/[lmdze]/trunk/Sources/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 7 by guez, Mon Mar 31 12:24:17 2008 UTC trunk/Sources/phylmd/physiq.f revision 214 by guez, Wed Mar 22 13:40:27 2017 UTC
# Line 1  Line 1 
1  module physiq_m  module physiq_m
2    
   ! This module is clean: no C preprocessor directive, no include line.  
   
3    IMPLICIT none    IMPLICIT none
4    
   private  
   public physiq  
   
5  contains  contains
6    
7    SUBROUTINE physiq (nq, firstcal, lafin, rdayvrai, gmtime, pdtphys, paprs, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         pplay, pphi, pphis, presnivs, clesphy0, u, v, t, qx, omega, d_u, d_v, &         qx, omega, d_u, d_v, d_t, d_qx)
        d_t, d_qx, d_ps, dudyn, PVteta)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     ! Author : Z.X. Li (LMD/CNRS), date: 1993/08/18  
   
     ! Objet: Moniteur general de la physique du modele  
     !AA      Modifications quant aux traceurs :  
     !AA                  -  uniformisation des parametrisations ds phytrac  
     !AA                  -  stockage des moyennes des champs necessaires  
     !AA                     en mode traceur off-line  
   
     USE ioipsl, only: ymds2ju, histwrite, histsync  
     use dimens_m, only: jjm, iim, llm  
     use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, &  
          clnsurf, epsfra  
     use dimphy, only: klon, nbtr  
     use conf_gcm_m, only: raz_date, offline, iphysiq  
     use dimsoil, only: nsoilmx  
     use temps, only: itau_phy, day_ref, annee_ref, itaufin  
     use clesphys, only: ecrit_hf, ecrit_hf2mth, &  
          ecrit_ins, iflag_con, ok_orolf, ok_orodr, ecrit_mth, ecrit_day, &  
          nbapp_rad, cycle_diurne, cdmmax, cdhmax, &  
          co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, new_oliq, &  
          ok_kzmin, soil_model  
     use iniprint, only: lunout, prt_level  
     use abort_gcm_m, only: abort_gcm  
     use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega  
     use comgeomphy  
     use ctherm  
     use phytrac_m, only: phytrac  
     use oasis_m  
     use radepsi  
     use radopt  
     use yoethf  
     use ini_hist, only: ini_histhf, ini_histday, ini_histins  
     use orbite_m, only: orbite, zenang  
     use phyetat0_m, only: phyetat0, rlat, rlon  
     use hgardfou_m, only: hgardfou  
     use conf_phys_m, only: conf_phys  
   
     ! Declaration des constantes et des fonctions thermodynamiques :  
     use fcttre, only: thermcep, foeew, qsats, qsatl  
   
     ! Variables argument:  
   
     INTEGER nq ! input nombre de traceurs (y compris vapeur d'eau)  
     REAL, intent(in):: rdayvrai ! input numero du jour de l'experience  
     REAL, intent(in):: gmtime ! heure de la journée en fraction de jour  
     REAL pdtphys ! input pas d'integration pour la physique (seconde)  
     LOGICAL, intent(in):: firstcal ! first call to "calfis"  
     logical, intent(in):: lafin ! dernier passage  
9    
10      REAL, intent(in):: paprs(klon, llm+1)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (pression pour chaque inter-couche, en Pa)      ! (subversion revision 678)
       
     REAL pplay(klon, llm)  
     ! (input pression pour le mileu de chaque couche (en Pa))  
   
     REAL pphi(klon, llm)    
     ! (input geopotentiel de chaque couche (g z) (reference sol))  
   
     REAL pphis(klon) ! input geopotentiel du sol  
   
     REAL presnivs(llm)  
     ! (input pressions approximat. des milieux couches ( en PA))  
   
     REAL u(klon, llm)  ! input vitesse dans la direction X (de O a E) en m/s  
     REAL v(klon, llm)  ! input vitesse Y (de S a N) en m/s  
     REAL t(klon, llm)  ! input temperature (K)  
   
     REAL qx(klon, llm, nq)  
     ! (input humidite specifique (kg/kg) et d'autres traceurs)  
   
     REAL omega(klon, llm)  ! input vitesse verticale en Pa/s  
     REAL d_u(klon, llm)  ! output tendance physique de "u" (m/s/s)  
     REAL d_v(klon, llm)  ! output tendance physique de "v" (m/s/s)  
     REAL d_t(klon, llm)  ! output tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nq)  ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon)  ! output tendance physique de la pression au sol  
   
     INTEGER nbteta  
     PARAMETER(nbteta=3)  
   
     REAL PVteta(klon, nbteta)  
     ! (output vorticite potentielle a des thetas constantes)  
   
     LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE  
     PARAMETER (ok_cvl=.TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
   
     LOGICAL check ! Verifier la conservation du modele en eau  
     PARAMETER (check=.FALSE.)  
     LOGICAL ok_stratus ! Ajouter artificiellement les stratus  
     PARAMETER (ok_stratus=.FALSE.)  
   
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE :: npas, nexca  
     logical rnpb  
     parameter(rnpb=.true.)  
     !      ocean = type de modele ocean a utiliser: force, slab, couple  
     character(len=6) ocean  
     SAVE ocean  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     !IM "slab" ocean  
     REAL tslab(klon)    !Temperature du slab-ocean  
     SAVE tslab  
     REAL seaice(klon)   !glace de mer (kg/m2)  
     SAVE seaice  
     REAL fluxo(klon)    !flux turbulents ocean-glace de mer  
     REAL fluxg(klon)    !flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical ok_veget  
     save ok_veget  
     LOGICAL ok_journe ! sortir le fichier journalier  
     save ok_journe  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
12    
13      LOGICAL ok_instan ! sortir le fichier instantane      ! Author: Z. X. Li (LMD/CNRS) 1993
     save ok_instan  
14    
15      LOGICAL ok_region ! sortir le fichier regional      ! This is the main procedure for the "physics" part of the program.
16      PARAMETER (ok_region=.FALSE.)  
17        use aaam_bud_m, only: aaam_bud
18      !     pour phsystoke avec thermiques      USE abort_gcm_m, ONLY: abort_gcm
19      REAL fm_therm(klon, llm+1)      use ajsec_m, only: ajsec
20      REAL entr_therm(klon, llm)      use calltherm_m, only: calltherm
21      real q2(klon, llm+1, nbsrf)      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22      save q2           ok_instan
23        USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
24      INTEGER ivap          ! indice de traceurs pour vapeur d'eau      USE clmain_m, ONLY: clmain
25      PARAMETER (ivap=1)      use clouds_gno_m, only: clouds_gno
26      INTEGER iliq          ! indice de traceurs pour eau liquide      use comconst, only: dtphys
27      PARAMETER (iliq=2)      USE comgeomphy, ONLY: airephy
28        USE concvl_m, ONLY: concvl
29      REAL t_ancien(klon, llm), q_ancien(klon, llm)      USE conf_gcm_m, ONLY: offline, lmt_pas
30      SAVE t_ancien, q_ancien      USE conf_phys_m, ONLY: conf_phys
31      LOGICAL ancien_ok      use conflx_m, only: conflx
32      SAVE ancien_ok      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33        use diagcld2_m, only: diagcld2
34      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      USE dimens_m, ONLY: llm, nqmx
35      REAL d_q_dyn(klon, llm)  ! tendance dynamique pour "q" (kg/kg/s)      USE dimphy, ONLY: klon
36        USE dimsoil, ONLY: nsoilmx
37      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      use drag_noro_m, only: drag_noro
38        use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew, qsatl, qsats
40        use fisrtilp_m, only: fisrtilp
41        USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44        USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45             nbsrf
46        USE ini_histins_m, ONLY: ini_histins, nid_ins
47        use netcdf95, only: NF95_CLOSE
48        use newmicro_m, only: newmicro
49        use nr_util, only: assert
50        use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52        USE ozonecm_m, ONLY: ozonecm
53        USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54        USE phyredem_m, ONLY: phyredem
55        USE phyredem0_m, ONLY: phyredem0
56        USE phystokenc_m, ONLY: phystokenc
57        USE phytrac_m, ONLY: phytrac
58        use radlwsw_m, only: radlwsw
59        use yoegwd, only: sugwd
60        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61        use time_phylmdz, only: itap, increment_itap
62        use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64        use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66        USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
69      !IM Amip2 PV a theta constante      logical, intent(in):: lafin ! dernier passage
70    
71      CHARACTER(LEN=3) ctetaSTD(nbteta)      integer, intent(in):: dayvrai
72      DATA ctetaSTD/'350', '380', '405'/      ! current day number, based at value 1 on January 1st of annee_ref
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL SWdn200clr(klon), SWdn200(klon)  
     REAL SWup200clr(klon), SWup200(klon)  
     SAVE SWdn200clr, SWdn200, SWup200clr, SWup200  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     REAL LWdn200clr(klon), LWdn200(klon)  
     REAL LWup200clr(klon), LWup200(klon)  
     SAVE LWdn200clr, LWdn200, LWup200clr, LWup200  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70  ', '50  ', '30  ', '20  ', '10  '/  
   
     real tlevSTD(klon, nlevSTD), qlevSTD(klon, nlevSTD)  
     real rhlevSTD(klon, nlevSTD), philevSTD(klon, nlevSTD)  
     real ulevSTD(klon, nlevSTD), vlevSTD(klon, nlevSTD)  
     real wlevSTD(klon, nlevSTD)  
   
     ! nout : niveau de output des variables a une pression donnee  
     INTEGER nout  
     PARAMETER(nout=3) !nout=1 : day; =2 : mth; =3 : NMC  
   
