_unsat_m, only: cv30_unsat + use cv30_yield_m, only: cv30_yield + USE dimphy, ONLY: klev, klon + + real, intent(in):: t1(klon, klev) ! temperature, in K + real, intent(in):: q1(klon, klev) ! specific humidity + real, intent(in):: qs1(klon, klev) ! saturation specific humidity - ! Plus tard : - ! - iflag_con=5: version lmd with ice (previously named convectg) + real, intent(in):: u1(klon, klev), v1(klon, klev) + ! zonal wind and meridional velocity (m/s) - ! S. Bony, Oct 2002: - ! Vectorization of convect3 (ie version lmd) + real, intent(in):: p1(klon, klev) ! full level pressure, in hPa - use clesphys2, only: iflag_con - use cv3_param_m, only: cv3_param - USE dimphy, ONLY: klev, klon + real, intent(in):: ph1(klon, klev + 1) + ! Half level pressure, in hPa. These pressures are defined at levels + ! intermediate between those of P1, T1, Q1 and QS1. The first + ! value of PH should be greater than (i.e. at a lower level than) + ! the first value of the array P1. + + integer, intent(out):: iflag1(:) ! (klon) + ! Flag for Emanuel conditions. + + ! 0: Moist convection occurs. + + ! 1: Moist convection occurs, but a CFL condition on the + ! subsidence warming is violated. This does not cause the scheme + ! to terminate. + + ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4 + + ! 3: No moist convection because new cbmf is 0 and old cbmf is 0. + + ! 4: No moist convection; atmosphere is not unstable. + + ! 6: No moist convection because ihmin <= minorig. - ! PARAMETERS: - ! Name Type Usage Description - ! ---------- ---------- ------- ---------------------------- - - ! len Integer Input first (i) dimension - ! nd Integer Input vertical (k) dimension - ! ndp1 Integer Input nd + 1 - ! ntra Integer Input number of tracors - ! t1 Real Input temperature - ! q1 Real Input specific hum - ! qs1 Real Input sat specific hum - ! u1 Real Input u-wind - ! v1 Real Input v-wind - ! tra1 Real Input tracors - ! p1 Real Input full level pressure - ! ph1 Real Input half level pressure - ! iflag1 Integer Output flag for Emanuel conditions - ! ft1 Real Output temp tend - ! fq1 Real Output spec hum tend - ! fu1 Real Output u-wind tend - ! fv1 Real Output v-wind tend - ! ftra1 Real Output tracor tend - ! precip1 Real Output precipitation - ! VPrecip1 Real Output vertical profile of precipitations - ! cbmf1 Real Output cloud base mass flux - ! delt Real Input time step - ! Ma1 Real Output mass flux adiabatic updraft - ! qcondc1 Real Output in-cld mixing ratio of condensed water - ! wd1 Real Output downdraft velocity scale for sfc fluxes - ! cape1 Real Output CAPE - - integer len - integer nd - integer ndp1 - integer, intent(in):: ntra - real, intent(in):: t1(len, nd) - real q1(len, nd) - real qs1(len, nd) - real u1(len, nd) - real v1(len, nd) - real, intent(in):: tra1(len, nd, ntra) - real p1(len, nd) - real ph1(len, ndp1) - integer iflag1(len) - real ft1(len, nd) - real fq1(len, nd) - real fu1(len, nd) - real fv1(len, nd) - real ftra1(len, nd, ntra) - real precip1(len) - real VPrecip1(len, nd+1) - real cbmf1(len) - real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft + ! 7: No moist convection because unreasonable parcel level + ! temperature or specific humidity. + + ! 8: No moist convection: lifted condensation level is above the + ! 200 mbar level. + + ! 9: No moist convection: cloud base is higher than the level NL-1. + + real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s) + real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1) + + real, intent(out):: fu1(klon, klev), fv1(klon, klev) + ! forcing (tendency) of zonal and meridional velocity (m/s^2) + + real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day) + + real, intent(out):: VPrecip1(klon, klev + 1) + ! vertical profile of convective precipitation (kg/m2/s) + + real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft real, intent(inout):: w01(klon, klev) ! vertical velocity within adiabatic updraft - integer icb1(klon) - integer inb1(klon) - real, intent(in):: delt - real Ma1(len, nd) - real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed) - real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed) - real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux - - real qcondc1(len, nd) ! cld - real wd1(len) ! gust - real cape1(len) + integer, intent(out):: icb1(klon) + integer, intent(inout):: inb1(klon) + real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft - real da1(len, nd), phi1(len, nd, nd), mp1(len, nd) + real, intent(out):: upwd1(klon, klev) + ! total upward mass flux (adiabatic + mixed) - !