/[lmdze]/trunk/Sources/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 53 by guez, Fri Oct 7 13:11:58 2011 UTC trunk/Sources/phylmd/physiq.f revision 207 by guez, Thu Sep 1 10:30:53 2016 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! Author: Z.X. Li (LMD/CNRS) 1993      ! (subversion revision 678)
12    
13        ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17        use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ok_instan
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, &
24           ok_orodr, ok_orolf, soil_model           ok_orodr, ok_orolf
25      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
26      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use clouds_gno_m, only: clouds_gno
27        use comconst, only: dtphys
28        USE comgeomphy, ONLY: airephy
29      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
30      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: offline, lmt_pas
31      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
32        use conflx_m, only: conflx
33      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
34      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
35      use diagetpq_m, only: diagetpq      USE dimens_m, ONLY: llm, nqmx
36      USE dimens_m, ONLY: iim, jjm, llm, nqmx      USE dimphy, ONLY: klon
     USE dimphy, ONLY: klon, nbtr  
37      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
38      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
39      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      use dynetat0_m, only: day_ref, annee_ref
40        USE fcttre, ONLY: foeew, qsatl, qsats
41        use fisrtilp_m, only: fisrtilp
42      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
43      USE histcom, ONLY: histsync      USE histsync_m, ONLY: histsync
44      USE histwrite_m, ONLY: histwrite      USE histwrite_phy_m, ONLY: histwrite_phy
45      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
46           nbsrf           nbsrf
47      USE ini_histhf_m, ONLY: ini_histhf      USE ini_histins_m, ONLY: ini_histins, nid_ins
48      USE ini_histday_m, ONLY: ini_histday      use netcdf95, only: NF95_CLOSE
49      USE ini_histins_m, ONLY: ini_histins      use newmicro_m, only: newmicro
50      USE oasis_m, ONLY: ok_oasis      use nr_util, only: assert
51      USE orbite_m, ONLY: orbite, zenang      use nuage_m, only: nuage
52        USE orbite_m, ONLY: orbite
53      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
54      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
55      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
56        USE phyredem0_m, ONLY: phyredem0
57      USE phystokenc_m, ONLY: phystokenc      USE phystokenc_m, ONLY: phystokenc
58      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
59      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
60      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use yoegwd, only: sugwd
61      USE temps, ONLY: annee_ref, day_ref, itau_phy      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt
62        use time_phylmdz, only: itap, increment_itap
63        use transp_m, only: transp
64        use transp_lay_m, only: transp_lay
65        use unit_nml_m, only: unit_nml
66        USE ymds2ju_m, ONLY: ymds2ju
67      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
68        use zenang_m, only: zenang
69    
     ! Arguments:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
70      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
71    
72      REAL, intent(in):: paprs(klon, llm + 1)      integer, intent(in):: dayvrai
73      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
74    
75      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
76    
77      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
78      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
79    
80      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
81        ! pression pour le mileu de chaque couche (en Pa)
82    
83      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
84      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
85    
86      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     REAL, intent(in):: t(klon, llm) ! input temperature (K)  
87    
88      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: u(:, :) ! (klon, llm)
89      ! (humidité spécifique et fractions massiques des autres traceurs)      ! vitesse dans la direction X (de O a E) en m / s
90    
91      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
92      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
93    
94      LOGICAL:: firstcal = .true.      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
95        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
96    
97      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
98      PARAMETER(nbteta = 3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
99        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
100        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
101    
102      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
103      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
104    
105      LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE      ! Local:
     PARAMETER (ok_cvl = .TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust = .FALSE.)  
106    
107      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL:: firstcal = .true.
     PARAMETER (check = .FALSE.)  
108    
109      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
110      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
111    
112      ! Parametres lies au coupleur OASIS:      ! pour phystoke avec thermiques
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6), save:: ocean  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical, save:: ok_veget  
     LOGICAL, save:: ok_journe ! sortir le fichier journalier  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
   
     LOGICAL ok_instan ! sortir le fichier instantane  
     save ok_instan  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
113      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
114      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
115      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
116    
117      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
118      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
119    
120      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
121      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
122    
123      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
124      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
125    
126      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
127    
128      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
129        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
130    
131      CHARACTER(LEN = 3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
132      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1 = llm + 1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
133    
134      ! prw: precipitable water      ! prw: precipitable water
135      real prw(klon)      real prw(klon)
136    
137      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
138      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
139      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
140      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
141    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
142      ! Variables propres a la physique      ! Variables propres a la physique
143    
144      INTEGER, save:: radpas      INTEGER, save:: radpas
145      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
146      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
147    
148      INTEGER, SAVE:: itap ! number of calls to "physiq"      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
149    
150      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
151    
152      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
153      ! soil temperature of surface fraction      ! soil temperature of surface fraction
154    
155      REAL fevap(klon, nbsrf)      REAL, save:: fevap(klon, nbsrf) ! evaporation
156      SAVE fevap ! evaporation      REAL, save:: fluxlat(klon, nbsrf)
     REAL fluxlat(klon, nbsrf)  
     SAVE fluxlat  
157    
158      REAL fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
159      SAVE fqsurf ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
160    
161      REAL, save:: qsol(klon) ! hauteur d'eau dans le sol      REAL, save:: qsol(klon)
162        ! column-density of water in soil, in kg m-2
163    
164      REAL fsnow(klon, nbsrf)      REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
165      SAVE fsnow ! epaisseur neigeuse      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
166    
167      REAL falbe(klon, nbsrf)      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
     SAVE falbe ! albedo par type de surface  
     REAL falblw(klon, nbsrf)  
     SAVE falblw ! albedo par type de surface  
   
     ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :  
168      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
169      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
170      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 293  contains Line 173  contains
173      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
174      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
175      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
176      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
177        INTEGER igwd, itest(klon)
178    
179      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
180        REAL, save:: run_off_lic_0(klon)
181    
182      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
183      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
184        REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
185      REAL run_off_lic_0(klon)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     SAVE run_off_lic_0  
     !KE43  
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
   
     REAL wd(klon) ! sb  
     SAVE wd ! sb  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
186    
187        ! Variables pour la couche limite (Alain Lahellec) :
188      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
189      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
190    
191      !AA Pour phytrac      ! Pour phytrac :
192      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
193      REAL yu1(klon) ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
194      REAL yv1(klon) ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
195      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
196      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: ffonte(klon, nbsrf)
197      ! !et necessaire pour limiter la      ! flux thermique utilise pour fondre la neige
198      ! !hauteur de neige, en kg/m2/s  
199        REAL, save:: fqcalving(klon, nbsrf)
200        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
201        ! hauteur de neige, en kg / m2 / s
202    
203      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
204    
205      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
206      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
207      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
208      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
209      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
210      save pfrac_1nucl  
211      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
212      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
213    
214      !AA      REAL, save:: rain_fall(klon)
215      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg / m2 / s), positive down
216      REAL snow_fall(klon) ! neige  
217      save snow_fall, rain_fall      REAL, save:: snow_fall(klon)
218      !IM cf FH pour Tiedtke 080604      ! solid water mass flux (kg / m2 / s), positive down
219    
220      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
221    
222      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
223      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
224      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
225      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
226        REAL, save:: dlw(klon) ! derivee infra rouge
227      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
228      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
     save fder  
229      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
230      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
231      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
232      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
233    
234      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
235      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
236    
237      ! Conditions aux limites      ! Conditions aux limites
238    
239      INTEGER julien      INTEGER julien
240        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
241      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total visible
     REAL pctsrf(klon, nbsrf)  
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
242      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
243    
244      ! Declaration des procedures appelees      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
245        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie)  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
246    
247      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humiditi relative ciel clair
248      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
# Line 410  contains Line 252  contains
252      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
253      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
254    
255      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
256      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
257      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
258      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
259    
260      ! Le rayonnement n'est pas calcule tous les pas, il faut donc      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
261      ! que les variables soient rémanentes      ! les variables soient r\'emanentes.
262      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
263      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
264      REAL cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
265      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
266      REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
267      real sollwdown(klon) ! downward LW flux at surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
268      REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      real, save:: sollwdown(klon) ! downward LW flux at surface
269      REAL albpla(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
270      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL, save:: albpla(klon)
271      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
272      SAVE cool, albpla, topsw, toplw, solsw, sollw, sollwdown      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
273      SAVE topsw0, toplw0, solsw0, sollw0, heat0, cool0  
274        REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
275      INTEGER itaprad      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence of temperature (K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
276    
277      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
278      LOGICAL zx_ajustq      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
279    
280        REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
281    
282      REAL za, zb      REAL dist, mu0(klon), fract(klon)
283      REAL zx_t, zx_qs, zdelta, zcor      real longi
284        REAL z_avant(klon), z_apres(klon), z_factor(klon)
285        REAL zb
286        REAL zx_t, zx_qs, zcor
287      real zqsat(klon, llm)      real zqsat(klon, llm)
288      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup = 234.0)  
   
289      REAL zphi(klon, llm)      REAL zphi(klon, llm)
290    
291      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
292    
293      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
294      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
295      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
296      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
297      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
298      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
299      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
300      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
301      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
302      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
303      ! Grdeurs de sorties      ! Grandeurs de sorties
304      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
305      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
306      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
307      REAL s_trmb3(klon)      REAL s_trmb3(klon)
308    
309      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
310    
311      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
312      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
313      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
314      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
315      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     INTEGER ntra ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
316    
317      ! Variables du changement      ! Variables du changement
318    
319      ! con: convection      ! con: convection
320      ! lsc: large scale condensation      ! lsc: large scale condensation
321      ! ajs: ajustement sec      ! ajs: ajustement sec
322      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
323      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
324      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
325      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
326      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
327      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
328      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
329      REAL rneb(klon, llm)      REAL rneb(klon, llm)
330    
331      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
332      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
333      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
334      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
335      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
336      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
337    
338      INTEGER,save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
339        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
340    
341      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
342      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
343        REAL, save:: snow_con(klon) ! neige (mm / s)
344        real snow_lsc(klon)
345      REAL d_ts(klon, nbsrf)      REAL d_ts(klon, nbsrf)
346    
347      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
# Line 535  contains Line 352  contains
352      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
353      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
354    
355      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
356      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
357      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
358    
359      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
360      real, save:: fact_cldcon      real:: fact_cldcon = 0.375
361      real, save:: facttemps      real:: facttemps = 1.e-4
362      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
363      real facteur      real facteur
364    
365      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
366      logical ptconv(klon, llm)      logical ptconv(klon, llm)
367    
368      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
369    
370      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
371      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
372      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
373        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
374    
375      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
376    
# Line 567  contains Line 379  contains
379      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
380      REAL aam, torsfc      REAL aam, torsfc
381    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
382      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
383      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
384      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
385      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
386    
     REAL zsto  
   
     character(len = 20) modname  
     character(len = 80) abort_message  
     logical ok_sync  
387      real date0      real date0
   