     REAL tsumSTD(klon, nlevSTD, nout)  
     REAL usumSTD(klon, nlevSTD, nout), vsumSTD(klon, nlevSTD, nout)  
     REAL wsumSTD(klon, nlevSTD, nout), phisumSTD(klon, nlevSTD, nout)  
     REAL qsumSTD(klon, nlevSTD, nout), rhsumSTD(klon, nlevSTD, nout)  
   
     SAVE tsumSTD, usumSTD, vsumSTD, wsumSTD, phisumSTD,  &  
          qsumSTD, rhsumSTD  
   
     logical oknondef(klon, nlevSTD, nout)  
     real tnondef(klon, nlevSTD, nout)  
     save tnondef  
   
     ! les produits uvSTD, vqSTD, .., T2STD sont calcules  
     ! a partir des valeurs instantannees toutes les 6 h  
     ! qui sont moyennees sur le mois  
   
     real uvSTD(klon, nlevSTD)  
     real vqSTD(klon, nlevSTD)  
     real vTSTD(klon, nlevSTD)  
     real wqSTD(klon, nlevSTD)  
   
     real uvsumSTD(klon, nlevSTD, nout)  
     real vqsumSTD(klon, nlevSTD, nout)  
     real vTsumSTD(klon, nlevSTD, nout)  
     real wqsumSTD(klon, nlevSTD, nout)  
   
     real vphiSTD(klon, nlevSTD)  
     real wTSTD(klon, nlevSTD)  
     real u2STD(klon, nlevSTD)  
     real v2STD(klon, nlevSTD)  
     real T2STD(klon, nlevSTD)  
   
     real vphisumSTD(klon, nlevSTD, nout)  
     real wTsumSTD(klon, nlevSTD, nout)  
     real u2sumSTD(klon, nlevSTD, nout)  
     real v2sumSTD(klon, nlevSTD, nout)  
     real T2sumSTD(klon, nlevSTD, nout)  
   
     SAVE uvsumSTD, vqsumSTD, vTsumSTD, wqsumSTD  
     SAVE vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, T2sumSTD  
     !MI Amip2  
73    
74      ! prw: precipitable water      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     real prw(klon)  
75    
76      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! pression pour chaque inter-couche, en Pa
     REAL flwp(klon), fiwp(klon)  
     REAL flwc(klon, llm), fiwc(klon, llm)  
78    
79      INTEGER l, kmax, lmax      REAL, intent(in):: play(:, :) ! (klon, llm)
80      PARAMETER(kmax=8, lmax=8)      ! pression pour le mileu de chaque couche (en Pa)
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
     INTEGER        longcles  
     PARAMETER    ( longcles = 20 )  
     REAL clesphy0( longcles      )  
81    
82      ! Variables propres a la physique      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83        ! géopotentiel de chaque couche (référence sol)
84    
85      REAL, SAVE:: dtime ! pas temporel de la physique (s)      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
86    
87      INTEGER, save:: radpas      REAL, intent(in):: u(:, :) ! (klon, llm)
88      ! (Radiative transfer computations are made every "radpas" call to      ! vitesse dans la direction X (de O a E) en m / s
     ! "physiq".)  
89    
90      REAL radsol(klon)      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      SAVE radsol               ! bilan radiatif au sol calcule par code radiatif      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92    
93      INTEGER, SAVE:: itap ! number of calls to "physiq"      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94      REAL co2_ppm_etat0      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
     REAL solaire_etat0  
95    
96      REAL ftsol(klon, nbsrf)      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      SAVE ftsol                  ! temperature du sol      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL ftsoil(klon, nsoilmx, nbsrf)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      SAVE ftsoil                 ! temperature dans le sol      ! tendance physique de "qx" (s-1)
103    
104      REAL fevap(klon, nbsrf)      ! Local:
     SAVE fevap                 ! evaporation  
     REAL fluxlat(klon, nbsrf)  
     SAVE fluxlat  
105    
106      REAL fqsurf(klon, nbsrf)      LOGICAL:: firstcal = .true.
     SAVE fqsurf                 ! humidite de l'air au contact de la surface  
107    
108      REAL qsol(klon)      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      SAVE qsol                  ! hauteur d'eau dans le sol      ! Ajouter artificiellement les stratus
110    
111      REAL fsnow(klon, nbsrf)      ! pour phystoke avec thermiques
112      SAVE fsnow                  ! epaisseur neigeuse      REAL fm_therm(klon, llm + 1)
113        REAL entr_therm(klon, llm)
114        real, save:: q2(klon, llm + 1, nbsrf)
115    
116      REAL falbe(klon, nbsrf)      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      SAVE falbe                  ! albedo par type de surface      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     REAL falblw(klon, nbsrf)  
     SAVE falblw                 ! albedo par type de surface  
118    
119      !  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120        LOGICAL, save:: ancien_ok
121    
122      REAL zmea(klon)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      SAVE zmea                   ! orographie moyenne      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      REAL zstd(klon)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
     SAVE zstd                   ! deviation standard de l'OESM  
126    
127      REAL zsig(klon)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128      SAVE zsig                   ! pente de l'OESM      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      REAL zgam(klon)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      save zgam                   ! anisotropie de l'OESM      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
132    
133      REAL zthe(klon)      ! prw: precipitable water
134      SAVE zthe                   ! orientation de l'OESM      real prw(klon)
135    
136      REAL zpic(klon)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      SAVE zpic                   ! Maximum de l'OESM      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138        REAL flwp(klon), fiwp(klon)
139        REAL flwc(klon, llm), fiwc(klon, llm)
140    
141      REAL zval(klon)      ! Variables propres a la physique
     SAVE zval                   ! Minimum de l'OESM  
142    
143      REAL rugoro(klon)      INTEGER, save:: radpas
144      SAVE rugoro                 ! longueur de rugosite de l'OESM      ! Radiative transfer computations are made every "radpas" call to
145        ! "physiq".
146    
147      REAL zulow(klon), zvlow(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
148        REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
151        ! soil temperature of surface fraction
152    
153      REAL agesno(klon, nbsrf)      REAL, save:: fevap(klon, nbsrf) ! evaporation
154      SAVE agesno                 ! age de la neige      REAL fluxlat(klon, nbsrf)
155    
156      REAL run_off_lic_0(klon)      REAL, save:: fqsurf(klon, nbsrf)
157      SAVE run_off_lic_0      ! humidite de l'air au contact de la surface
     !KE43  
     ! Variables liees a la convection de K. Emanuel (sb):  
158    
159      REAL bas, top             ! cloud base and top levels      REAL, save:: qsol(klon)
160      SAVE bas      ! column-density of water in soil, in kg m-2
     SAVE top  
161    
162      REAL Ma(klon, llm)        ! undilute upward mass flux      REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
163      SAVE Ma      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     REAL qcondc(klon, llm)    ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
164    
165      REAL wd(klon) ! sb      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
166      SAVE wd       ! sb      REAL, save:: zmea(klon) ! orographie moyenne
167        REAL, save:: zstd(klon) ! deviation standard de l'OESM
168        REAL, save:: zsig(klon) ! pente de l'OESM
169        REAL, save:: zgam(klon) ! anisotropie de l'OESM
170        REAL, save:: zthe(klon) ! orientation de l'OESM
171        REAL, save:: zpic(klon) ! Maximum de l'OESM
172        REAL, save:: zval(klon) ! Minimum de l'OESM
173        REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
174        REAL zulow(klon), zvlow(klon)
175        INTEGER igwd, itest(klon)
176    
177      ! Variables locales pour la couche limite (al1):      REAL, save:: agesno(klon, nbsrf) ! age de la neige
178        REAL, save:: run_off_lic_0(klon)
179    
180      ! Variables locales:      ! Variables li\'ees \`a la convection d'Emanuel :
181        REAL, save:: Ma(klon, llm) ! undilute upward mass flux
182        REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
183        REAL, save:: sig1(klon, llm), w01(klon, llm)
184    
185        ! Variables pour la couche limite (Alain Lahellec) :
186      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
187      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
188    
189      !AA  Pour phytrac      ! Pour phytrac :
190      REAL ycoefh(klon, llm)    ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
191      REAL yu1(klon)            ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
192      REAL yv1(klon)            ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
193      REAL ffonte(klon, nbsrf)    !Flux thermique utilise pour fondre la neige  
194      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: ffonte(klon, nbsrf)
195      !                               !et necessaire pour limiter la      ! flux thermique utilise pour fondre la neige
196      !                               !hauteur de neige, en kg/m2/s  
197        REAL, save:: fqcalving(klon, nbsrf)
198        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
199        ! hauteur de neige, en kg / m2 / s
200    
201      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
202    
203      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
204      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
205      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
206      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
207      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
208      save pfrac_1nucl  
209      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
210      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
211    
212      !AA      REAL, save:: rain_fall(klon)
213      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg / m2 / s), positive down
214      REAL snow_fall(klon) ! neige  
215      save snow_fall, rain_fall      REAL, save:: snow_fall(klon)
216      !IM cf FH pour Tiedtke 080604      ! solid water mass flux (kg / m2 / s), positive down
     REAL rain_tiedtke(klon), snow_tiedtke(klon)  
217    
218      REAL total_rain(klon), nday_rain(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
     save nday_rain  
219    
220      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
221      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
222      REAL dlw(klon)    ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
223      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
224        REAL, save:: dlw(klon) ! derivee infra rouge
225      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
226      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
     save fder  
227      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
228      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
229      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
230      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
231    
232      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
233      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
234    
235      ! Conditions aux limites      ! Conditions aux limites
236    
237      INTEGER julien      INTEGER julien
238        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
239        REAL, save:: albsol(klon) ! albedo du sol total visible
240        REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
241        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
242    
243        real, save:: clwcon(klon, llm), rnebcon(klon, llm)
244        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
245    
246        REAL rhcl(klon, llm) ! humiditi relative ciel clair
247        REAL dialiq(klon, llm) ! eau liquide nuageuse
248        REAL diafra(klon, llm) ! fraction nuageuse
249        REAL cldliq(klon, llm) ! eau liquide nuageuse
250        REAL cldfra(klon, llm) ! fraction nuageuse
251        REAL cldtau(klon, llm) ! epaisseur optique
252        REAL cldemi(klon, llm) ! emissivite infrarouge
253    
254        REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
255        REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
256        REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
257        REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
258    
259        ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
260        ! les variables soient r\'emanentes.
261        REAL, save:: heat(klon, llm) ! chauffage solaire
262        REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
263        REAL, save:: cool(klon, llm) ! refroidissement infrarouge
264        REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
265        REAL, save:: topsw(klon), toplw(klon), solsw(klon)
266        REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
267        real, save:: sollwdown(klon) ! downward LW flux at surface
268        REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
269        REAL, save:: albpla(klon)
270        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
271        REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
272    
273        REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
274        REAL conv_t(klon, llm) ! convergence of temperature (K / s)
275    
276      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
277      REAL pctsrf(klon, nbsrf)      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf                 ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol                 ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw                 ! albedo du sol total  
   