------------------------------------------------------------------- - ! --- ARGUMENTS - !------------------------------------------------------------------- - ! --- On input: + real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed) - ! t: Array of absolute temperature (K) of dimension ND, with first - ! index corresponding to lowest model level. Note that this array - ! will be altered by the subroutine if dry convective adjustment - ! occurs and if IPBL is not equal to 0. - - ! q: Array of specific humidity (gm/gm) of dimension ND, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. Note that this array will be altered - ! if dry convective adjustment occurs and if IPBL is not equal to 0. - - ! qs: Array of saturation specific humidity of dimension ND, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. Note that this array will be altered - ! if dry convective adjustment occurs and if IPBL is not equal to 0. - - ! u: Array of zonal wind velocity (m/s) of dimension ND, witth first - ! index corresponding with the lowest model level. Defined at - ! same levels as T. Note that this array will be altered if - ! dry convective adjustment occurs and if IPBL is not equal to 0. - - ! v: Same as u but for meridional velocity. - - ! tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA), - ! where NTRA is the number of different tracers. If no - ! convective tracer transport is needed, define a dummy - ! input array of dimension (ND, 1). Tracers are defined at - ! same vertical levels as T. Note that this array will be altered - ! if dry convective adjustment occurs and if IPBL is not equal to 0. - - ! p: Array of pressure (mb) of dimension ND, with first - ! index corresponding to lowest model level. Must be defined - ! at same grid levels as T. - - ! ph: Array of pressure (mb) of dimension ND+1, with first index - ! corresponding to lowest level. These pressures are defined at - ! levels intermediate between those of P, T, Q and QS. The first - ! value of PH should be greater than (i.e. at a lower level than) - ! the first value of the array P. - - ! nl: The maximum number of levels to which convection can penetrate, plus 1. - ! NL MUST be less than or equal to ND-1. - - ! delt: The model time step (sec) between calls to CONVECT - - !---------------------------------------------------------------------------- - ! --- On Output: - - ! iflag: An output integer whose value denotes the following: - ! VALUE INTERPRETATION - ! ----- -------------- - ! 0 Moist convection occurs. - ! 1 Moist convection occurs, but a CFL condition - ! on the subsidence warming is violated. This - ! does not cause the scheme to terminate. - ! 2 Moist convection, but no precip because ep(inb) lt 0.0001 - ! 3 No moist convection because new cbmf is 0 and old cbmf is 0. - ! 4 No moist convection; atmosphere is not - ! unstable - ! 6 No moist convection because ihmin le minorig. - ! 7 No moist convection because unreasonable - ! parcel level temperature or specific humidity. - ! 8 No moist convection: lifted condensation - ! level is above the 200 mb level. - ! 9 No moist convection: cloud base is higher - ! then the level NL-1. - - ! ft: Array of temperature tendency (K/s) of dimension ND, defined at same - ! grid levels as T, Q, QS and P. - - ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension ND, - ! defined at same grid levels as T, Q, QS and P. - - ! fu: Array of forcing of zonal velocity (m/s^2) of dimension ND, - ! defined at same grid levels as T. - - ! fv: Same as FU, but for forcing of meridional velocity. - - ! ftra: Array of forcing of tracer content, in tracer mixing ratio per - ! second, defined at same levels as T. Dimensioned (ND, NTRA). - - ! precip: Scalar convective precipitation rate (mm/day). - - ! VPrecip: Vertical profile of convective precipitation (kg/m2/s). - - ! wd: A convective downdraft velocity scale. For use in surface - ! flux parameterizations. See convect.ps file for