--- trunk/Sources/phylmd/physiq.f 2016/06/02 15:40:30 200 +++ trunk/Sources/phylmd/physiq.f 2016/06/21 15:16:03 205 @@ -18,8 +18,8 @@ USE abort_gcm_m, ONLY: abort_gcm use ajsec_m, only: ajsec use calltherm_m, only: calltherm - USE clesphys, ONLY: cdhmax, cdmmax, ecrit_hf, ecrit_ins, ecrit_mth, & - ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin, ok_instan + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, & + ok_instan USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & ok_orodr, ok_orolf USE clmain_m, ONLY: clmain @@ -27,13 +27,11 @@ use comconst, only: dtphys USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, day_step, iphysiq + USE conf_gcm_m, ONLY: offline, day_step, iphysiq, lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals use diagcld2_m, only: diagcld2 - use diagetpq_m, only: diagetpq - use diagphy_m, only: diagphy USE dimens_m, ONLY: llm, nqmx USE dimphy, ONLY: klon USE dimsoil, ONLY: nsoilmx @@ -58,7 +56,6 @@ USE phyredem0_m, ONLY: phyredem0 USE phystokenc_m, ONLY: phystokenc USE phytrac_m, ONLY: phytrac - USE qcheck_m, ONLY: qcheck use radlwsw_m, only: radlwsw use yoegwd, only: sugwd USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt @@ -89,18 +86,18 @@ REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol REAL, intent(in):: u(:, :) ! (klon, llm) - ! vitesse dans la direction X (de O a E) en m/s + ! vitesse dans la direction X (de O a E) en m / s - REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s + REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K) REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx) ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs) - REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s + REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2) REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2) - REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s) + REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s) REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx) ! tendance physique de "qx" (s-1) @@ -109,9 +106,6 @@ LOGICAL:: firstcal = .true. - LOGICAL, PARAMETER:: check = .FALSE. - ! Verifier la conservation du modele en eau - LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus @@ -126,24 +120,22 @@ REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm) LOGICAL, save:: ancien_ok - REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s) - REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s) + REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s) + REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s) real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) - REAL swdn0(klon, llm + 1), swdn(klon, llm + 1) - REAL swup0(klon, llm + 1), swup(klon, llm + 1) - SAVE swdn0, swdn, swup0, swup - - REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) - REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) - SAVE lwdn0, lwdn, lwup0, lwup + REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1) + REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1) + + REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1) + REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1) ! prw: precipitable water real prw(klon) - ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2) - ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg) + ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2) + ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg) REAL flwp(klon), fiwp(klon) REAL flwc(klon, llm), fiwc(klon, llm) @@ -153,8 +145,7 @@ ! Radiative transfer computations are made every "radpas" call to ! "physiq". - REAL radsol(klon) - SAVE radsol ! bilan radiatif au sol calcule par code radiatif + REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction @@ -162,8 +153,7 @@ ! soil temperature of surface fraction REAL, save:: fevap(klon, nbsrf) ! evaporation - REAL fluxlat(klon, nbsrf) - SAVE fluxlat + REAL, save:: fluxlat(klon, nbsrf) REAL, save:: fqsurf(klon, nbsrf) ! humidite de l'air au contact de la surface @@ -202,35 +192,36 @@ REAL ycoefh(klon, llm) ! coef d'echange pour phytrac REAL yu1(klon) ! vents dans la premiere couche U REAL yv1(klon) ! vents dans la premiere couche V - REAL ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige - REAL fqcalving(klon, nbsrf) + REAL, save:: ffonte(klon, nbsrf) + ! flux thermique utilise pour fondre la neige + + REAL, save:: fqcalving(klon, nbsrf) ! flux d'eau "perdue" par la surface et necessaire pour limiter la - ! hauteur de neige, en kg/m2/s + ! hauteur de neige, en kg / m2 / s REAL zxffonte(klon), zxfqcalving(klon) - REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction - save pfrac_impa - REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation - save pfrac_nucl - REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1) - save pfrac_1nucl + REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction + REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation + + REAL, save:: pfrac_1nucl(klon, llm) + ! Produits des coefs lessi nucl (alpha = 1) + REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) REAL, save:: rain_fall(klon) - ! liquid water mass flux (kg/m2/s), positive down + ! liquid water mass flux (kg / m2 / s), positive down REAL, save:: snow_fall(klon) - ! solid water mass flux (kg/m2/s), positive down + ! solid water mass flux (kg / m2 / s), positive down REAL rain_tiedtke(klon), snow_tiedtke(klon) REAL evap(klon), devap(klon) ! evaporation and its derivative REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee - REAL dlw(klon) ! derivee infra rouge - SAVE dlw + REAL, save:: dlw(klon) ! derivee infra rouge REAL bils(klon) ! bilan de chaleur au sol REAL, save:: fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie @@ -244,9 +235,7 @@ ! Conditions aux limites INTEGER julien - INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface - REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE REAL, save:: albsol(klon) ! albedo du sol total visible REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU @@ -285,18 +274,18 @@ REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface - REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) - REAL conv_t(klon, llm) ! convergence of temperature (K/s) + REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s) + REAL conv_t(klon, llm) ! convergence of temperature (K / s) REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree - REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) + REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) REAL dist, mu0(klon), fract(klon) real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) - REAL za, zb + REAL zb REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf @@ -326,8 +315,7 @@ REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux - REAL cape(klon) ! CAPE - SAVE cape + REAL, save:: cape(klon) INTEGER iflagctrl(klon) ! flag fonctionnement de convect @@ -339,7 +327,7 @@ ! eva: \'evaporation de l'eau liquide nuageuse ! vdf: vertical diffusion in boundary layer REAL d_t_con(klon, llm), d_q_con(klon, llm) - REAL d_u_con(klon, llm), d_v_con(klon, llm) + REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm) REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm) REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm) REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm) @@ -355,7 +343,8 @@ INTEGER, save:: ibas_con(klon), itop_con(klon) real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa - REAL rain_con(klon), rain_lsc(klon) + REAL, save:: rain_con(klon) + real rain_lsc(klon) REAL, save:: snow_con(klon) ! neige (mm / s) real snow_lsc(klon) REAL d_ts(klon, nbsrf) @@ -401,32 +390,26 @@ REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. real date0 - - ! Variables li\'ees au bilan d'\'energie et d'enthalpie : REAL ztsol(klon) - REAL d_h_vcol, d_qt, d_ec - REAL, SAVE:: d_h_vcol_phy - REAL zero_v(klon) - CHARACTER(LEN = 20) tit - INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics - INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation - REAL d_t_ec(klon, llm) + REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec en énergie thermique REAL ZRCPD - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m + REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf) + ! temperature and humidity at 2 m + + REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille ! Aerosol effects: - REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3) + REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3) REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in \mu g/m3, pre-industrial value + ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value REAL cldtaupi(klon, llm) ! cloud optical thickness for pre-industrial aerosols @@ -438,8 +421,8 @@ REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2) REAL, save:: cg_ae(klon, llm, 2) - REAL topswad(klon), solswad(klon) ! aerosol direct effect - REAL topswai(klon), solswai(klon) ! aerosol indirect effect + REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect + REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect LOGICAL:: ok_ade = .false. ! apply aerosol direct effect LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect @@ -449,32 +432,17 @@ ! B). They link cloud droplet number concentration to aerosol mass ! concentration. - SAVE u10m - SAVE v10m - SAVE t2m - SAVE q2m - SAVE ffonte - SAVE fqcalving - SAVE rain_con - SAVE topswai - SAVE topswad - SAVE solswai - SAVE solswad - SAVE d_u_con - SAVE d_v_con - real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) integer, save:: ncid_startphy - namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, & - iflag_cldcon, ratqsbas, ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, & - bl95_b1, iflag_thermals, nsplit_thermals + namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, & + ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, & + iflag_thermals, nsplit_thermals !---------------------------------------------------------------- - IF (if_ebil >= 1) zero_v = 0. IF (nqmx < 2) CALL abort_gcm('physiq', & 'eaux vapeur et liquide sont indispensables') @@ -514,8 +482,6 @@ trmb2 =0. ! inhibition trmb3 =0. ! Point Omega - IF (if_ebil >= 1) d_h_vcol_phy = 0. - iflag_thermals = 0 nsplit_thermals = 1 print *, "Enter namelist 'physiq_nml'." @@ -536,9 +502,6 @@ ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 - lmt_pas = day_step / iphysiq - print *, 'Number of time steps of "physics" per day: ', lmt_pas - radpas = lmt_pas / nbapp_rad print *, "radpas = ", radpas @@ -555,11 +518,7 @@ rugoro = 0. ENDIF - ecrit_ins = NINT(ecrit_ins/dtphys) - ecrit_hf = NINT(ecrit_hf/dtphys) - ecrit_mth = NINT(ecrit_mth/dtphys) - ecrit_tra = NINT(86400.*ecrit_tra/dtphys) - ecrit_reg = NINT(ecrit_reg/dtphys) + ecrit_ins = NINT(ecrit_ins / dtphys) ! Initialisation des sorties @@ -567,7 +526,7 @@ CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 - CALL phyredem0(lmt_pas) + CALL phyredem0 ENDIF test_firstcal ! We will modify variables *_seri and we will not touch variables @@ -581,20 +540,6 @@ ztsol = sum(ftsol * pctsrf, dim = 2) - IF (if_ebil >= 1) THEN - tit = 'after dynamics' - CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - ! Comme les tendances de la physique sont ajout\'es dans la - ! dynamique, la variation d'enthalpie par la dynamique devrait - ! \^etre \'egale \`a la variation de la physique au pas de temps - ! pr\'ec\'edent. Donc la somme de ces 2 variations devrait \^etre - ! nulle. - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, & - d_qt, 0.) - END IF - ! Diagnostic de la tendance dynamique : IF (ancien_ok) THEN DO k = 1, llm @@ -643,14 +588,6 @@ ENDDO ql_seri = 0. - IF (if_ebil >= 2) THEN - tit = 'after reevap' - CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) - END IF - frugs = MAX(frugs, 0.000015) zxrugs = sum(frugs * pctsrf, dim = 2) @@ -680,14 +617,14 @@ ! Couche limite: - CALL clmain(dtphys, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, v_seri, & - julien, mu0, ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, & - ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, & - rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, firstcal, & - agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, & - fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, & - yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, & - trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) + CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & + ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & + paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & + snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, & + d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & + fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & + u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & + trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! Incr\'ementation des flux @@ -720,18 +657,9 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after clmain' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) - END IF - ! Update surface temperature: DO i = 1, klon - zxtsol(i) = 0. zxfluxlat(i) = 0. zt2m(i) = 0. @@ -755,71 +683,66 @@ call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') + ftsol = ftsol + d_ts + ztsol = sum(ftsol * pctsrf, dim = 2) DO nsrf = 1, nbsrf DO i = 1, klon - ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf) - zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf) - - zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf) - zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf) - zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf) - zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf) - zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf) + zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf) + + zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf) + zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf) + zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf) + zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf) + zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf) zxfqcalving(i) = zxfqcalving(i) + & - fqcalving(i, nsrf)*pctsrf(i, nsrf) - s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf) - s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf) - s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf) - s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf) - s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf) - s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf) - s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf) - s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf) - s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf) - s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf) + fqcalving(i, nsrf) * pctsrf(i, nsrf) + s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf) + s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf) + s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf) + s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf) + s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf) + s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf) + s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf) + s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf) + s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf) + s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO - ! Si une sous-fraction n'existe pas, elle prend la température moyenne : + ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne : DO nsrf = 1, nbsrf DO i = 1, klon - IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) - - IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i) - IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i) - IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i) - IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i) - IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i) - IF (pctsrf(i, nsrf) < epsfra) & - fqcalving(i, nsrf) = zxfqcalving(i) - IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i) - IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i) - IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i) - IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i) - IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i) - IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i) - IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i) - IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i) - IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i) - IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i) + IF (pctsrf(i, nsrf) < epsfra) then + ftsol(i, nsrf) = ztsol(i) + t2m(i, nsrf) = zt2m(i) + q2m(i, nsrf) = zq2m(i) + u10m(i, nsrf) = zu10m(i) + v10m(i, nsrf) = zv10m(i) + ffonte(i, nsrf) = zxffonte(i) + fqcalving(i, nsrf) = zxfqcalving(i) + pblh(i, nsrf) = s_pblh(i) + plcl(i, nsrf) = s_lcl(i) + capCL(i, nsrf) = s_capCL(i) + oliqCL(i, nsrf) = s_oliqCL(i) + cteiCL(i, nsrf) = s_cteiCL(i) + pblT(i, nsrf) = s_pblT(i) + therm(i, nsrf) = s_therm(i) + trmb1(i, nsrf) = s_trmb1(i) + trmb2(i, nsrf) = s_trmb2(i) + trmb3(i, nsrf) = s_trmb3(i) + end IF ENDDO ENDDO ! Calculer la dérive du flux infrarouge DO i = 1, klon - dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 + dlw(i) = - 4. * RSIGMA * ztsol(i)**3 ENDDO - IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri) - ! Appeler la convection if (conv_emanuel) then - da = 0. - mp = 0. - phi = 0. CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) @@ -869,28 +792,6 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after convect' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec) - END IF - - IF (check) THEN - za = qcheck(paprs, q_seri, ql_seri) - print *, "aprescon = ", za - zx_t = 0. - za = 0. - DO i = 1, klon - za = za + airephy(i)/REAL(klon) - zx_t = zx_t + (rain_con(i)+ & - snow_con(i))*airephy(i)/REAL(klon) - ENDDO - zx_t = zx_t/za*dtphys - print *, "Precip = ", zx_t - ENDIF - IF (.not. conv_emanuel) THEN z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres @@ -922,12 +823,6 @@ q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm) endif - IF (if_ebil >= 2) THEN - tit = 'after dry_adjust' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - END IF - ! Caclul des ratqs ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q @@ -982,27 +877,6 @@ IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k) ENDDO ENDDO - IF (check) THEN - za = qcheck(paprs, q_seri, ql_seri) - print *, "apresilp = ", za - zx_t = 0. - za = 0. - DO i = 1, klon - za = za + airephy(i)/REAL(klon) - zx_t = zx_t + (rain_lsc(i) & - + snow_lsc(i))*airephy(i)/REAL(klon) - ENDDO - zx_t = zx_t/za*dtphys - print *, "Precip = ", zx_t - ENDIF - - IF (if_ebil >= 2) THEN - tit = 'after fisrt' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec) - END IF ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT @@ -1018,8 +892,8 @@ do k = 1, llm do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k)/dtphys & - *zmasse(i, k) + rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys & + * zmasse(i, k) endif enddo enddo @@ -1054,7 +928,7 @@ ! On prend la somme des fractions nuageuses et des contenus en eau cldfra = min(max(cldfra, rnebcon), 1.) - cldliq = cldliq + rnebcon*clwcon + cldliq = cldliq + rnebcon * clwcon ENDIF ! 2. Nuages stratiformes @@ -1077,27 +951,23 @@ snow_fall(i) = snow_con(i) + snow_lsc(i) ENDDO - IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, & - dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & - d_qt, d_ec) - ! Humidit\'e relative pour diagnostic : DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN - zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1. - retv*zx_qs) - zx_qs = zx_qs*zcor + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor ELSE IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/play(i, k) + zx_qs = qsats(zx_t) / play(i, k) ELSE - zx_qs = qsatl(zx_t)/play(i, k) + zx_qs = qsatl(zx_t) / play(i, k) ENDIF ENDIF - zx_rh(i, k) = q_seri(i, k)/zx_qs + zx_rh(i, k) = q_seri(i, k) / zx_qs zqsat(i, k) = zx_qs ENDDO ENDDO @@ -1125,7 +995,7 @@ albsol = sum(falbe * pctsrf, dim = 2) ! Rayonnement (compatible Arpege-IFS) : - CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, t_seri, & + CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, & q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, & radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, & toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, & @@ -1137,18 +1007,11 @@ DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys & + / 86400. ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after rad' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) - END IF - ! Calculer l'hydrologie de la surface DO i = 1, klon zxqsurf(i) = 0. @@ -1156,8 +1019,8 @@ ENDDO DO nsrf = 1, nbsrf DO i = 1, klon - zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf) - zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf) + zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf) + zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO @@ -1237,15 +1100,11 @@ CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, & zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) - IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, & - 2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & - d_qt, d_ec) - ! Calcul des tendances traceurs - call phytrac(lmt_pas, julien, time, firstcal, lafin, dtphys, t, paprs, & - play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, & - yv1, ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, & - tr_seri, zmasse, ncid_startphy) + call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, & + mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, & + pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, & + zmasse, ncid_startphy) IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, & pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, & @@ -1272,26 +1131,13 @@ END DO END DO - IF (if_ebil >= 1) THEN - tit = 'after physic' - CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, - ! on devrait avoir que la variation d'entalpie par la dynamique - ! est egale a la variation de la physique au pas de temps precedent. - ! Donc la somme de ces 2 variations devrait etre nulle. - call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, & - evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec) - d_h_vcol_phy = d_h_vcol - END IF - ! SORTIES ! prw = eau precipitable DO i = 1, klon prw(i) = 0. DO k = 1, llm - prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k) + prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k) ENDDO ENDDO @@ -1329,7 +1175,7 @@ CALL histwrite_phy("precip", rain_fall + snow_fall) CALL histwrite_phy("plul", rain_lsc + snow_lsc) CALL histwrite_phy("pluc", rain_con + snow_con) - CALL histwrite_phy("tsol", zxtsol) + CALL histwrite_phy("tsol", ztsol) CALL histwrite_phy("t2m", zt2m) CALL histwrite_phy("q2m", zq2m) CALL histwrite_phy("u10m", zu10m) @@ -1351,7 +1197,7 @@ CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic)) DO nsrf = 1, nbsrf - CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf)*100.) + CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf)) CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))