     REAL, SAVE:: wo(klon, llm) ! ozone  
   
     ! Declaration des procedures appelees  
   
     EXTERNAL alboc     ! calculer l'albedo sur ocean  
     EXTERNAL ajsec     ! ajustement sec  
     EXTERNAL clmain    ! couche limite  
     !KE43  
     EXTERNAL conema3  ! convect4.3  
     EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)  
     EXTERNAL nuage     ! calculer les proprietes radiatives  
     EXTERNAL ozonecm   ! prescrire l'ozone  
     EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique  
     EXTERNAL radlwsw   ! rayonnements solaire et infrarouge  
     EXTERNAL transp    ! transport total de l'eau et de l'energie  
   
     EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression  
   
     EXTERNAL undefSTD  
     ! (somme les valeurs definies d'1 var a 1 niveau de pression)  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
   
     REAL rhcl(klon, llm)    ! humiditi relative ciel clair  
     REAL dialiq(klon, llm)  ! eau liquide nuageuse  
     REAL diafra(klon, llm)  ! fraction nuageuse  
     REAL cldliq(klon, llm)  ! eau liquide nuageuse  
     REAL cldfra(klon, llm)  ! fraction nuageuse  
     REAL cldtau(klon, llm)  ! epaisseur optique  
     REAL cldemi(klon, llm)  ! emissivite infrarouge  
   
     REAL fluxq(klon, llm, nbsrf)   ! flux turbulent d'humidite  
     REAL fluxt(klon, llm, nbsrf)   ! flux turbulent de chaleur  
     REAL fluxu(klon, llm, nbsrf)   ! flux turbulent de vitesse u  
     REAL fluxv(klon, llm, nbsrf)   ! flux turbulent de vitesse v  
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
   
     REAL heat(klon, llm)    ! chauffage solaire  
     REAL heat0(klon, llm)   ! chauffage solaire ciel clair  
     REAL cool(klon, llm)    ! refroidissement infrarouge  
     REAL cool0(klon, llm)   ! refroidissement infrarouge ciel clair  
     REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)  
     real sollwdown(klon)    ! downward LW flux at surface  
     REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)  
     REAL albpla(klon)  
     REAL fsollw(klon, nbsrf)   ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf)   ! flux solaire absorb. pour chaque sous surface  
     ! Le rayonnement n'est pas calcule tous les pas, il faut donc  
     !                      sauvegarder les sorties du rayonnement  
     SAVE  heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown  
     SAVE  topsw0, toplw0, solsw0, sollw0, heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence de la temperature(K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
278    
279      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
     LOGICAL zx_ajustq  
280    
281      REAL za, zb      REAL dist, mu0(klon), fract(klon)
282      REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp      real longi
283        REAL z_avant(klon), z_apres(klon), z_factor(klon)
284        REAL zb
285        REAL zx_t, zx_qs, zcor
286      real zqsat(klon, llm)      real zqsat(klon, llm)
287      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
288      REAL zphi(klon, llm)      REAL zphi(klon, llm)
289    
290      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
291    
292      REAL pblh(klon, nbsrf)           ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
293      REAL plcl(klon, nbsrf)           ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
294      REAL capCL(klon, nbsrf)          ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
295      REAL oliqCL(klon, nbsrf)          ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
296      REAL cteiCL(klon, nbsrf)          ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
297      REAL pblt(klon, nbsrf)          ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
298      REAL therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
299      REAL trmb1(klon, nbsrf)          ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
300      REAL trmb2(klon, nbsrf)          ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
301      REAL trmb3(klon, nbsrf)          ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
302      ! Grdeurs de sorties      ! Grandeurs de sorties
303      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
304      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
305      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
306      REAL s_trmb3(klon)      REAL s_trmb3(klon)
307    
308      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
309    
310        REAL upwd(klon, llm) ! saturated updraft mass flux
311        REAL dnwd(klon, llm) ! saturated downdraft mass flux
312        REAL, save:: cape(klon)
313    
314      REAL upwd(klon, llm)      ! saturated updraft mass flux      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     REAL dnwd(klon, llm)      ! saturated downdraft mass flux  
     REAL dnwd0(klon, llm)     ! unsaturated downdraft mass flux  
     REAL tvp(klon, llm)       ! virtual temp of lifted parcel  
     REAL cape(klon)           ! CAPE  
     SAVE cape  
   
     REAL pbase(klon)          ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon)          ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon)          ! flag fonctionnement de convect  
     INTEGER iflagctrl(klon)          ! flag fonctionnement de convect  
     ! -- convect43:  
     INTEGER ntra              ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
315    
316      ! Variables du changement      ! Variables du changement
317    
318      ! con: convection      ! con: convection
319      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
320      ! ajs: ajustement sec      ! ajs: ajustement sec
321      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
322      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
323      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
324      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
325      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
326      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
327      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
328      REAL rneb(klon, llm)      REAL rneb(klon, llm)
329    
330      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
331      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
332      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
333      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
334      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
335      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
336    
337      INTEGER ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
338        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
339    
340      SAVE ibas_con, itop_con      REAL, save:: rain_con(klon)
341        real rain_lsc(klon)
342      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: snow_con(klon) ! neige (mm / s)
343      REAL snow_con(klon), snow_lsc(klon)      real snow_lsc(klon)
344      REAL d_ts(klon, nbsrf)      REAL d_ts(klon, nbsrf)
345    
346      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
# Line 641  contains Line 351  contains
351      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
352      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
353    
354      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
355      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
356      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
357    
358      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
359      real fact_cldcon      real:: fact_cldcon = 0.375
360      real facttemps      real:: facttemps = 1.e-4
361      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
     save fact_cldcon, facttemps  
362      real facteur      real facteur
363    
364      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
365      logical ptconv(klon, llm)      logical ptconv(klon, llm)
366    
367      ! Variables liees a l'ecriture de la bande histoire physique      ! Variables pour effectuer les appels en s\'erie :
   
     integer itau_w   ! pas de temps ecriture = itap + itau_phy  
   
     ! Variables locales pour effectuer les appels en serie  
368    
369      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
370      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
371      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
372        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
373    
374      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
375    
     INTEGER        length  
     PARAMETER    ( length = 100 )  
     REAL tabcntr0( length       )  
   
     INTEGER ndex2d(iim*(jjm + 1)), ndex3d(iim*(jjm + 1)*llm)  
   
376      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
377      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
378      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
379      REAL aam, torsfc      REAL aam, torsfc
380    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique  
     REAL zx_tmp_fi3d(klon, llm) ! variable temporaire pour champs 3D  
   
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER nid_day, nid_ins  
     SAVE nid_day, nid_ins  
   
381      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
382      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
383      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
384      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
385    
     REAL zsto  
   
     character(len=20) modname  
     character(len=80) abort_message  
     logical ok_sync  
386      real date0      real date0
   
     !     Variables liees au bilan d'energie et d'enthalpi  
387      REAL ztsol(klon)      REAL ztsol(klon)
     REAL      d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL      d_h_vcol_phy  
     REAL      fs_bound, fq_bound  
     SAVE      d_h_vcol_phy  
     REAL      zero_v(klon)  
     CHARACTER(LEN=15) ztit  
     INTEGER   ip_ebil  ! PRINT level for energy conserv. diag.  
     SAVE      ip_ebil  
     DATA      ip_ebil/0/  
     INTEGER   if_ebil ! level for energy conserv. dignostics  
     SAVE      if_ebil  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm)    ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)   !temperature, humidite a 2m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon)             !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon)           !vents a 10m moyennes s/1 maille  
     !jq   Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration [ug/m3] (pre-industrial value))  
     SAVE sulfate_pi  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
388    
389      REAL re(klon, llm)       ! Cloud droplet effective radius      REAL d_t_ec(klon, llm)
390      REAL fl(klon, llm)  ! denominator of re      ! tendance due \`a la conversion d'\'energie cin\'etique en
391        ! énergie thermique
392    
393      ! Aerosol optical properties      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
394      REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)      ! temperature and humidity at 2 m
     REAL cg_ae(klon, llm, 2)  
395    
396      REAL topswad(klon), solswad(klon) ! Aerosol direct effect.      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
397      ! ok_ade=T -ADE=topswad-topsw      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
398        REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
399    
400      REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.      ! Aerosol effects:
     ! ok_aie=T ->  
     !        ok_ade=T -AIE=topswai-topswad  
     !        ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon)       ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
     SAVE pblh  
     SAVE plcl  
     SAVE capCL  
     SAVE oliqCL  
     SAVE cteiCL  
     SAVE pblt  
     SAVE therm  
     SAVE trmb1  
     SAVE trmb2  
     SAVE trmb3  
401    
402      !----------------------------------------------------------------      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3)
403    
404      modname = 'physiq'      REAL, save:: sulfate_pi(klon, llm)
405      IF (if_ebil >= 1) THEN      ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value
        DO i=1, klon  
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nq  <  2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm (modname, abort_message, 1)  
     ENDIF  
406    
407      test_firstcal: IF (firstcal) THEN      REAL cldtaupi(klon, llm)
408         !  initialiser      ! cloud optical thickness for pre-industrial aerosols
        u10m(:, :)=0.  
        v10m(:, :)=0.  
        t2m(:, :)=0.  
        q2m(:, :)=0.  
        ffonte(:, :)=0.  
        fqcalving(:, :)=0.  
        piz_ae(:, :, :)=0.  
        tau_ae(:, :, :)=0.  
        cg_ae(:, :, :)=0.  
        rain_con(:)=0.  
        snow_con(:)=0.  
        bl95_b0=0.  
        bl95_b1=0.  
        topswai(:)=0.  
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con(:, :) = 0.0  
        d_v_con(:, :) = 0.0  
        rnebcon0(:, :) = 0.0  
        clwcon0(:, :) = 0.0  
        rnebcon(:, :) = 0.0  
        clwcon(:, :) = 0.0  
   