details. - - ! tprime: A convective downdraft temperature perturbation scale (K). - ! For use in surface flux parameterizations. See convect.ps - ! file for details. - - ! qprime: A convective downdraft specific humidity - ! perturbation scale (gm/gm). - ! For use in surface flux parameterizations. See convect.ps - ! file for details. - - ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST - ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT - ! ITS NEXT CALL. That is, the value of CBMF must be "remembered" - ! by the calling program between calls to CONVECT. + real, intent(out):: qcondc1(klon, klev) + ! in-cloud mixing ratio of condensed water - ! det: Array of detrainment mass flux of dimension ND. + real, intent(out):: cape1(klon) + real, intent(out):: da1(:, :) ! (klon, klev) + real, intent(out):: phi1(:, :, :) ! (klon, klev, klev) - !------------------------------------------------------------------- + real, intent(out):: mp1(:, :) ! (klon, klev) Mass flux of the + ! unsaturated downdraft, defined positive downward, in kg m-2 + ! s-1. M_p in Emanuel (1991 928). - ! Local arrays + ! Local: - integer noff - real da(len, nd), phi(len, nd, nd), mp(len, nd) + real da(klon, klev), phi(klon, klev, klev) - integer i, k, n, il, j - integer icbmax - integer nk1(klon) - integer icbs1(klon) + real, allocatable:: mp(:, :) ! (ncum, nl) Mass flux of the + ! unsaturated downdraft, defined positive downward, in kg m-2 + ! s-1. M_p in Emanuel (1991 928). + integer i, k, il + integer icbs1(klon) real plcl1(klon) real tnk1(klon) real qnk1(klon) real gznk1(klon) - real pnk1(klon) - real qsnk1(klon) real pbase1(klon) real buoybase1(klon) - real lv1(klon, klev) - real cpn1(klon, klev) + real lv1(klon, nl) + ! specific latent heat of vaporization of water, in J kg-1 + + real cpn1(klon, nl) + ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1 + real tv1(klon, klev) real gz1(klon, klev) real hm1(klon, klev) @@ -240,378 +136,143 @@ real tp1(klon, klev) real tvp1(klon, klev) real clw1(klon, klev) - real th1(klon, klev) - + real th1(klon, nl) ! potential temperature, in K integer ncum - ! (local) compressed fields: - - integer nloc - parameter (nloc=klon) ! pour l'instant - - integer idcum(nloc) - integer iflag(nloc), nk(nloc), icb(nloc) - integer nent(nloc, klev) - integer icbs(nloc) - integer inb(nloc), inbis(nloc) - - real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) - real t(nloc, klev), q(nloc, klev), qs(nloc, klev) - real u(nloc, klev), v(nloc, klev) - real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev) - real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev) - real clw(nloc, klev) - real dph(nloc, klev) - real pbase(nloc), buoybase(nloc), th(nloc, klev) - real tvp(nloc, klev) - real sig(nloc, klev), w0(nloc, klev) - real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev) - real frac(nloc), buoy(nloc, klev) - real cape(nloc) - real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev) - real uent(nloc, klev, klev), vent(nloc, klev, klev) - real ments(nloc, klev, klev), qents(nloc, klev, klev) - real sij(nloc, klev, klev), elij(nloc, klev, klev) - real qp(nloc, klev), up(nloc, klev), vp(nloc, klev) - real wt(nloc, klev), water(nloc, klev), evap(nloc, klev) - real b(nloc, klev), ft(nloc, klev), fq(nloc, klev) - real fu(nloc, klev), fv(nloc, klev) - real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev) - real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev) - real tps(nloc, klev), qprime(nloc), tprime(nloc) - real precip(nloc) - real VPrecip(nloc, klev+1) - real tra(nloc, klev, ntra), trap(nloc, klev, ntra) - real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra) - real qcondc(nloc, klev) ! cld - real wd(nloc) ! gust + ! Compressed fields: + integer, allocatable:: idcum(:), iflag(:) ! (ncum) + integer, allocatable:: icb(:) ! (ncum) + integer nent(klon, klev) + integer icbs(klon) + + integer, allocatable:: inb(:) ! (ncum) + ! first model level above the level of neutral buoyancy of the + ! parcel (1 <= inb <= nl - 1) + + real, allocatable:: plcl(:) ! (ncum) + real tnk(klon), qnk(klon), gznk(klon) + real t(klon, klev), q(klon, klev), qs(klon, klev) + real u(klon, klev), v(klon, klev) + real gz(klon, klev), h(klon, klev) + + real, allocatable:: lv(:, :) ! (ncum, nl) + ! specific