     ! Variables liées au bilan d'énergie et d'enthalpie :  
388      REAL ztsol(klon)      REAL ztsol(klon)
     REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL, SAVE:: d_h_vcol_phy  
     REAL fs_bound, fq_bound  
     REAL zero_v(klon)  
     CHARACTER(LEN = 15) ztit  
     INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
     INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics  
389    
390      REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique      REAL d_t_ec(klon, llm)
391        ! tendance due \`a la conversion Ec en énergie thermique
392    
393      REAL ZRCPD      REAL ZRCPD
394    
395      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
396      REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m      ! temperature and humidity at 2 m
397      REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille  
398      REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
399      !jq Aerosol effects (Johannes Quaas, 27/11/2003)      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
400      REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
401    
402        ! Aerosol effects:
403    
404        REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3)
405    
406      REAL, save:: sulfate_pi(klon, llm)      REAL, save:: sulfate_pi(klon, llm)
407      ! (SO4 aerosol concentration, in ug/m3, pre-industrial value)      ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value
408    
409      REAL cldtaupi(klon, llm)      REAL cldtaupi(klon, llm)
410      ! (Cloud optical thickness for pre-industrial (pi) aerosols)      ! cloud optical thickness for pre-industrial aerosols
411    
412      REAL re(klon, llm) ! Cloud droplet effective radius      REAL re(klon, llm) ! Cloud droplet effective radius
413      REAL fl(klon, llm) ! denominator of re      REAL fl(klon, llm) ! denominator of re
414    
415      ! Aerosol optical properties      ! Aerosol optical properties
416      REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
417      REAL cg_ae(klon, llm, 2)      REAL, save:: cg_ae(klon, llm, 2)
418    
419        REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
420        REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect
421    
422      REAL topswad(klon), solswad(klon) ! Aerosol direct effect.      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
423      ! ok_ade = True -ADE = topswad-topsw      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
424    
425      REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
426      ! ok_aie = True ->      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
427      ! ok_ade = True -AIE = topswai-topswad      ! B). They link cloud droplet number concentration to aerosol mass
428      ! ok_ade = F -AIE = topswai-topsw      ! concentration.
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
429    
430      real zmasse(klon, llm)      real zmasse(klon, llm)
431      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
432    
433      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
434    
435        namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
436             ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, &
437             iflag_thermals, nsplit_thermals
438    
439      !----------------------------------------------------------------      !----------------------------------------------------------------
440    
441      modname = 'physiq'      IF (nqmx < 2) CALL abort_gcm('physiq', &
442      IF (if_ebil >= 1) THEN           'eaux vapeur et liquide sont indispensables')
        DO i = 1, klon  
           zero_v(i) = 0.  
        END DO  
     END IF  
     ok_sync = .TRUE.  
     IF (nqmx < 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm(modname, abort_message, 1)  
     ENDIF  
443    
444      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
445         ! initialiser         ! initialiser
# Line 684  contains Line 452  contains
452         piz_ae = 0.         piz_ae = 0.
453         tau_ae = 0.         tau_ae = 0.
454         cg_ae = 0.         cg_ae = 0.
455         rain_con(:) = 0.         rain_con = 0.
456         snow_con(:) = 0.         snow_con = 0.
457         bl95_b0 = 0.         topswai = 0.
458         bl95_b1 = 0.         topswad = 0.
459         topswai(:) = 0.         solswai = 0.
460         topswad(:) = 0.         solswad = 0.
461         solswai(:) = 0.  
462         solswad(:) = 0.         d_u_con = 0.
463           d_v_con = 0.
464         d_u_con = 0.0         rnebcon0 = 0.
465         d_v_con = 0.0         clwcon0 = 0.
466         rnebcon0 = 0.0         rnebcon = 0.
467         clwcon0 = 0.0         clwcon = 0.
        rnebcon = 0.0  
        clwcon = 0.0  
468    
469         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
470         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
471         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
472         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
473         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
474         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
475         therm =0.         therm =0.
476         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
477         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
478         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
479    
480         IF (if_ebil >= 1) d_h_vcol_phy = 0.         iflag_thermals = 0
481           nsplit_thermals = 1
482         ! appel a la lecture du run.def physique         print *, "Enter namelist 'physiq_nml'."
483           read(unit=*, nml=physiq_nml)
484           write(unit_nml, nml=physiq_nml)
485    
486         call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &         call conf_phys
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie, &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
487    
488         ! Initialiser les compteurs:         ! Initialiser les compteurs:
489    
490         frugs = 0.         frugs = 0.
491         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
492         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
493         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
494              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
495              snow_fall, solsw, sollwdown, dlw, radsol, frugs, agesno, zmea, &              w01, ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0)  
496    
497         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
498         q2 = 1.e-8         q2 = 1e-8
   
        radpas = NINT(86400. / dtphys / nbapp_rad)  
   
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
   
        IF(ocean.NE.'force ') THEN  
           ok_ocean = .TRUE.  
        ENDIF  
499    
500         CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &         radpas = lmt_pas / nbapp_rad
501              ok_region)         print *, "radpas = ", radpas
   
        IF (dtphys*REAL(radpas) > 21600..AND.cycle_diurne) THEN  
           print *,'Nbre d appels au rayonnement insuffisant'  
           print *,"Au minimum 4 appels par jour si cycle diurne"  
           abort_message = 'Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *,"Clef pour la convection, iflag_con = ", iflag_con  
        print *,"Clef pour le driver de la convection, ok_cvl = ", &  
             ok_cvl  
   
        ! Initialisation pour la convection de K.E. (sb):  
        IF (iflag_con >= 3) THEN  
   
           print *,"*** Convection de Kerry Emanuel 4.3 "  
   