        pblh(:, :)   =0.        ! Hauteur de couche limite  
        plcl(:, :)   =0.        ! Niveau de condensation de la CLA  
        capCL(:, :)  =0.        ! CAPE de couche limite  
        oliqCL(:, :) =0.        ! eau_liqu integree de couche limite  
        cteiCL(:, :) =0.        ! cloud top instab. crit. couche limite  
        pblt(:, :)   =0.        ! T a la Hauteur de couche limite  
        therm(:, :)  =0.  
        trmb1(:, :)  =0.        ! deep_cape  
        trmb2(:, :)  =0.        ! inhibition  
        trmb3(:, :)  =0.        ! Point Omega  
   
        IF (if_ebil >= 1) d_h_vcol_phy=0.  
   
        ! appel a la lecture du run.def physique  
   
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie,  &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
409    
410         ! Initialiser les compteurs:      REAL re(klon, llm) ! Cloud droplet effective radius
411        REAL fl(klon, llm) ! denominator of re
412    
413         frugs = 0.      ! Aerosol optical properties
414         itap = 0      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
415         itaprad = 0      REAL, save:: cg_ae(klon, llm, 2)
        CALL phyetat0("startphy.nc", dtime, co2_ppm_etat0, solaire_etat0, &  
             pctsrf, ftsol, ftsoil, &  
             ocean, tslab, seaice, & !IM "slab" ocean  
             fqsurf, qsol, fsnow, &  
             falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, &  
             dlw, radsol, frugs, agesno, clesphy0, &  
             zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, tabcntr0, &  
             t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon,  &  
             run_off_lic_0)  
   
        !   ATTENTION : il faudra a terme relire q2 dans l'etat initial  
        q2(:, :, :)=1.e-8  
416    
417         radpas = NINT( 86400. / dtime / nbapp_rad)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
418        REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect
419    
420         ! on remet le calendrier a zero      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
421        LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
422    
423         IF (raz_date == 1) THEN      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
424            itau_phy = 0      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
425         ENDIF      ! B). They link cloud droplet number concentration to aerosol mass
426        ! concentration.
427    
428         PRINT*, 'cycle_diurne =', cycle_diurne      real zmasse(klon, llm)
429        ! (column-density of mass of air in a cell, in kg m-2)
430    
431         IF(ocean.NE.'force ') THEN      integer, save:: ncid_startphy
           ok_ocean=.TRUE.  
        ENDIF  
432    
433         CALL printflag( tabcntr0, radpas, ok_ocean, ok_oasis, ok_journe, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
434              ok_instan, ok_region )           ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, &
435             iflag_thermals, nsplit_thermals
436    
437         IF (ABS(dtime-pdtphys).GT.0.001) THEN      !----------------------------------------------------------------
           WRITE(lunout, *) 'Pas physique n est pas correct', dtime, &  
                pdtphys  
           abort_message='Pas physique n est pas correct '  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
438    
439         IF (dtime*REAL(radpas).GT.21600..AND.cycle_diurne) THEN      IF (nqmx < 2) CALL abort_gcm('physiq', &
440            WRITE(lunout, *)'Nbre d appels au rayonnement insuffisant'           'eaux vapeur et liquide sont indispensables')
           WRITE(lunout, *)"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        WRITE(lunout, *)"Clef pour la convection, iflag_con=", iflag_con  
        WRITE(lunout, *)"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
441    
442         ! Initialisation pour la convection de K.E. (sb):      test_firstcal: IF (firstcal) THEN
443         IF (iflag_con >= 3) THEN         ! initialiser
444           u10m = 0.
445           v10m = 0.
446           t2m = 0.
447           q2m = 0.
448           ffonte = 0.
449           fqcalving = 0.
450           piz_ae = 0.
451           tau_ae = 0.
452           cg_ae = 0.
453           rain_con = 0.
454           snow_con = 0.
455           topswai = 0.
456           topswad = 0.
457           solswai = 0.
458           solswad = 0.
459    
460           d_u_con = 0.
461           d_v_con = 0.
462           rnebcon0 = 0.
463           clwcon0 = 0.
464           rnebcon = 0.
465           clwcon = 0.
466    
467           pblh =0. ! Hauteur de couche limite
468           plcl =0. ! Niveau de condensation de la CLA
469           capCL =0. ! CAPE de couche limite
470           oliqCL =0. ! eau_liqu integree de couche limite
471           cteiCL =0. ! cloud top instab. crit. couche limite
472           pblt =0.
473           therm =0.
474           trmb1 =0. ! deep_cape
475           trmb2 =0. ! inhibition
476           trmb3 =0. ! Point Omega
477    
478           iflag_thermals = 0
479           nsplit_thermals = 1
480           print *, "Enter namelist 'physiq_nml'."
481           read(unit=*, nml=physiq_nml)
482           write(unit_nml, nml=physiq_nml)
483    
484            WRITE(lunout, *)"*** Convection de Kerry Emanuel 4.3  "         call conf_phys
485    
486            !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG         ! Initialiser les compteurs:
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
487    
488           frugs = 0.
489           CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
490                fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
491                agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
492                q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
493                w01, ncid_startphy)
494    
495           ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
496           q2 = 1e-8
497    
498           radpas = lmt_pas / nbapp_rad
499           print *, "radpas = ", radpas
500    
501           ! Initialisation pour le sch\'ema de convection d'Emanuel :
502           IF (conv_emanuel) THEN
503              ibas_con = 1
504              itop_con = 1
505         ENDIF         ENDIF
506    
507         IF (ok_orodr) THEN         IF (ok_orodr) THEN
508            DO i=1, klon            rugoro = MAX(1e-5, zstd * zsig / 2)
509               rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)            CALL SUGWD(paprs, play)
510            ENDDO         else
511            CALL SUGWD(klon, llm, paprs, pplay)            rugoro = 0.
512         ENDIF         ENDIF
513    
514         lmt_pas = NINT(86400. / dtime)  ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
515    
516         ecrit_ins = NINT(ecrit_ins/dtime)         ! Initialisation des sorties
        ecrit_hf = NINT(ecrit_hf/dtime)  
        ecrit_day = NINT(ecrit_day/dtime)  
        ecrit_mth = NINT(ecrit_mth/dtime)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtime)  
        ecrit_reg = NINT(ecrit_reg/dtime)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
        if (ocean == 'couple') then  
           npas = itaufin/ iphysiq  
           nexca = 86400 / int(dtime)  
           write(lunout, *)' Ocean couple'  
           write(lunout, *)' Valeurs des pas de temps'  
           write(lunout, *)' npas = ', npas  
           write(lunout, *)' nexca = ', nexca  
        endif  
517    
518         write(lunout, *)'AVANT HIST IFLAG_CON=', iflag_con         call ini_histins(dtphys)
519           CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
520         !   Initialisation des sorties         ! Positionner date0 pour initialisation de ORCHIDEE
521           print *, 'physiq date0: ', date0
522         call ini_histhf(dtime, presnivs, nid_hf, nid_hf3d)         CALL phyredem0
        call ini_histday(dtime, presnivs, ok_journe, nid_day)  
        call ini_histins(dtime, presnivs, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0 : ', date0  
523      ENDIF test_firstcal      ENDIF test_firstcal
524    
525      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
526        ! u, v, t, qx:
527      DO i = 1, klon      t_seri = t
528         d_ps(i) = 0.0      u_seri = u
529      ENDDO      v_seri = v
530      DO k = 1, llm      q_seri = qx(:, :, ivap)
531         DO i = 1, klon      ql_seri = qx(:, :, iliq)
532            d_t(i, k) = 0.0      tr_seri = qx(:, :, 3:nqmx)
           d_u(i, k) = 0.0  
           d_v(i, k) = 0.0  
        ENDDO  
     ENDDO  
     DO iq = 1, nq  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da(:, :)=0.  
     mp(:, :)=0.  
     phi(:, :, :)=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k)  = t(i, k)  
           u_seri(i, k)  = u(i, k)  
           v_seri(i, k)  = v(i, k)  
           q_seri(i, k)  = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nq >= 3) THEN  
        tr_seri(:, :, :nq-2) = qx(:, :, 3:nq)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        ztit='after dynamic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        !     Comme les tendances de la physique sont ajoute dans la dynamique,  
        !     on devrait avoir que la variation d'entalpie par la dynamique  
        !     est egale a la variation de la physique au pas de temps precedent.  
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol+d_h_vcol_phy, d_qt, 0. &  
             , fs_bound, fq_bound )  
     END IF  
533    
534      ! Diagnostiquer la tendance dynamique      ztsol = sum(ftsol * pctsrf, dim = 2)
535    
536        ! Diagnostic de la tendance dynamique :
537      IF (ancien_ok) THEN      IF (ancien_ok) THEN
538         DO k = 1, llm         DO k = 1, llm
539            DO i = 1, klon            DO i = 1, klon
540               d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/dtime               d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
541               d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/dtime               d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
542            ENDDO            ENDDO
543         ENDDO         ENDDO
544      ELSE      ELSE
545         DO k = 1, llm         DO k = 1, llm
546            DO i = 1, klon            DO i = 1, klon
547               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
548               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
549            ENDDO            ENDDO
550         ENDDO         ENDDO
551         ancien_ok = .TRUE.         ancien_ok = .TRUE.
552      ENDIF      ENDIF
553    
554      ! Ajouter le geopotentiel du sol:      ! Ajouter le geopotentiel du sol:
   