latent heat of vaporization of water, in J kg-1 + + real, allocatable:: cpn(:, :) ! (ncum, nl) + ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1 + + real p(klon, klev) ! pressure at full level, in hPa + real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev) + real clw(klon, klev) + real pbase(klon), buoybase(klon) + real, allocatable:: th(:, :) ! (ncum, nl) + real tvp(klon, klev) + real sig(klon, klev), w0(klon, klev) + real hp(klon, klev), ep(klon, klev) + real buoy(klon, klev) + real cape(klon) + real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev) + real uent(klon, klev, klev), vent(klon, klev, klev) + real ments(klon, klev, klev), qents(klon, klev, klev) + real sij(klon, klev, klev), elij(klon, klev, klev) + real qp(klon, klev), up(klon, klev), vp(klon, klev) + real wt(klon, klev), water(klon, klev) + real, allocatable:: evap(:, :) ! (ncum, nl) + real, allocatable:: b(:, :) ! (ncum, nl - 1) + real ft(klon, klev), fq(klon, klev) + real fu(klon, klev), fv(klon, klev) + real upwd(klon, klev), dnwd(klon, klev) + real Ma(klon, klev), mike(klon, klev), tls(klon, klev) + real tps(klon, klev) + real precip(klon) + real VPrecip(klon, klev + 1) + real qcondc(klon, klev) ! cld !------------------------------------------------------------------- - ! --- SET CONSTANTS AND PARAMETERS - !------------------------------------------------------------------- - - ! -- set simulation flags: - ! (common cvflag) - CALL cv_flag + ! SET CONSTANTS AND PARAMETERS + CALL cv30_param - ! -- set thermodynamical constants: - ! (common cvthermo) + ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS - CALL cv_thermo - - ! -- set convect parameters - - ! includes microphysical parameters and parameters that - ! control the rate of approach to quasi-equilibrium) - ! (common cvparam) - - if (iflag_con.eq.3) then - CALL cv3_param(nd, delt) - endif - - if (iflag_con.eq.4) then - CALL cv_param(nd) - endif - - !--------------------------------------------------------------------- - ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS - !--------------------------------------------------------------------- - - do k=1, nd - do i=1, len - ft1(i, k)=0.0 - fq1(i, k)=0.0 - fu1(i, k)=0.0 - fv1(i, k)=0.0 - tvp1(i, k)=0.0 - tp1(i, k)=0.0 - clw1(i, k)=0.0 - !ym - clw(i, k)=0.0 + da1 = 0. + mp1 = 0. + phi1 = 0. + + do k = 1, klev + do i = 1, klon + ft1(i, k) = 0. + fq1(i, k) = 0. + fu1(i, k) = 0. + fv1(i, k) = 0. + tvp1(i, k) = 0. + tp1(i, k) = 0. + clw1(i, k) = 0. + clw(i, k) = 0. gz1(i, k) = 0. VPrecip1(i, k) = 0. - Ma1(i, k)=0.0 - upwd1(i, k)=0.0 - dnwd1(i, k)=0.0 - dnwd01(i, k)=0.0 - qcondc1(i, k)=0.0 - end do - end do - - do j=1, ntra - do k=1, nd - do i=1, len - ftra1(i, k, j)=0.0 - end do + Ma1(i, k) = 0. + upwd1(i, k) = 0. + dnwd1(i, k) = 0. + qcondc1(i, k) = 0. end do end do - do i=1, len - precip1(i)=0.0 - iflag1(i)=0 - wd1(i)=0.0 - cape1(i)=0.0 - VPrecip1(i, nd+1)=0.0 - end do - - if (iflag_con.eq.3) then - do il=1, len - sig1(il, nd)=sig1(il, nd) + 1. - sig1(il, nd) = min(sig1(il, nd), 12.1) - enddo - endif - - !-------------------------------------------------------------------- - ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY - !-------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, & - h1, hm1, th1)! nd->na - endif - - if (iflag_con.eq.4) then - CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 & - , lv1, cpn1, tv1, gz1, h1, hm1) - endif - - !-------------------------------------------------------------------- - ! --- CONVECTIVE FEED - !-------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1 & - , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na - endif - - if (iflag_con.eq.4) then - CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 & - , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) - endif - - !-------------------------------------------------------------------- - ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part - ! (up through ICB for convect4, up through ICB+1 for convect3) - ! Calculates the lifted parcel virtual temperature at nk, the - ! actual temperature, and the adiabatic liquid water content. - !