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG  
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
502    
503           ! Initialisation pour le sch\'ema de convection d'Emanuel :
504           IF (conv_emanuel) THEN
505              ibas_con = 1
506              itop_con = 1
507         ENDIF         ENDIF
508    
509         IF (ok_orodr) THEN         IF (ok_orodr) THEN
510            rugoro = MAX(1e-5, zstd * zsig / 2)            rugoro = MAX(1e-5, zstd * zsig / 2)
511            CALL SUGWD(klon, llm, paprs, play)            CALL SUGWD(paprs, play)
512         else         else
513            rugoro = 0.            rugoro = 0.
514         ENDIF         ENDIF
515    
516         lmt_pas = NINT(86400. / dtphys) ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
        print *,'AVANT HIST IFLAG_CON = ', iflag_con  
517    
518         ! Initialisation des sorties         ! Initialisation des sorties
519    
520         call ini_histhf(dtphys, nid_hf, nid_hf3d)         call ini_histins(dtphys)
521         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
522         call ini_histins(dtphys, ok_instan, nid_ins)         ! Positionner date0 pour initialisation de ORCHIDEE
523         CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)         print *, 'physiq date0: ', date0
524         !XXXPB Positionner date0 pour initialisation de ORCHIDEE         CALL phyredem0
        WRITE(*, *) 'physiq date0: ', date0  
525      ENDIF test_firstcal      ENDIF test_firstcal
526    
527      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
528        ! u, v, t, qx:
529      DO i = 1, klon      t_seri = t
530         d_ps(i) = 0.0      u_seri = u
531      ENDDO      v_seri = v
532      DO iq = 1, nqmx      q_seri = qx(:, :, ivap)
533         DO k = 1, llm      ql_seri = qx(:, :, iliq)
534            DO i = 1, klon      tr_seri = qx(:, :, 3:nqmx)
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
535    
536      IF (if_ebil >= 1) THEN      ztsol = sum(ftsol * pctsrf, dim = 2)
        ztit = 'after dynamics'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoutés dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  être égale à la variation de la physique au pas de temps  
        !  précédent.  Donc la somme de ces 2 variations devrait être  
        !  nulle.  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
537    
538      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
539      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 876  contains Line 546  contains
546      ELSE      ELSE
547         DO k = 1, llm         DO k = 1, llm
548            DO i = 1, klon            DO i = 1, klon
549               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
550               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
551            ENDDO            ENDDO
552         ENDDO         ENDDO
553         ancien_ok = .TRUE.         ancien_ok = .TRUE.
# Line 893  contains Line 563  contains
563      ! Check temperatures:      ! Check temperatures:
564      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
565    
566      ! Incrementer le compteur de la physique      call increment_itap
567      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
568      if (julien == 0) julien = 360      if (julien == 0) julien = 360
569    
570      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
   
     ! Mettre en action les conditions aux limites (albedo, sst, etc.).  
571    
572      ! Prescrire l'ozone et calculer l'albedo sur l'ocean.      ! Prescrire l'ozone :
573      if (nqmx >= 5) then      wo = ozonecm(REAL(julien), paprs)
        wo = qx(:, :, 5) * zmasse / dobson_u / 1e3  
     else IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        wo = ozonecm(REAL(julien), paprs)  
     ENDIF  
574    
575      ! Évaporation de l'eau liquide nuageuse :      ! \'Evaporation de l'eau liquide nuageuse :
576      DO k = 1, llm      DO k = 1, llm
577         DO i = 1, klon         DO i = 1, klon
578            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 920  contains Line 583  contains
583      ENDDO      ENDDO
584      ql_seri = 0.      ql_seri = 0.
585    
586      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
587         ztit = 'after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
588    
589      END IF      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
590        ! la surface.
591    
592      ! Appeler la diffusion verticale (programme de couche limite)      CALL orbite(REAL(julien), longi, dist)
   
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
593      IF (cycle_diurne) THEN      IF (cycle_diurne) THEN
594         zdtime = dtphys * REAL(radpas)         CALL zenang(longi, time, dtphys * radpas, mu0, fract)
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
595      ELSE      ELSE
596         rmu0 = -999.999         mu0 = - 999.999
597      ENDIF      ENDIF
598    
599      ! Calcul de l'abedo moyen par maille      ! Calcul de l'abedo moyen par maille
600      albsol(:) = 0.      albsol = sum(falbe * pctsrf, dim = 2)
     albsollw(:) = 0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
601    
602      ! Repartition sous maille des flux LW et SW      ! R\'epartition sous maille des flux longwave et shortwave
603      ! Repartition du longwave par sous-surface linearisee      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
604    
605      DO nsrf = 1, nbsrf      forall (nsrf = 1: nbsrf)
606         DO i = 1, klon         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
607            fsollw(i, nsrf) = sollw(i) &              * (ztsol - ftsol(:, nsrf))
608                 + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
609            fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))      END forall
        ENDDO  
     ENDDO  
610    
611      fder = dlw      fder = dlw
612    
613      ! Couche limite:      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
614             ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
615      CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, &           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
616           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, &           snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, &
617           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &           d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, &
618           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &           flux_v, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, &
619           rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, &           u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, &
620           cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, &           trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
621           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
622           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &      ! Incr\'ementation des flux
623           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &  
624           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)      sens = - sum(flux_t * pctsrf, dim = 2)
625        evap = - sum(flux_q * pctsrf, dim = 2)
626      ! Incrémentation des flux      fder = dlw + dsens + devap
   