555      DO k = 1, llm      DO k = 1, llm
556         DO i = 1, klon         DO i = 1, klon
557            zphi(i, k) = pphi(i, k) + pphis(i)            zphi(i, k) = pphi(i, k) + pphis(i)
558         ENDDO         ENDDO
559      ENDDO      ENDDO
560    
561      ! Verifier les temperatures      ! Check temperatures:
   
562      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
563    
564      ! Incrementer le compteur de la physique      call increment_itap
565        julien = MOD(dayvrai, 360)
     itap = itap + 1  
     julien = MOD(NINT(rdayvrai), 360)  
566      if (julien == 0) julien = 360      if (julien == 0) julien = 360
567    
568      ! Mettre en action les conditions aux limites (albedo, sst, etc.).      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
569    
570      IF (MOD(itap - 1, lmt_pas) == 0) THEN      ! \'Evaporation de l'eau liquide nuageuse :
571         CALL ozonecm(REAL(julien), rlat, paprs, wo)      DO k = 1, llm
     ENDIF  
   
     ! Re-evaporer l'eau liquide nuageuse  
   
     DO k = 1, llm  ! re-evaporation de l'eau liquide nuageuse  
572         DO i = 1, klon         DO i = 1, klon
573            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
574            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
575            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
576            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
577         ENDDO         ENDDO
578      ENDDO      ENDDO
579        ql_seri = 0.
580    
581      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
582         ztit='after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
583    
584      END IF      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
585        ! la surface.
586    
587      ! Appeler la diffusion verticale (programme de couche limite)      CALL orbite(REAL(julien), longi, dist)
588        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
589    
590      DO i = 1, klon      ! Calcul de l'abedo moyen par maille
591         zxrugs(i) = 0.0      albsol = sum(falbe * pctsrf, dim = 2)
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtime * REAL(radpas)  
        CALL zenang(zlongi, gmtime, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     !     Calcul de l'abedo moyen par maille  
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
592    
593      !     Repartition sous maille des flux LW et SW      ! R\'epartition sous maille des flux longwave et shortwave
594      ! Repartition du longwave par sous-surface linearisee      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
595    
596      DO nsrf = 1, nbsrf      forall (nsrf = 1: nbsrf)
597         DO i = 1, klon         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
598            fsollw(i, nsrf) = sollw(i) &              * (ztsol - ftsol(:, nsrf))
599                 + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
600            fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))      END forall
        ENDDO  
     ENDDO  
601    
602      fder = dlw      fder = dlw
603    
604      CALL clmain(dtime, itap, date0, pctsrf, pctsrf_new, &      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
605           t_seri, q_seri, u_seri, v_seri, &           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
606           julien, rmu0, co2_ppm,  &           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
607           ok_veget, ocean, npas, nexca, ftsol, &           snow_fall, fsolsw, fsollw, fder, frugs, agesno, rugoro, d_t_vdf, &
608           soil_model, cdmmax, cdhmax, &           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
609           ksta, ksta_ter, ok_kzmin, ftsoil, qsol,  &           cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, &
610           paprs, pplay, fsnow, fqsurf, fevap, falbe, falblw, &           v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, &
611           fluxlat, rain_fall, snow_fall, &           plcl, fqcalving, ffonte, run_off_lic_0)
612           fsolsw, fsollw, sollwdown, fder, &  
613           rlon, rlat, cuphy, cvphy, frugs, &      ! Incr\'ementation des flux
614           firstcal, lafin, agesno, rugoro, &  
615           d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &      sens = - sum(flux_t * pctsrf, dim = 2)
616           fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &      evap = - sum(flux_q * pctsrf, dim = 2)
617           q2, dsens, devap, &      fder = dlw + dsens + devap
          ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
          pblh, capCL, oliqCL, cteiCL, pblT, &  
          therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, &  
          fluxo, fluxg, tslab, seaice)  
   
     !XXX Incrementation des flux  
   
     zxfluxt=0.  
     zxfluxq=0.  
     zxfluxu=0.  
     zxfluxv=0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) +  &  
                   fluxt(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) +  &  
                   fluxq(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) +  &  
                   fluxu(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) +  &  
                   fluxv(i, k, nsrf) * pctsrf( i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
618    
619      DO k = 1, llm      DO k = 1, llm
620         DO i = 1, klon         DO i = 1, klon
# Line 1204  contains Line 625  contains
625         ENDDO         ENDDO
626      ENDDO      ENDDO
627    
628      IF (if_ebil >= 2) THEN      ! Update surface temperature:
        ztit='after clmain'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, sens &  
             , evap, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
629    
630      ! Incrementer la temperature du sol      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
631        ftsol = ftsol + d_ts
632      DO i = 1, klon      ztsol = sum(ftsol * pctsrf, dim = 2)
633         zxtsol(i) = 0.0      zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
634         zxfluxlat(i) = 0.0      zt2m = sum(t2m * pctsrf, dim = 2)
635        zq2m = sum(q2m * pctsrf, dim = 2)
636        zu10m = sum(u10m * pctsrf, dim = 2)
637        zv10m = sum(v10m * pctsrf, dim = 2)
638        zxffonte = sum(ffonte * pctsrf, dim = 2)
639        zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
640        s_pblh = sum(pblh * pctsrf, dim = 2)
641        s_lcl = sum(plcl * pctsrf, dim = 2)
642        s_capCL = sum(capCL * pctsrf, dim = 2)
643        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
644        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
645        s_pblT = sum(pblT * pctsrf, dim = 2)
646        s_therm = sum(therm * pctsrf, dim = 2)
647        s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
648        s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
649        s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
650    
651         zt2m(i) = 0.0      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
        zq2m(i) = 0.0  
        zu10m(i) = 0.0  
        zv10m(i) = 0.0  
        zxffonte(i) = 0.0  
        zxfqcalving(i) = 0.0  
   
        s_pblh(i) = 0.0  
        s_lcl(i) = 0.0  
        s_capCL(i) = 0.0  
        s_oliqCL(i) = 0.0  
        s_cteiCL(i) = 0.0  
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) +  &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic)  - 1.) .GT. EPSFRA)  &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i,  &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
652      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
653         DO i = 1, klon         DO i = 1, klon
654            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
655            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = ztsol(i)
656            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
657                 q2m(i, nsrf) = zq2m(i)
658            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m(i, nsrf) = zu10m(i)
659            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m(i, nsrf) = zv10m(i)
660            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
661            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               fqcalving(i, nsrf) = zxfqcalving(i)
662            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
663            zxfqcalving(i) = zxfqcalving(i) +  &               plcl(i, nsrf) = s_lcl(i)
664                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               capCL(i, nsrf) = s_capCL(i)
665            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
666            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
667            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
668            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
669            s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)               trmb1(i, nsrf) = s_trmb1(i)
670            s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)               trmb2(i, nsrf) = s_trmb2(i)
671            s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)               trmb3(i, nsrf) = s_trmb3(i)
672            s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
673         ENDDO         ENDDO
674      ENDDO      ENDDO
675    
676      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      ! Calculer la dérive du flux infrarouge
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           IF (pctsrf(i, nsrf)  <  epsfra) ftsol(i, nsrf) = zxtsol(i)  
   
           IF (pctsrf(i, nsrf)  <  epsfra) t2m(i, nsrf) = zt2m(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) q2m(i, nsrf) = zq2m(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) u10m(i, nsrf) = zu10m(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) v10m(i, nsrf) = zv10m(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) ffonte(i, nsrf) = zxffonte(i)  
           IF (pctsrf(i, nsrf)  <  epsfra)  &  
                fqcalving(i, nsrf) = zxfqcalving(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) pblh(i, nsrf)=s_pblh(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) plcl(i, nsrf)=s_lcl(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) capCL(i, nsrf)=s_capCL(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) oliqCL(i, nsrf)=s_oliqCL(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) cteiCL(i, nsrf)=s_cteiCL(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) pblT(i, nsrf)=s_pblT(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) therm(i, nsrf)=s_therm(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) trmb1(i, nsrf)=s_trmb1(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) trmb2(i, nsrf)=s_trmb2(i)  
           IF (pctsrf(i, nsrf)  <  epsfra) trmb3(i, nsrf)=s_trmb3(i)  
        ENDDO  
     ENDDO  
   