-------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1 & - , tp1, tvp1, clw1, icbs1) ! nd->na - endif - - if (iflag_con.eq.4) then - CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax & - , tp1, tvp1, clw1) - endif - - !------------------------------------------------------------------- - ! --- TRIGGERING - !------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, & - buoybase1, iflag1, sig1, w01) ! nd->na - endif - - if (iflag_con.eq.4) then - CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1) - endif - - !===================================================================== - ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY - !===================================================================== - - ncum=0 - do i=1, len - if(iflag1(i).eq.0)then - ncum=ncum+1 - idcum(ncum)=i - endif - end do - - ! print*, 'klon, ncum = ', len, ncum - - IF (ncum.gt.0) THEN - - !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - ! --- COMPRESS THE FIELDS - ! (-> vectorization over convective gridpoints) - !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - - if (iflag_con.eq.3) then - CALL cv3_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, & - icbs1, plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, & - qs1, u1, v1, gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, & - tvp1, clw1, sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, & - gznk, pbase, buoybase, t, q, qs, u, v, gz, th, tra, h, lv, & - cpn, p, ph, tv, tp, tvp, clw, sig, w0) - endif - - if (iflag_con.eq.4) then - CALL cv_compress( len, nloc, ncum, nd & - , iflag1, nk1, icb1 & - , cbmf1, plcl1, tnk1, qnk1, gznk1 & - , t1, q1, qs1, u1, v1, gz1 & - , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 & - , iflag, nk, icb & - , cbmf, plcl, tnk, qnk, gznk & - , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw & - , dph ) - endif - - !------------------------------------------------------------------- - ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part : - ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES - ! --- & - ! --- COMPUTE THE PRECIPITATION EFFICIENCIES AND THE - ! --- FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD - ! --- & - ! --- FIND THE LEVEL OF NEUTRAL BUOYANCY - !------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk & - , tnk, qnk, gznk, t, q, qs, gz & - , p, h, tv, lv, pbase, buoybase, plcl & - , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd - endif - - if (iflag_con.eq.4) then - CALL cv_undilute2(nloc, ncum, nd, icb, nk & - , tnk, qnk, gznk, t, q, qs, gz & - , p, dph, h, tv, lv & - , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac) - endif - - !------------------------------------------------------------------- - ! --- CLOSURE - !------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_closure(nloc, ncum, nd, icb, inb & - , pbase, p, ph, tv, buoy & - , sig, w0, cape, m) ! na->nd - endif - - if (iflag_con.eq.4) then - CALL cv_closure(nloc, ncum, nd, nk, icb & - , tv, tvp, p, ph, dph, plcl, cpn & - , iflag, cbmf) - endif - - !------------------------------------------------------------------- - ! --- MIXING - !------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb & - , ph, t, q, qs, u, v, tra, h, lv, qnk & - , hp, tv, tvp, ep, clw, m, sig & - , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd - endif - - if (iflag_con.eq.4) then - CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis & - , ph, t, q, qs, u, v, h, lv, qnk & - , hp, tv, tvp, ep, clw, cbmf & - , m, ment, qent, uent, vent, nent, sij, elij) - endif - - !------------------------------------------------------------------- - ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS - !------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb & - , t, q, qs, gz, u, v, tra, p, ph & - , th, tv, lv, cpn, ep, sigp, clw & - , m, ment, elij, delt, plcl & - , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd - endif - - if (iflag_con.eq.4) then - CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph & - , h, lv, ep, sigp, clw, m, ment, elij & - , iflag, mp, qp, up, vp, wt, water, evap) - endif - - !------------------------------------------------------------------- - ! --- YIELD - ! (tendencies, precipitation, variables of interface with other - ! processes, etc) - !