     zxfluxt = 0.  
     zxfluxq = 0.  
     zxfluxu = 0.  
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + &  
                   fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + &  
                   fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + &  
                   fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + &  
                   fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
627    
628      DO k = 1, llm      DO k = 1, llm
629         DO i = 1, klon         DO i = 1, klon
# Line 1028  contains Line 634  contains
634         ENDDO         ENDDO
635      ENDDO      ENDDO
636    
     IF (if_ebil >= 2) THEN  
        ztit = 'after clmain'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
637      ! Update surface temperature:      ! Update surface temperature:
638    
639      DO i = 1, klon      DO i = 1, klon
640         zxtsol(i) = 0.0         zxfluxlat(i) = 0.
        zxfluxlat(i) = 0.0  
641    
642         zt2m(i) = 0.0         zt2m(i) = 0.
643         zq2m(i) = 0.0         zq2m(i) = 0.
644         zu10m(i) = 0.0         zu10m(i) = 0.
645         zv10m(i) = 0.0         zv10m(i) = 0.
646         zxffonte(i) = 0.0         zxffonte(i) = 0.
647         zxfqcalving(i) = 0.0         zxfqcalving(i) = 0.
648    
649         s_pblh(i) = 0.0         s_pblh(i) = 0.
650         s_lcl(i) = 0.0         s_lcl(i) = 0.
651         s_capCL(i) = 0.0         s_capCL(i) = 0.
652         s_oliqCL(i) = 0.0         s_oliqCL(i) = 0.
653         s_cteiCL(i) = 0.0         s_cteiCL(i) = 0.
654         s_pblT(i) = 0.0         s_pblT(i) = 0.
655         s_therm(i) = 0.0         s_therm(i) = 0.
656         s_trmb1(i) = 0.0         s_trmb1(i) = 0.
657         s_trmb2(i) = 0.0         s_trmb2(i) = 0.
658         s_trmb3(i) = 0.0         s_trmb3(i) = 0.
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.)  >  EPSFRA) &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i, &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
659      ENDDO      ENDDO
660    
661        call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
662    
663        ftsol = ftsol + d_ts
664        ztsol = sum(ftsol * pctsrf, dim = 2)
665      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
666         DO i = 1, klon         DO i = 1, klon
667            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf)
668            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
669            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)            zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf)
670              zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf)
671            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)            zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf)
672            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)            zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf)
673            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf)
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
674            zxfqcalving(i) = zxfqcalving(i) + &            zxfqcalving(i) = zxfqcalving(i) + &
675                 fqcalving(i, nsrf)*pctsrf(i, nsrf)                 fqcalving(i, nsrf) * pctsrf(i, nsrf)
676            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)            s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf)
677            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)            s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf)
678            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf)
679            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf)
680            s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)            s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf)
681            s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)            s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf)
682            s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)            s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf)
683            s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)            s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf)
684            s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)            s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf)
685            s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)            s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf)
686         ENDDO         ENDDO
687      ENDDO      ENDDO
688    
689      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
   
690      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
691         DO i = 1, klon         DO i = 1, klon
692            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
693                 ftsol(i, nsrf) = ztsol(i)
694            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
695            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
696            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m(i, nsrf) = zu10m(i)
697            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m(i, nsrf) = zv10m(i)
698            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
699            IF (pctsrf(i, nsrf) < epsfra) &               fqcalving(i, nsrf) = zxfqcalving(i)
700                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
701            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
702            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
703            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
704            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
705            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
706            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)               therm(i, nsrf) = s_therm(i)
707            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
708            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
709            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
710            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)            end IF
711         ENDDO         ENDDO
712      ENDDO      ENDDO
713    
714      ! Calculer la derive du flux infrarouge      ! Calculer la dérive du flux infrarouge
715    
716      DO i = 1, klon      DO i = 1, klon
717         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * ztsol(i)**3
718      ENDDO      ENDDO
719    
720      ! Appeler la convection (au choix)      ! Appeler la convection
721    
722      DO k = 1, llm      if (conv_emanuel) then
723         DO i = 1, klon         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
724            conv_q(i, k) = d_q_dyn(i, k) &              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
725                 + d_q_vdf(i, k)/dtphys              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
726            conv_t(i, k) = d_t_dyn(i, k) &         snow_con = 0.
727                 + d_t_vdf(i, k)/dtphys         clwcon0 = qcondc
728         ENDDO         mfu = upwd + dnwd
729      ENDDO  
730      IF (check) THEN         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
731         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         zqsat = zqsat / (1. - retv * zqsat)
732         print *, "avantcon = ", za  
733      ENDIF         ! Properties of convective clouds
734      zx_ajustq = .FALSE.         clwcon0 = fact_cldcon * clwcon0
735      IF (iflag_con == 2) zx_ajustq = .TRUE.         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
736      IF (zx_ajustq) THEN              rnebcon0)
737         DO i = 1, klon  
738            z_avant(i) = 0.0         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
739         ENDDO         mfd = 0.
740         DO k = 1, llm         pen_u = 0.
741            DO i = 1, klon         pen_d = 0.
742               z_avant(i) = z_avant(i) + (q_seri(i, k) + ql_seri(i, k)) &         pde_d = 0.
743                    *zmasse(i, k)         pde_u = 0.
744            ENDDO      else
745         ENDDO         conv_q = d_q_dyn + d_q_vdf / dtphys
746      ENDIF         conv_t = d_t_dyn + d_t_vdf / dtphys
747           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
748      select case (iflag_con)         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
749      case (1)              q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
750         print *, 'Réactiver l''appel à "conlmd" dans "physiq.F".'              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
751         stop 1              mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
752      case (2)              kdtop, pmflxr, pmflxs)
        CALL conflx(dtphys, paprs, play, t_seri, q_seri, conv_t, conv_q, &  
             zxfluxq(1, 1), omega, d_t_con, d_q_con, rain_con, snow_con, pmfu, &  
             pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, &  
             pmflxs)  
753         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
754         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
755         DO i = 1, klon         ibas_con = llm + 1 - kcbot
756            ibas_con(i) = llm + 1 - kcbot(i)         itop_con = llm + 1 - kctop
757            itop_con(i) = llm + 1 - kctop(i)      END if
        ENDDO  
     case (3:)  
        ! number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schéma de convection modularisé et vectorisé :  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN  
           ! new driver for convectL  
           CALL concvl(iflag_con, dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, ema_work1, ema_work2, d_t_con, &  
                d_q_con, d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
                itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, pbase, &  
                bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, &  
                pmflxs, da, phi, mp)  
           clwcon0 = qcondc  
           pmfu = upwd + dnwd  
        ELSE  
           ! conema3 ne contient pas les traceurs  
           CALL conema3(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, &  
                tr_seri, ntra, ema_work1, ema_work2, d_t_con, d_q_con, &  
                d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
                itop_con, upwd, dnwd, dnwd0, bas, top, Ma, cape, tvp, rflag, &  
                pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, clwcon0)  
        ENDIF  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i) = 0.0  
           enddo  
        ENDIF  
   