     ! Calculer la derive du flux infrarouge  
677    
678      DO i = 1, klon      DO i = 1, klon
679         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * ztsol(i)**3
680      ENDDO      ENDDO
681    
682      ! Appeler la convection (au choix)      ! Appeler la convection
683    
684      DO k = 1, llm      if (conv_emanuel) then
685         DO i = 1, klon         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
686            conv_q(i, k) = d_q_dyn(i, k)  &              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
687                 + d_q_vdf(i, k)/dtime              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
688            conv_t(i, k) = d_t_dyn(i, k)  &         snow_con = 0.
689                 + d_t_vdf(i, k)/dtime         clwcon0 = qcondc
690         ENDDO         mfu = upwd + dnwd
691      ENDDO  
692      IF (check) THEN         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
693         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         zqsat = zqsat / (1. - retv * zqsat)
694         WRITE(lunout, *) "avantcon=", za  
695      ENDIF         ! Properties of convective clouds
696      zx_ajustq = .FALSE.         clwcon0 = fact_cldcon * clwcon0
697      IF (iflag_con == 2) zx_ajustq=.TRUE.         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
698      IF (zx_ajustq) THEN              rnebcon0)
699         DO i = 1, klon  
700            z_avant(i) = 0.0         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
701         ENDDO         mfd = 0.
702         DO k = 1, llm         pen_u = 0.
703            DO i = 1, klon         pen_d = 0.
704               z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &         pde_d = 0.
705                    *(paprs(i, k)-paprs(i, k+1))/RG         pde_u = 0.
706            ENDDO      else
707         ENDDO         conv_q = d_q_dyn + d_q_vdf / dtphys
708      ENDIF         conv_t = d_t_dyn + d_t_vdf / dtphys
709      IF (iflag_con == 1) THEN         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
710         stop 'reactiver le call conlmd dans physiq.F'         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
711      ELSE IF (iflag_con == 2) THEN              q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
712         CALL conflx(dtime, paprs, pplay, t_seri, q_seri, &              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
713              conv_t, conv_q, zxfluxq(1, 1), omega, &              mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
714              d_t_con, d_q_con, rain_con, snow_con, &              kdtop, pmflxr, pmflxs)
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
715         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
716         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
717         DO i = 1, klon         ibas_con = llm + 1 - kcbot
718            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
719            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
   
           CALL concvl (iflag_con, &  
                dtime, paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, &  
                Ma, cape, tvp, iflagctrl, &  
                pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, &  
                pmflxr, pmflxs, &  
                da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu(:, :)=upwd(:, :)+dnwd(:, :)  
   
        ELSE ! ok_cvl  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (dtime, &  
                paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
   
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)  
                 zx_qs  = MIN(0.5, zx_qs)  
                 zcor   = 1./(1.-retv*zx_qs)  
                 zx_qs  = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/pplay(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/pplay(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        !   calcul des proprietes des nuages convectifs  
        clwcon0(:, :)=fact_cldcon*clwcon0(:, :)  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        WRITE(lunout, *) "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
720    
721      DO k = 1, llm      DO k = 1, llm
722         DO i = 1, klon         DO i = 1, klon
# Line 1434  contains Line 727  contains
727         ENDDO         ENDDO
728      ENDDO      ENDDO
729    
730      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
731         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
732         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_con, snow_con, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        WRITE(lunout, *)"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtime  
        WRITE(lunout, *)"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &  
                   *(paprs(i, k)-paprs(i, k+1))/RG  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime) &  
                /z_apres(i)  
        ENDDO  
733         DO k = 1, llm         DO k = 1, llm
734            DO i = 1, klon            DO i = 1, klon
735               IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   z_factor(i) < (1.0-1.0E-08)) THEN  
736                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
737               ENDIF               ENDIF
738            ENDDO            ENDDO
739         ENDDO         ENDDO
740      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
741    
742      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
743    
744      d_t_ajs(:, :)=0.      d_t_ajs = 0.
745      d_u_ajs(:, :)=0.      d_u_ajs = 0.
746      d_v_ajs(:, :)=0.      d_v_ajs = 0.
747      d_q_ajs(:, :)=0.      d_q_ajs = 0.
748      fm_therm(:, :)=0.      fm_therm = 0.
749      entr_therm(:, :)=0.      entr_therm = 0.
750    
751      IF(prt_level>9)WRITE(lunout, *) &      if (iflag_thermals == 0) then
752           'AVANT LA CONVECTION SECHE, iflag_thermals=' &         ! Ajustement sec
753           , iflag_thermals, '   nsplit_thermals=', nsplit_thermals         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
754      if(iflag_thermals < 0) then         t_seri = t_seri + d_t_ajs
755         !  Rien         q_seri = q_seri + d_q_ajs
        IF(prt_level>9)WRITE(lunout, *)'pas de convection'  
     else if(iflag_thermals == 0) then  
        !  Ajustement sec  
        IF(prt_level>9)WRITE(lunout, *)'ajsec'  
        CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs)  
        t_seri(:, :) = t_seri(:, :) + d_t_ajs(:, :)  
        q_seri(:, :) = q_seri(:, :) + d_q_ajs(:, :)  
756      else      else
757         !  Thermiques         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
758         IF(prt_level>9)WRITE(lunout, *)'JUSTE AVANT, iflag_thermals=' &              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
             , iflag_thermals, '   nsplit_thermals=', nsplit_thermals  
        call calltherm(pdtphys &  
             , pplay, paprs, pphi &  
             , u_seri, v_seri, t_seri, q_seri &  
             , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs &  
             , fm_therm, entr_therm)  
759      endif      endif
760    
761      IF (if_ebil >= 2) THEN      ! Caclul des ratqs
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !  Caclul des ratqs  
762    
763      !   ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
764      !   on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
765      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
766         do k=1, llm         do k = 1, llm
767            do i=1, klon            do i = 1, klon
768               if(ptconv(i, k)) then               if(ptconv(i, k)) then
769                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
770                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
771               else               else
772                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
773               endif               endif
774            enddo            enddo
775         enddo         enddo
776      endif      endif
777    
778      !   ratqs stables      ! ratqs stables
779      do k=1, llm      do k = 1, llm
780         do i=1, klon         do i = 1, klon
781            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
782                 min((paprs(i, 1)-pplay(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
783         enddo         enddo
784      enddo      enddo
785    
786      !  ratqs final      ! ratqs final
787      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
788         !   les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
789         !   ratqs final         ! ratqs final
790         !   1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
791         !   relaxation des ratqs         ! relaxation des ratqs
792         facteur=exp(-pdtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
793         ratqs(:, :)=max(ratqs(:, :)*facteur, ratqss(:, :))         ratqs = max(ratqs, ratqsc)
        ratqs(:, :)=max(ratqs(:, :), ratqsc(:, :))  
794      else      else
795         !   on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
796         ratqs(:, :)=ratqss(:, :)         ratqs = ratqss
797      endif      endif
798    
799      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
800      ! et le processus de precipitation           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
801      CALL fisrtilp(dtime, paprs, pplay, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
802           t_seri, q_seri, ptconv, ratqs, &           psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
803    
804      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
805      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1583  contains Line 812  contains
812            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
813         ENDDO         ENDDO
814      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        WRITE(lunout, *)"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtime  
        WRITE(lunout, *)"Precip=", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_lsc, snow_lsc, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
815    
816      !  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
817    
818      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
819    
820      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
821         snow_tiedtke=0.         ! seulement pour Tiedtke
822         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
823            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
824              rain_tiedtke = rain_con
825         else         else
826            rain_tiedtke=0.            rain_tiedtke = 0.
827            do k=1, llm            do k = 1, llm
828               do i=1, klon               do i = 1, klon
829                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
830                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
831                          *(paprs(i, k)-paprs(i, k+1))/rg                          * zmasse(i, k)
832                  endif                  endif
833               enddo               enddo
834            enddo            enddo
835         endif         endif
836    
837         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
838         CALL diagcld1(paprs, pplay, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
839              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
840         DO k = 1, llm         DO k = 1, llm
841            DO i = 1, klon            DO i = 1, klon
842               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
843                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
844                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
845               ENDIF               ENDIF
846            ENDDO            ENDDO
847         ENDDO         ENDDO
   
848      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
849         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
850         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
851         ! facttemps         ! d'un facteur facttemps.
852         facteur = pdtphys *facttemps         facteur = dtphys * facttemps
853         do k=1, llm         do k = 1, llm
854            do i=1, klon            do i = 1, klon
855               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
856               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
857                    then                    > rnebcon(i, k) * clwcon(i, k)) then
858                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
859                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
860               endif               endif
861            enddo            enddo
862         enddo         enddo
863    
864         !   On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
865         cldfra(:, :)=min(max(cldfra(:, :), rnebcon(:, :)), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
866         cldliq(:, :)=cldliq(:, :)+rnebcon(:, :)*clwcon(:, :)         cldliq = cldliq + rnebcon * clwcon
   
867      ENDIF      ENDIF
868    
869      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
870    
871      IF (ok_stratus) THEN      IF (ok_stratus) THEN
872         CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
873         DO k = 1, llm         DO k = 1, llm
874            DO i = 1, klon            DO i = 1, klon
875               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
876                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
877                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
878               ENDIF               ENDIF
# Line 1679  contains Line 881  contains
881      ENDIF      ENDIF
882    
883      ! Precipitation totale      ! Precipitation totale
   