------------------------------------------------------------------- - - if (iflag_con.eq.3) then - CALL cv3_yield(nloc, ncum, nd, nd, ntra & - , icb, inb, delt & - , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th & - , ep, clw, m, tp, mp, qp, up, vp, trap & - , wt, water, evap, b & - , ment, qent, uent, vent, nent, elij, traent, sig & - , tv, tvp & - , iflag, precip, VPrecip, ft, fq, fu, fv, ftra & - , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd - endif - - if (iflag_con.eq.4) then - CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt & - , t, q, u, v, gz, p, ph, h, hp, lv, cpn & - , ep, clw, frac, m, mp, qp, up, vp & - , wt, water, evap & - , ment, qent, uent, vent, nent, elij & - , tv, tvp & - , iflag, wd, qprime, tprime & - , precip, cbmf, ft, fq, fu, fv, Ma, qcondc) - endif - - !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - ! --- passive tracers - !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - - if (iflag_con.eq.3) then - CALL cv3_tracer(nloc, len, ncum, nd, nd, & - ment, sij, da, phi) - endif - - !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - ! --- UNCOMPRESS THE FIELDS - !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - ! set iflag1 =42 for non convective points - do i=1, len - iflag1(i)=42 - end do - - if (iflag_con.eq.3) then - CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum & - , iflag & - , precip, VPrecip, sig, w0 & - , ft, fq, fu, fv, ftra & - , inb & - , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape & - , da, phi, mp & - , iflag1 & - , precip1, VPrecip1, sig1, w01 & - , ft1, fq1, fu1, fv1, ftra1 & - , inb1 & - , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1 & - , da1, phi1, mp1) - endif - - if (iflag_con.eq.4) then - CALL cv_uncompress(nloc, len, ncum, nd, idcum & - , iflag & - , precip, cbmf & - , ft, fq, fu, fv & - , Ma, qcondc & - , iflag1 & - , precip1, cbmf1 & - , ft1, fq1, fu1, fv1 & - , Ma1, qcondc1 ) - endif - ENDIF ! ncum>0 + precip1 = 0. + cape1 = 0. + VPrecip1(:, klev + 1) = 0. + + do il = 1, klon + sig1(il, klev) = sig1(il, klev) + 1. + sig1(il, klev) = min(sig1(il, klev), 12.1) + enddo + + CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1) + CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, & + gznk1, plcl1) + CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, & + icbs1) + CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, & + iflag1, sig1, w01) + + ncum = count(iflag1 == 0) + + IF (ncum > 0) THEN + ! Moist convective adjustment is necessary + allocate(idcum(ncum), plcl(ncum), inb(ncum)) + allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum)) + allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl)) + idcum = pack((/(i, i = 1, klon)/), iflag1 == 0) + CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, & + gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, & + cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, & + tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, & + cpn, p, ph, tv, tp, tvp, clw, sig, w0) + CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, & + tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, & + clw, hp, ep, buoy) + CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, & + sig, w0, cape, m) + CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, & + hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, & + ments, qents) + CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), & + qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, & + ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), & + clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), & + dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), & + wt(:ncum, :nl), water(:ncum, :nl), evap, b) + CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, & + lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), & + wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, & + vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, & + fu, fv, upwd, dnwd, ma, mike, tls, tps, qcondc) + CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi) + CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, & + fu, fv, inb, Ma, upwd, dnwd, qcondc, cape, da, phi, mp, iflag1, & + precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, Ma1, & + upwd1, dnwd1, qcondc1, cape1, da1, phi1, mp1) + ENDIF end SUBROUTINE cv_driver