        ! Calcul des propriétés des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
   
        ! calcul des proprietes des nuages convectifs  
        clwcon0 = fact_cldcon*clwcon0  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     case default  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     END select  
758    
759      DO k = 1, llm      DO k = 1, llm
760         DO i = 1, klon         DO i = 1, klon
# Line 1244  contains Line 765  contains
765         ENDDO         ENDDO
766      ENDDO      ENDDO
767    
768      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
769         ztit = 'after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
770         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"aprescon = ", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip = ", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k) + ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i) + snow_con(i))*dtphys) &  
                /z_apres(i)  
        ENDDO  
771         DO k = 1, llm         DO k = 1, llm
772            DO i = 1, klon            DO i = 1, klon
773               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
# Line 1289  contains Line 776  contains
776            ENDDO            ENDDO
777         ENDDO         ENDDO
778      ENDIF      ENDIF
     zx_ajustq = .FALSE.  
779    
780      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
781    
782      d_t_ajs = 0.      d_t_ajs = 0.
783      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1306  contains Line 792  contains
792         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
793         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
794      else      else
        ! Thermiques  
795         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
796              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
797      endif      endif
798    
     IF (if_ebil >= 2) THEN  
        ztit = 'after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
799      ! Caclul des ratqs      ! Caclul des ratqs
800    
801      ! ratqs convectifs a l'ancienne en fonction de q(z = 0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
802      ! on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
803      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
804         do k = 1, llm         do k = 1, llm
805            do i = 1, klon            do i = 1, klon
806               if(ptconv(i, k)) then               if(ptconv(i, k)) then
807                  ratqsc(i, k) = ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
808                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
809               else               else
810                  ratqsc(i, k) = 0.                  ratqsc(i, k) = 0.
811               endif               endif
# Line 1338  contains Line 816  contains
816      ! ratqs stables      ! ratqs stables
817      do k = 1, llm      do k = 1, llm
818         do i = 1, klon         do i = 1, klon
819            ratqss(i, k) = ratqsbas + (ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
820                 min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
821         enddo         enddo
822      enddo      enddo
823    
824      ! ratqs final      ! ratqs final
825      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
826         ! les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
827         ! ratqs final         ! ratqs final
828         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
829         ! relaxation des ratqs         ! relaxation des ratqs
830         facteur = exp(-dtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
        ratqs = max(ratqs*facteur, ratqss)  
831         ratqs = max(ratqs, ratqsc)         ratqs = max(ratqs, ratqsc)
832      else      else
833         ! on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
834         ratqs = ratqss         ratqs = ratqss
835      endif      endif
836    
     ! Processus de condensation à grande echelle et processus de  
     ! précipitation :  
837      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
838           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
839           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
# Line 1375  contains Line 850  contains
850            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
851         ENDDO         ENDDO
852      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"apresilp = ", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        ztit = 'after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
853    
854      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
855    
856      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
857    
858      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
859           ! seulement pour Tiedtke
860         snow_tiedtke = 0.         snow_tiedtke = 0.
861         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
862            rain_tiedtke = rain_con            rain_tiedtke = rain_con
863         else         else
864            rain_tiedtke = 0.            rain_tiedtke = 0.
865            do k = 1, llm            do k = 1, llm
866               do i = 1, klon               do i = 1, klon
867                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
868                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
869                          *zmasse(i, k)                          * zmasse(i, k)
870                  endif                  endif
871               enddo               enddo
872            enddo            enddo
873         endif         endif
874    
875         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
876         CALL diagcld1(paprs, play, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
877              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
878         DO k = 1, llm         DO k = 1, llm
879            DO i = 1, klon            DO i = 1, klon
880               IF (diafra(i, k) > cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
# Line 1432  contains Line 884  contains
884            ENDDO            ENDDO
885         ENDDO         ENDDO
886      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
887         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
888         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
889         ! facttemps         ! d'un facteur facttemps.
890         facteur = dtphys *facttemps         facteur = dtphys * facttemps
891         do k = 1, llm         do k = 1, llm
892            do i = 1, klon            do i = 1, klon
893               rnebcon(i, k) = rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
894               if (rnebcon0(i, k)*clwcon0(i, k) > rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
895                    then                    > rnebcon(i, k) * clwcon(i, k)) then
896                  rnebcon(i, k) = rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
897                  clwcon(i, k) = clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
898               endif               endif
# Line 1449  contains Line 901  contains
901    
902         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
903         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
904         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
905      ENDIF      ENDIF
906    
907      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1467  contains Line 919  contains
919      ENDIF      ENDIF
920    
921      ! Precipitation totale      ! Precipitation totale
   