884      DO i = 1, klon      DO i = 1, klon
885         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
886         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
887      ENDDO      ENDDO
888    
889      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
890      DO k = 1, llm      DO k = 1, llm
891         DO i = 1, klon         DO i = 1, klon
892            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
893            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
894               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
895               zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)            zcor = 1. / (1. - retv * zx_qs)
896               zx_qs  = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
897               zcor   = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
898               zx_qs  = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/pplay(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/pplay(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
899         ENDDO         ENDDO
900      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae(:, :, :)=0.0  
        piz_ae(:, :, :)=0.0  
        cg_ae(:, :, :)=0.0  
     ENDIF  
901    
902      ! Calculer les parametres optiques des nuages et quelques      ! Introduce the aerosol direct and first indirect radiative forcings:
903      ! parametres pour diagnostiques:      tau_ae = 0.
904        piz_ae = 0.
905        cg_ae = 0.
906    
907        ! Param\`etres optiques des nuages et quelques param\`etres pour
908        ! diagnostics :
909      if (ok_newmicro) then      if (ok_newmicro) then
910         CALL newmicro (paprs, pplay, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
911              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
912              cldh, cldl, cldm, cldt, cldq, &              sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
913      else      else
914         CALL nuage (paprs, pplay, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
915              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &
916              cldh, cldl, cldm, cldt, cldq, &              bl95_b1, cldtaupi, re, fl)
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
917      endif      endif
918    
919      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
920           ! Prescrire l'ozone :
921      IF (MOD(itaprad, radpas) == 0) THEN         wo = ozonecm(REAL(julien), paprs)
922         DO i = 1, klon  
923            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
924                 + falbe(i, is_lic) * pctsrf(i, is_lic) &         ! Calcul de l'abedo moyen par maille
925                 + falbe(i, is_ter) * pctsrf(i, is_ter) &         albsol = sum(falbe * pctsrf, dim = 2)
926                 + falbe(i, is_sic) * pctsrf(i, is_sic)  
927            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &         ! Rayonnement (compatible Arpege-IFS) :
928                 + falblw(i, is_lic) * pctsrf(i, is_lic) &         CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, &
929                 + falblw(i, is_ter) * pctsrf(i, is_ter) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
930                 + falblw(i, is_sic) * pctsrf(i, is_sic)              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
931         ENDDO              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
932         ! nouveau rayonnement (compatible Arpege-IFS):              swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, &
933         CALL radlwsw(dist, rmu0, fract,  &              solswad, cldtaupi, topswai, solswai)
             paprs, pplay, zxtsol, albsol, albsollw, t_seri, q_seri, &  
             wo, &  
             cldfra, cldemi, cldtau, &  
             heat, heat0, cool, cool0, radsol, albpla, &  
             topsw, toplw, solsw, sollw, &  
             sollwdown, &  
             topsw0, toplw0, solsw0, sollw0, &  
             lwdn0, lwdn, lwup0, lwup,  &  
             swdn0, swdn, swup0, swup, &  
             ok_ade, ok_aie, & ! new for aerosol radiative effects  
             tau_ae, piz_ae, cg_ae, &  
             topswad, solswad, &  
             cldtaupi, &  
             topswai, solswai)  
        itaprad = 0  
934      ENDIF      ENDIF
     itaprad = itaprad + 1  
935    
936      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
937      DO k = 1, llm      DO k = 1, llm
938         DO i = 1, klon         DO i = 1, klon
939            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
940                 + (heat(i, k)-cool(i, k)) * dtime/86400.                 / 86400.
941         ENDDO         ENDDO
942      ENDDO      ENDDO
943    
     IF (if_ebil >= 2) THEN  
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
944      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
945        zxqsurf = sum(fqsurf * pctsrf, dim = 2)
946        zxsnow = sum(fsnow * pctsrf, dim = 2)
947    
948      DO i = 1, klon      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Calculer le bilan du sol et la derive de temperature (couplage)  
   
949      DO i = 1, klon      DO i = 1, klon
950         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
951      ENDDO      ENDDO
952    
953      !moddeblott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
954    
955      IF (ok_orodr) THEN      IF (ok_orodr) THEN
956           ! S\'election des points pour lesquels le sch\'ema est actif :
957         !  selection des points pour lesquels le shema est actif:         igwd = 0
958         igwd=0         DO i = 1, klon
959         DO i=1, klon            itest(i) = 0
960            itest(i)=0            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
961            IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN               itest(i) = 1
962               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
963            ENDIF            ENDIF
964         ENDDO         ENDDO
965    
966         CALL drag_noro(klon, llm, dtime, paprs, pplay, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
967              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
968              igwd, idx, itest, &              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
             d_t_oro, d_u_oro, d_v_oro)  
969    
970         !  ajout des tendances         ! ajout des tendances
971         DO k = 1, llm         DO k = 1, llm
972            DO i = 1, klon            DO i = 1, klon
973               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
# Line 1858  contains Line 975  contains
975               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
976            ENDDO            ENDDO
977         ENDDO         ENDDO
978        ENDIF
     ENDIF ! fin de test sur ok_orodr  
979    
980      IF (ok_orolf) THEN      IF (ok_orolf) THEN
981           ! S\'election des points pour lesquels le sch\'ema est actif :
982         !  selection des points pour lesquels le shema est actif:         igwd = 0
983         igwd=0         DO i = 1, klon
984         DO i=1, klon            itest(i) = 0
985            itest(i)=0            IF (zpic(i) - zmea(i) > 100.) THEN
986            IF ((zpic(i)-zmea(i)).GT.100.) THEN               itest(i) = 1
987               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
988            ENDIF            ENDIF
989         ENDDO         ENDDO
990    
991         CALL lift_noro(klon, llm, dtime, paprs, pplay, &         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &
992              rlat, zmea, zstd, zpic, &              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &
             itest, &  
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrli, zvstrli, &  
993              d_t_lif, d_u_lif, d_v_lif)              d_t_lif, d_u_lif, d_v_lif)
994    
995         !  ajout des tendances         ! Ajout des tendances :
996         DO k = 1, llm         DO k = 1, llm
997            DO i = 1, klon            DO i = 1, klon
998               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1889  contains Line 1000  contains
1000               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
1001            ENDDO            ENDDO
1002         ENDDO         ENDDO
1003        ENDIF
1004    
1005      ENDIF ! fin de test sur ok_orolf      ! Stress n\'ecessaires : toute la physique
   
     ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE  
1006    
1007      DO i = 1, klon      DO i = 1, klon
1008         zustrph(i)=0.         zustrph(i) = 0.
1009         zvstrph(i)=0.         zvstrph(i) = 0.
1010      ENDDO      ENDDO
1011      DO k = 1, llm      DO k = 1, llm
1012         DO i = 1, klon         DO i = 1, klon
1013            zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/dtime* &            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
1014                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
1015            zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/dtime* &            zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
1016                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
1017         ENDDO         ENDDO
1018      ENDDO      ENDDO
1019    
1020      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
1021             zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
1022    
1023      CALL aaam_bud (27, klon, llm, gmtime, &      ! Calcul des tendances traceurs
1024           ra, rg, romega, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
1025           rlat, rlon, pphis, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
1026           zustrdr, zustrli, zustrph, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
1027           zvstrdr, zvstrli, zvstrph, &           zmasse, ncid_startphy)
          paprs, u, v, &  
          aam, torsfc)  
   
     IF (if_ebil >= 2) THEN  
        ztit='after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !AA Installation de l'interface online-offline pour traceurs  
   
     !   Calcul  des tendances traceurs  
   
     call phytrac(rnpb, itap, lmt_pas, julien,  gmtime, firstcal, lafin, nq-2, &  
          dtime, u, v, t, paprs, pplay, &  
          pmfu,  pmfd,  pen_u,  pde_u,  pen_d,  pde_d, &  
          ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &  
          pctsrf, frac_impa,  frac_nucl, &  
          presnivs, pphis, pphi, albsol, qx(1, 1, 1),  &  
          rhcl, cldfra,  rneb,  diafra,  cldliq,  &  
          itop_con, ibas_con, pmflxr, pmflxs, &  
          prfl, psfl, da, phi, mp, upwd, dnwd, &  
          tr_seri)  
   
     IF (offline) THEN  
   
        print*, 'Attention on met a 0 les thermiques pour phystoke'  
        call phystokenc(pdtphys, rlon, rlat, &  
             t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             fm_therm, entr_therm, &  
             ycoefh, yu1, yv1, ftsol, pctsrf, &  
             frac_impa, frac_nucl, &  
             pphis, airephy, dtime, itap)  
1028    
1029      ENDIF      IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, &
1030             pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, &
1031             frac_impa, frac_nucl, pphis, airephy, dtphys)
1032    
1033      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1034        CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
1035    
1036      CALL transp (paprs, zxtsol, &      ! diag. bilKP
          t_seri, q_seri, u_seri, v_seri, zphi, &  
          ve, vq, ue, uq)  
1037    
1038      !IM diag. bilKP      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
   
     CALL transp_lay (paprs, zxtsol, &  
          t_seri, q_seri, u_seri, v_seri, zphi, &  
1039           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
1040    
1041      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
1042    
1043      !+jld ec_conser      ! conversion Ec en énergie thermique
1044      DO k = 1, llm      DO k = 1, llm
1045         DO i = 1, klon         DO i = 1, klon
1046            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
1047            d_t_ec(i, k)=0.5/ZRCPD &                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
1048                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
1049            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
           d_t_ec(i, k) = d_t_ec(i, k)/dtime  
1050         END DO         END DO
1051      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        !     Comme les tendances de la physique sont ajoute dans la dynamique,  
        !     on devrait avoir que la variation d'entalpie par la dynamique  
        !     est egale a la variation de la physique au pas de temps precedent.  
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, sens &  
             , evap, rain_fall, snow_fall, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
1052    
1053      !   SORTIES      ! SORTIES
1054    
1055      !IM Interpolation sur les niveaux de pression du NMC      ! prw = eau precipitable
     call calcul_STDlev  
   
     !cc prw = eau precipitable  
1056      DO i = 1, klon      DO i = 1, klon
1057         prw(i) = 0.         prw(i) = 0.
1058         DO k = 1, llm         DO k = 1, llm
1059            prw(i) = prw(i) + &            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
                q_seri(i, k)*(paprs(i, k)-paprs(i, k+1))/RG  
1060         ENDDO         ENDDO
1061      ENDDO      ENDDO
1062    
     !IM initialisation + calculs divers diag AMIP2  
     call calcul_divers  
   
1063      ! Convertir les incrementations en tendances      ! Convertir les incrementations en tendances
1064    
1065      DO k = 1, llm      DO k = 1, llm
1066         DO i = 1, klon         DO i = 1, klon
1067            d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / dtime            d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
1068            d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / dtime            d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
1069            d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / dtime            d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
1070            d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / dtime            d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
1071            d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / dtime            d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
1072         ENDDO         ENDDO
1073      ENDDO      ENDDO
1074    
1075      IF (nq >= 3) THEN      DO iq = 3, nqmx
1076         DO iq = 3, nq         DO k = 1, llm
1077            DO  k = 1, llm            DO i = 1, klon
1078               DO  i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = ( tr_seri(i, k, iq-2) - qx(i, k, iq) ) / dtime  
              ENDDO  
1079            ENDDO            ENDDO
1080         ENDDO         ENDDO
1081      ENDIF      ENDDO
1082    
1083      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
   