922      DO i = 1, klon      DO i = 1, klon
923         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
924         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
925      ENDDO      ENDDO
926    
927      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit = "after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
     ! Humidité relative pour diagnostic:  
928      DO k = 1, llm      DO k = 1, llm
929         DO i = 1, klon         DO i = 1, klon
930            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
931            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
932               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
933               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
934               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
935               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
936            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
937         ENDDO         ENDDO
938      ENDDO      ENDDO
939    
940      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Introduce the aerosol direct and first indirect radiative forcings:
941      ! Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)      tau_ae = 0.
942      IF (ok_ade .OR. ok_aie) THEN      piz_ae = 0.
943         ! Get sulfate aerosol distribution      cg_ae = 0.
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
944    
945      ! Paramètres optiques des nuages et quelques paramètres pour      ! Param\`etres optiques des nuages et quelques param\`etres pour
946      ! diagnostics :      ! diagnostics :
947      if (ok_newmicro) then      if (ok_newmicro) then
948         CALL newmicro(paprs, play, ok_newmicro, t_seri, cldliq, cldfra, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
949              cldtau, cldemi, cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
950              fiwc, ok_aie, sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, &              sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)
             re, fl)  
951      else      else
952         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
953              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &
954              bl95_b1, cldtaupi, re, fl)              bl95_b1, cldtaupi, re, fl)
955      endif      endif
956    
957      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
958      IF (MOD(itaprad, radpas) == 0) THEN         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
959         DO i = 1, klon         ! Calcul de l'abedo moyen par maille
960            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         albsol = sum(falbe * pctsrf, dim = 2)
961                 + falbe(i, is_lic) * pctsrf(i, is_lic) &  
962                 + falbe(i, is_ter) * pctsrf(i, is_ter) &         ! Rayonnement (compatible Arpege-IFS) :
963                 + falbe(i, is_sic) * pctsrf(i, is_sic)         CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, &
964            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
965                 + falblw(i, is_lic) * pctsrf(i, is_lic) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
966                 + falblw(i, is_ter) * pctsrf(i, is_ter) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
967                 + falblw(i, is_sic) * pctsrf(i, is_sic)              swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, &
968         ENDDO              solswad, cldtaupi, topswai, solswai)
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
969      ENDIF      ENDIF
     itaprad = itaprad + 1  
970    
971      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
972    
973      DO k = 1, llm      DO k = 1, llm
974         DO i = 1, klon         DO i = 1, klon
975            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
976                   / 86400.
977         ENDDO         ENDDO
978      ENDDO      ENDDO
979    
     IF (if_ebil >= 2) THEN  
        ztit = 'after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
980      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
981      DO i = 1, klon      DO i = 1, klon
982         zxqsurf(i) = 0.0         zxqsurf(i) = 0.
983         zxsnow(i) = 0.0         zxsnow(i) = 0.
984      ENDDO      ENDDO
985      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
986         DO i = 1, klon         DO i = 1, klon
987            zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)            zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf)
988            zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)            zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf)
989         ENDDO         ENDDO
990      ENDDO      ENDDO
991    
992      ! Calculer le bilan du sol et la dérive de température (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
993    
994      DO i = 1, klon      DO i = 1, klon
995         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
996      ENDDO      ENDDO
997    
998      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
999    
1000      IF (ok_orodr) THEN      IF (ok_orodr) THEN
1001         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
1002         igwd = 0         igwd = 0
1003         DO i = 1, klon         DO i = 1, klon
1004            itest(i) = 0            itest(i) = 0
1005            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.0)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
1006               itest(i) = 1               itest(i) = 1
1007               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
1008            ENDIF            ENDIF
1009         ENDDO         ENDDO
1010    
1011         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
1012              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
1013              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
1014    
1015         ! ajout des tendances         ! ajout des tendances
1016         DO k = 1, llm         DO k = 1, llm
# Line 1619  contains Line 1023  contains
1023      ENDIF      ENDIF
1024    
1025      IF (ok_orolf) THEN      IF (ok_orolf) THEN
1026         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
1027         igwd = 0         igwd = 0
1028         DO i = 1, klon         DO i = 1, klon
1029            itest(i) = 0            itest(i) = 0
1030            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
1031               itest(i) = 1               itest(i) = 1
1032               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
1033            ENDIF            ENDIF
1034         ENDDO         ENDDO
1035    
# Line 1644  contains Line 1047  contains
1047         ENDDO         ENDDO
1048      ENDIF      ENDIF
1049    
1050      ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE      ! Stress n\'ecessaires : toute la physique
1051    
1052      DO i = 1, klon      DO i = 1, klon
1053         zustrph(i) = 0.         zustrph(i) = 0.
# Line 1652  contains Line 1055  contains
1055      ENDDO      ENDDO
1056      DO k = 1, llm      DO k = 1, llm
1057         DO i = 1, klon         DO i = 1, klon
1058            zustrph(i) = zustrph(i) + (u_seri(i, k)-u(i, k))/dtphys* zmasse(i, k)            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
1059            zvstrph(i) = zvstrph(i) + (v_seri(i, k)-v(i, k))/dtphys* zmasse(i, k)                 * zmasse(i, k)
1060              zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
1061                   * zmasse(i, k)
1062         ENDDO         ENDDO
1063      ENDDO      ENDDO
1064    
1065      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
1066             zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
     CALL aaam_bud(27, klon, llm, time, ra, rg, romega, rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, &  
          aam, torsfc)  
   