1084      DO k = 1, llm      DO k = 1, llm
1085         DO i = 1, klon         DO i = 1, klon
1086            t_ancien(i, k) = t_seri(i, k)            t_ancien(i, k) = t_seri(i, k)
# Line 2043  contains Line 1088  contains
1088         ENDDO         ENDDO
1089      ENDDO      ENDDO
1090    
1091      !   Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1092        CALL histwrite_phy("aire", airephy)
1093      call write_histhf      CALL histwrite_phy("psol", paprs(:, 1))
1094      call write_histday      CALL histwrite_phy("precip", rain_fall + snow_fall)
1095      call write_histins      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1096        CALL histwrite_phy("pluc", rain_con + snow_con)
1097      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("tsol", ztsol)
1098        CALL histwrite_phy("t2m", zt2m)
1099      IF (lafin) THEN      CALL histwrite_phy("q2m", zq2m)
1100         itau_phy = itau_phy + itap      CALL histwrite_phy("u10m", zu10m)
1101         CALL phyredem ("restartphy.nc", dtime, radpas, &      CALL histwrite_phy("v10m", zv10m)
1102              rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("snow", snow_fall)
1103              tslab, seaice,  & !IM "slab" ocean      CALL histwrite_phy("cdrm", cdragm)
1104              fqsurf, qsol, &      CALL histwrite_phy("cdrh", cdragh)
1105              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &      CALL histwrite_phy("topl", toplw)
1106              solsw, sollwdown, dlw, &      CALL histwrite_phy("evap", evap)
1107              radsol, frugs, agesno, &      CALL histwrite_phy("sols", solsw)
1108              zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, &      CALL histwrite_phy("soll", sollw)
1109              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("solldown", sollwdown)
1110      ENDIF      CALL histwrite_phy("bils", bils)
1111        CALL histwrite_phy("sens", - sens)
1112    contains      CALL histwrite_phy("fder", fder)
1113        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1114      subroutine calcul_STDlev      CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1115        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1116        !     From phylmd/calcul_STDlev.h, v 1.1 2005/05/25 13:10:09      CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1117    
1118        !IM on initialise les champs en debut du jour ou du mois      DO nsrf = 1, nbsrf
1119           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1120           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1121           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1122           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1123           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1124           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1125           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1126           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1127           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1128        END DO
1129    
1130        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("albs", albsol)
1131             ecrit_day, ecrit_mth, &      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1132             tnondef, tsumSTD)      CALL histwrite_phy("rugs", zxrugs)
1133        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_pblh", s_pblh)
1134             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_pblt", s_pblt)
1135             tnondef, usumSTD)      CALL histwrite_phy("s_lcl", s_lcl)
1136        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_capCL", s_capCL)
1137             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_oliqCL", s_oliqCL)
1138             tnondef, vsumSTD)      CALL histwrite_phy("s_cteiCL", s_cteiCL)
1139        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_therm", s_therm)
1140             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_trmb1", s_trmb1)
1141             tnondef, wsumSTD)      CALL histwrite_phy("s_trmb2", s_trmb2)
1142        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_trmb3", s_trmb3)
1143             ecrit_day, ecrit_mth, &  
1144             tnondef, phisumSTD)      if (conv_emanuel) then
1145        CALL ini_undefSTD(nlevSTD, itap, &         CALL histwrite_phy("ptop", ema_pct)
1146             ecrit_day, ecrit_mth, &         CALL histwrite_phy("dnwd0", - mp)
1147             tnondef, qsumSTD)      end if
1148        CALL ini_undefSTD(nlevSTD, itap, &  
1149             ecrit_day, ecrit_mth, &      CALL histwrite_phy("temp", t_seri)
1150             tnondef, rhsumSTD)      CALL histwrite_phy("vitu", u_seri)
1151        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("vitv", v_seri)
1152             ecrit_day, ecrit_mth, &      CALL histwrite_phy("geop", zphi)
1153             tnondef, uvsumSTD)      CALL histwrite_phy("pres", play)
1154        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("dtvdf", d_t_vdf)
1155             ecrit_day, ecrit_mth, &      CALL histwrite_phy("dqvdf", d_q_vdf)
1156             tnondef, vqsumSTD)      CALL histwrite_phy("rhum", zx_rh)
1157        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("d_t_ec", d_t_ec)
1158             ecrit_day, ecrit_mth, &      CALL histwrite_phy("dtsw0", heat0 / 86400.)
1159             tnondef, vTsumSTD)      CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1160        CALL ini_undefSTD(nlevSTD, itap, &  
1161             ecrit_day, ecrit_mth, &      if (ok_instan) call histsync(nid_ins)
1162             tnondef, wqsumSTD)  
1163        CALL ini_undefSTD(nlevSTD, itap, &      IF (lafin) then
1164             ecrit_day, ecrit_mth, &         call NF95_CLOSE(ncid_startphy)
1165             tnondef, vphisumSTD)         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1166        CALL ini_undefSTD(nlevSTD, itap, &              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1167             ecrit_day, ecrit_mth, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1168             tnondef, wTsumSTD)              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1169        CALL ini_undefSTD(nlevSTD, itap, &              w01)
1170             ecrit_day, ecrit_mth, &      end IF
            tnondef, u2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, v2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, T2sumSTD)  
   
       !IM on interpole sur les niveaux STD de pression a chaque pas de  
       !temps de la physique  
   
       DO k=1, nlevSTD  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               t_seri, tlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               u_seri, ulevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               v_seri, vlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=paprs(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., zx_tmp_fi3d, rlevSTD(k), &  
               omega, wlevSTD(:, k))  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zphi/RG, philevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               qx(:, :, ivap), qlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_rh*100., rhlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, uvSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*q_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*qx(i, l, ivap)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*zphi(i, l)/RG  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vphiSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*u_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, u2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, v2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=t_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, T2STD(:, k))  
   
       ENDDO !k=1, nlevSTD  
   
       !IM on somme les valeurs definies a chaque pas de temps de la  
       ! physique ou toutes les 6 heures  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.TRUE.  
       CALL undefSTD(nlevSTD, itap, tlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, tsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, ulevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, usumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, philevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, phisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, qlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, qsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, rhlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, rhsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, uvSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, uvsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vphiSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vphisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, u2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, u2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, v2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, v2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, T2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, T2sumSTD)  
   
       !IM on moyenne a la fin du jour ou du mois  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, tsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, usumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, phisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, qsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, rhsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, uvsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vphisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, u2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, v2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, T2sumSTD)  
   
       !IM interpolation a chaque pas de temps du SWup(clr) et  
       !SWdn(clr) a 200 hPa  
   
       CALL plevel(klon, klevp1, .true., paprs, 20000., &  
            swdn0, SWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swdn, SWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup0, SWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup, SWup200)  
   
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn0, LWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn, LWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup0, LWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup, LWup200)  
   
     end SUBROUTINE calcul_STDlev  
   
     !****************************************************  
   
     SUBROUTINE calcul_divers  
   
       ! From phylmd/calcul_divers.h, v 1.1 2005/05/25 13:10:09  
   
       ! initialisations diverses au "debut" du mois  
   
       IF(MOD(itap, ecrit_mth) == 1) THEN  
          DO i=1, klon  
             nday_rain(i)=0.  
          ENDDO  
       ENDIF  
   
       IF(MOD(itap, ecrit_day) == 0) THEN  
          !IM calcul total_rain, nday_rain  
          DO i = 1, klon  
             total_rain(i)=rain_fall(i)+snow_fall(i)    
             IF(total_rain(i).GT.0.) nday_rain(i)=nday_rain(i)+1.  
          ENDDO  
       ENDIF  
   
     End SUBROUTINE calcul_divers  
   
     !***********************************************  
   
     subroutine write_histday  
   
       !     From phylmd/write_histday.h, v 1.3 2005/05/25 13:10:09  
   
       if (ok_journe) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          itau_w = itau_phy + itap  
   
          !   FIN ECRITURE DES CHAMPS 3D  
   
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
   
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09  
   
       real zout  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          zsto = dtime * ecrit_ins  
          zout = dtime * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          !     CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d, iim*(jjm + 1)*llm, &  
               ndex3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
1171    
1172      end subroutine write_histhf3d      firstcal = .FALSE.
1173    
1174    END SUBROUTINE physiq    END SUBROUTINE physiq
1175    
   !****************************************************  
   
   FUNCTION qcheck(klon, klev, paprs, q, ql, aire)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     use YOMCST  
     IMPLICIT none  
   
     ! Calculer et imprimer l'eau totale. A utiliser pour verifier  
     ! la conservation de l'eau  
   
     INTEGER klon, klev  
     REAL, intent(in):: paprs(klon, klev+1)  
     real q(klon, klev), ql(klon, klev)  
     REAL aire(klon)  
     REAL qtotal, zx, qcheck  
     INTEGER i, k  
   
     zx = 0.0  
     DO i = 1, klon  
        zx = zx + aire(i)  
     ENDDO  
     qtotal = 0.0  
     DO k = 1, klev  
        DO i = 1, klon  
           qtotal = qtotal + (q(i, k)+ql(i, k)) * aire(i) &  
                *(paprs(i, k)-paprs(i, k+1))/RG  
        ENDDO  
     ENDDO  
   
     qcheck = qtotal/zx  
   
   END FUNCTION qcheck  
   
1176  end module physiq_m  end module physiq_m

Legend:
Removed from v.7  
changed lines
  Added in v.214

  ViewVC Help
Powered by ViewVC 1.1.21