     IF (if_ebil >= 2) THEN  
        ztit = 'after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
1067    
1068      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
1069      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
1070           nqmx-2, dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
1071           pen_d, pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
1072           frac_impa, frac_nucl, pphis, albsol, rhcl, cldfra, rneb, &           zmasse, ncid_startphy)
1073           diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, &  
1074           tr_seri, zmasse)      IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, &
1075             pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, &
1076      IF (offline) THEN           frac_impa, frac_nucl, pphis, airephy, dtphys)
        call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, &  
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
1077    
1078      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1079      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
1080    
1081      ! diag. bilKP      ! diag. bilKP
1082    
1083      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
1084           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
1085    
1086      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
1087    
1088      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
1089      DO k = 1, llm      DO k = 1, llm
1090         DO i = 1, klon         DO i = 1, klon
1091            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))
# Line 1706  contains Line 1096  contains
1096         END DO         END DO
1097      END DO      END DO
1098    
     IF (if_ebil >= 1) THEN  
        ztit = 'after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy = d_h_vcol  
   
     END IF  
   
1099      ! SORTIES      ! SORTIES
1100    
1101      !cc prw = eau precipitable      ! prw = eau precipitable
1102      DO i = 1, klon      DO i = 1, klon
1103         prw(i) = 0.         prw(i) = 0.
1104         DO k = 1, llm         DO k = 1, llm
1105            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
1106         ENDDO         ENDDO
1107      ENDDO      ENDDO
1108    
# Line 1745  contains Line 1118  contains
1118         ENDDO         ENDDO
1119      ENDDO      ENDDO
1120    
1121      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1122         DO iq = 3, nqmx         DO k = 1, llm
1123            DO k = 1, llm            DO i = 1, klon
1124               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1125            ENDDO            ENDDO
1126         ENDDO         ENDDO
1127      ENDIF      ENDDO
1128    
1129      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1130      DO k = 1, llm      DO k = 1, llm
# Line 1763  contains Line 1134  contains
1134         ENDDO         ENDDO
1135      ENDDO      ENDDO
1136    
1137      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1138      call write_histhf      CALL histwrite_phy("aire", airephy)
1139      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
1140      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
1141        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1142      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
1143      IF (lafin) THEN      CALL histwrite_phy("tsol", ztsol)
1144         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
1145         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
1146              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", zu10m)
1147              rain_fall, snow_fall, solsw, sollwdown, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", zv10m)
1148              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
1149              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("cdrm", cdragm)
1150      ENDIF      CALL histwrite_phy("cdrh", cdragh)
1151        CALL histwrite_phy("topl", toplw)
1152      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
1153        CALL histwrite_phy("sols", solsw)
1154    contains      CALL histwrite_phy("soll", sollw)
1155        CALL histwrite_phy("solldown", sollwdown)
1156      subroutine write_histday      CALL histwrite_phy("bils", bils)
1157        CALL histwrite_phy("sens", - sens)
1158        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
1159        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1160        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1161        !------------------------------------------------      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1162        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
1163    
1164        !--------------------------------------------------      DO nsrf = 1, nbsrf
1165           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1166        IF (ok_instan) THEN         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1167           ! Champs 2D:         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1168           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1169           zsto = dtphys * ecrit_ins         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1170           zout = dtphys * ecrit_ins         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1171           itau_w = itau_phy + itap         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1172           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1173           i = NINT(zout/zsto)         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1174           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)      END DO
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1175    
1176        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1177           call histsync(nid_hf3d)      CALL histwrite_phy("rugs", zxrugs)
1178        endif      CALL histwrite_phy("s_pblh", s_pblh)
1179        CALL histwrite_phy("s_pblt", s_pblt)
1180        CALL histwrite_phy("s_lcl", s_lcl)
1181        CALL histwrite_phy("s_capCL", s_capCL)
1182        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1183        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1184        CALL histwrite_phy("s_therm", s_therm)
1185        CALL histwrite_phy("s_trmb1", s_trmb1)
1186        CALL histwrite_phy("s_trmb2", s_trmb2)
1187        CALL histwrite_phy("s_trmb3", s_trmb3)
1188    
1189        if (conv_emanuel) then
1190           CALL histwrite_phy("ptop", ema_pct)
1191           CALL histwrite_phy("dnwd0", - mp)
1192        end if
1193    
1194        CALL histwrite_phy("temp", t_seri)
1195        CALL histwrite_phy("vitu", u_seri)
1196        CALL histwrite_phy("vitv", v_seri)
1197        CALL histwrite_phy("geop", zphi)
1198        CALL histwrite_phy("pres", play)
1199        CALL histwrite_phy("dtvdf", d_t_vdf)
1200        CALL histwrite_phy("dqvdf", d_q_vdf)
1201        CALL histwrite_phy("rhum", zx_rh)
1202    
1203        if (ok_instan) call histsync(nid_ins)
1204    
1205        IF (lafin) then
1206           call NF95_CLOSE(ncid_startphy)
1207           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1208                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1209                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1210                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1211                w01)
1212        end IF
1213    
1214      end subroutine write_histhf3d      firstcal = .FALSE.
1215    
1216    END SUBROUTINE physiq    END SUBROUTINE physiq
1217    

Legend:
Removed from v.53  
changed lines
  Added in v.207

  ViewVC Help
Powered by ViewVC 1.1.21