--- trunk/Sources/phylmd/physiq.f 2015/07/08 17:03:45 155 +++ trunk/Sources/phylmd/physiq.f 2016/06/08 12:23:41 202 @@ -16,19 +16,18 @@ use aaam_bud_m, only: aaam_bud USE abort_gcm_m, ONLY: abort_gcm - use aeropt_m, only: aeropt use ajsec_m, only: ajsec use calltherm_m, only: calltherm - USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, & - ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin - USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, & + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, & + ok_instan + USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno use comconst, only: dtphys USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, raz_date, day_step, iphysiq + USE conf_gcm_m, ONLY: offline, day_step, iphysiq, lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals @@ -43,23 +42,29 @@ USE fcttre, ONLY: foeew, qsatl, qsats, thermcep use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou + USE histsync_m, ONLY: histsync + USE histwrite_phy_m, ONLY: histwrite_phy USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & nbsrf - USE ini_histins_m, ONLY: ini_histins + USE ini_histins_m, ONLY: ini_histins, nid_ins + use netcdf95, only: NF95_CLOSE use newmicro_m, only: newmicro + use nr_util, only: assert + use nuage_m, only: nuage USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm USE phyetat0_m, ONLY: phyetat0, rlat, rlon USE phyredem_m, ONLY: phyredem + USE phyredem0_m, ONLY: phyredem0 USE phystokenc_m, ONLY: phystokenc USE phytrac_m, ONLY: phytrac USE qcheck_m, ONLY: qcheck use radlwsw_m, only: radlwsw - use readsulfate_m, only: readsulfate - use readsulfate_preind_m, only: readsulfate_preind - use sugwd_m, only: sugwd - USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt - USE temps, ONLY: itau_phy + use yoegwd, only: sugwd + USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt + use time_phylmdz, only: itap, increment_itap + use transp_m, only: transp + use transp_lay_m, only: transp_lay use unit_nml_m, only: unit_nml USE ymds2ju_m, ONLY: ymds2ju USE yoethf_m, ONLY: r2es, rvtmp2 @@ -78,24 +83,24 @@ REAL, intent(in):: play(:, :) ! (klon, llm) ! pression pour le mileu de chaque couche (en Pa) - REAL, intent(in):: pphi(:, :) ! (klon, llm) + REAL, intent(in):: pphi(:, :) ! (klon, llm) ! géopotentiel de chaque couche (référence sol) REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol REAL, intent(in):: u(:, :) ! (klon, llm) - ! vitesse dans la direction X (de O a E) en m/s + ! vitesse dans la direction X (de O a E) en m / s - REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s + REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K) REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx) ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs) - REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s + REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2) REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2) - REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s) + REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s) REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx) ! tendance physique de "qx" (s-1) @@ -104,29 +109,13 @@ LOGICAL:: firstcal = .true. - LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface - PARAMETER (ok_gust = .FALSE.) - - LOGICAL, PARAMETER:: check = .FALSE. + LOGICAL, PARAMETER:: check = .FALSE. ! Verifier la conservation du modele en eau LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus - ! "slab" ocean - REAL, save:: tslab(klon) ! temperature of ocean slab - REAL, save:: seaice(klon) ! glace de mer (kg/m2) - REAL fluxo(klon) ! flux turbulents ocean-glace de mer - REAL fluxg(klon) ! flux turbulents ocean-atmosphere - - logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false. - ! sorties journalieres, mensuelles et instantanees dans les - ! fichiers histday, histmth et histins - - LOGICAL ok_region ! sortir le fichier regional - PARAMETER (ok_region = .FALSE.) - - ! pour phsystoke avec thermiques + ! pour phystoke avec thermiques REAL fm_therm(klon, llm + 1) REAL entr_therm(klon, llm) real, save:: q2(klon, llm + 1, nbsrf) @@ -137,8 +126,8 @@ REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm) LOGICAL, save:: ancien_ok - REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s) - REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s) + REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s) + REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s) real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) @@ -148,79 +137,16 @@ REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) - SAVE lwdn0, lwdn, lwup0, lwup - - ! Amip2 - ! variables a une pression donnee - - integer nlevSTD - PARAMETER(nlevSTD = 17) - real rlevSTD(nlevSTD) - DATA rlevSTD/100000., 92500., 85000., 70000., & - 60000., 50000., 40000., 30000., 25000., 20000., & - 15000., 10000., 7000., 5000., 3000., 2000., 1000./ - CHARACTER(LEN = 4) clevSTD(nlevSTD) - DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', & - '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', & - '70 ', '50 ', '30 ', '20 ', '10 '/ + SAVE lwdn0, lwdn, lwup0, lwup ! prw: precipitable water real prw(klon) - ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2) - ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg) + ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2) + ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg) REAL flwp(klon), fiwp(klon) REAL flwc(klon, llm), fiwc(klon, llm) - INTEGER kmax, lmax - PARAMETER(kmax = 8, lmax = 8) - INTEGER kmaxm1, lmaxm1 - PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1) - - REAL zx_tau(kmaxm1), zx_pc(lmaxm1) - DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./ - DATA zx_pc/50., 180., 310., 440., 560., 680., 800./ - - ! cldtopres pression au sommet des nuages - REAL cldtopres(lmaxm1) - DATA cldtopres/50., 180., 310., 440., 560., 680., 800./ - - ! taulev: numero du niveau de tau dans les sorties ISCCP - CHARACTER(LEN = 4) taulev(kmaxm1) - - DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/ - CHARACTER(LEN = 3) pclev(lmaxm1) - DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/ - - CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1) - DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', & - 'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', & - 'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', & - 'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', & - 'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', & - 'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', & - 'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', & - 'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', & - 'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', & - 'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', & - 'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', & - 'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', & - 'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', & - 'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', & - 'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', & - 'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', & - 'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', & - 'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', & - 'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', & - 'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', & - 'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', & - 'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', & - 'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', & - 'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', & - 'pc= 680-800hPa, tau> 60.'/ - - ! ISCCP simulator v3.4 - ! Variables propres a la physique INTEGER, save:: radpas @@ -230,8 +156,6 @@ REAL radsol(klon) SAVE radsol ! bilan radiatif au sol calcule par code radiatif - INTEGER, SAVE:: itap ! number of calls to "physiq" - REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction REAL, save:: ftsoil(klon, nsoilmx, nbsrf) @@ -259,30 +183,18 @@ REAL, save:: zpic(klon) ! Maximum de l'OESM REAL, save:: zval(klon) ! Minimum de l'OESM REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM - REAL zulow(klon), zvlow(klon) + INTEGER igwd, itest(klon) - INTEGER igwd, idx(klon), itest(klon) - - REAL agesno(klon, nbsrf) - SAVE agesno ! age de la neige + REAL, save:: agesno(klon, nbsrf) ! age de la neige + REAL, save:: run_off_lic_0(klon) - REAL run_off_lic_0(klon) - SAVE run_off_lic_0 - !KE43 - ! Variables liees a la convection de K. Emanuel (sb): - - REAL Ma(klon, llm) ! undilute upward mass flux - SAVE Ma - REAL qcondc(klon, llm) ! in-cld water content from convect - SAVE qcondc + ! Variables li\'ees \`a la convection d'Emanuel : + REAL, save:: Ma(klon, llm) ! undilute upward mass flux + REAL, save:: qcondc(klon, llm) ! in-cld water content from convect REAL, save:: sig1(klon, llm), w01(klon, llm) - REAL, save:: wd(klon) - - ! Variables locales pour la couche limite (al1): - - ! Variables locales: + ! Variables pour la couche limite (Alain Lahellec) : REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent @@ -290,10 +202,12 @@ REAL ycoefh(klon, llm) ! coef d'echange pour phytrac REAL yu1(klon) ! vents dans la premiere couche U REAL yv1(klon) ! vents dans la premiere couche V - REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige - REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface - ! !et necessaire pour limiter la - ! !hauteur de neige, en kg/m2/s + REAL ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige + + REAL fqcalving(klon, nbsrf) + ! flux d'eau "perdue" par la surface et necessaire pour limiter la + ! hauteur de neige, en kg / m2 / s + REAL zxffonte(klon), zxfqcalving(klon) REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction @@ -306,10 +220,10 @@ REAL frac_nucl(klon, llm) ! idem (nucleation) REAL, save:: rain_fall(klon) - ! liquid water mass flux (kg/m2/s), positive down + ! liquid water mass flux (kg / m2 / s), positive down REAL, save:: snow_fall(klon) - ! solid water mass flux (kg/m2/s), positive down + ! solid water mass flux (kg / m2 / s), positive down REAL rain_tiedtke(klon), snow_tiedtke(klon) @@ -318,7 +232,7 @@ REAL dlw(klon) ! derivee infra rouge SAVE dlw REAL bils(klon) ! bilan de chaleur au sol - REAL, save:: fder(klon) ! Derive de flux (sensible et latente) + REAL, save:: fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie @@ -330,19 +244,10 @@ ! Conditions aux limites INTEGER julien - INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface - REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE REAL, save:: albsol(klon) ! albedo du sol total visible REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU - ! Declaration des procedures appelees - - EXTERNAL nuage ! calculer les proprietes radiatives - EXTERNAL transp ! transport total de l'eau et de l'energie - - ! Variables locales - real, save:: clwcon(klon, llm), rnebcon(klon, llm) real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) @@ -375,14 +280,14 @@ real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) REAL, save:: albpla(klon) - REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface - REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface + REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface + REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface - REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) - REAL conv_t(klon, llm) ! convergence of temperature (K/s) + REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s) + REAL conv_t(klon, llm) ! convergence of temperature (K / s) - REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut - REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree + REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut + REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) @@ -396,7 +301,7 @@ REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) - ! cf. AM Variables locales pour la CLA (hbtm2) + ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm) REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA @@ -406,15 +311,15 @@ REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite REAL, SAVE:: therm(klon, nbsrf) REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape - REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition + REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega - ! Grdeurs de sorties + ! Grandeurs de sorties REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon) REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) REAL s_trmb3(klon) - ! Variables locales pour la convection de K. Emanuel : + ! Variables pour la convection de K. Emanuel : REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux @@ -446,9 +351,11 @@ REAL prfl(klon, llm + 1), psfl(klon, llm + 1) INTEGER, save:: ibas_con(klon), itop_con(klon) + real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa REAL rain_con(klon), rain_lsc(klon) - REAL snow_con(klon), snow_lsc(klon) + REAL, save:: snow_con(klon) ! neige (mm / s) + real snow_lsc(klon) REAL d_ts(klon, nbsrf) REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm) @@ -472,7 +379,7 @@ integer:: iflag_cldcon = 1 logical ptconv(klon, llm) - ! Variables locales pour effectuer les appels en s\'erie : + ! Variables pour effectuer les appels en s\'erie : REAL t_seri(klon, llm), q_seri(klon, llm) REAL ql_seri(klon, llm) @@ -486,10 +393,6 @@ REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc - REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique - - INTEGER, SAVE:: nid_ins - REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert. REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert. @@ -504,9 +407,11 @@ REAL zero_v(klon) CHARACTER(LEN = 20) tit INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics - INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation + INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation + + REAL d_t_ec(klon, llm) + ! tendance due \`a la conversion Ec en énergie thermique - REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique REAL ZRCPD REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m @@ -516,13 +421,13 @@ ! Aerosol effects: - REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3) + REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3) REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in micro g/m3, pre-industrial value + ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value REAL cldtaupi(klon, llm) - ! cloud optical thickness for pre-industrial (pi) aerosols + ! cloud optical thickness for pre-industrial aerosols REAL re(klon, llm) ! Cloud droplet effective radius REAL fl(klon, llm) ! denominator of re @@ -534,8 +439,6 @@ REAL topswad(klon), solswad(klon) ! aerosol direct effect REAL topswai(klon), solswai(klon) ! aerosol indirect effect - REAL aerindex(klon) ! POLDER aerosol index - LOGICAL:: ok_ade = .false. ! apply aerosol direct effect LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect @@ -551,7 +454,6 @@ SAVE ffonte SAVE fqcalving SAVE rain_con - SAVE snow_con SAVE topswai SAVE topswad SAVE solswai @@ -559,20 +461,20 @@ SAVE d_u_con SAVE d_v_con - real zmasse(klon, llm) + real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) - real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 + integer, save:: ncid_startphy - namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, & - facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, & - ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals + namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, & + iflag_cldcon, ratqsbas, ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, & + bl95_b1, iflag_thermals, nsplit_thermals !---------------------------------------------------------------- IF (if_ebil >= 1) zero_v = 0. IF (nqmx < 2) CALL abort_gcm('physiq', & - 'eaux vapeur et liquide sont indispensables', 1) + 'eaux vapeur et liquide sont indispensables') test_firstcal: IF (firstcal) THEN ! initialiser @@ -607,7 +509,7 @@ pblt =0. ! T a la Hauteur de couche limite therm =0. trmb1 =0. ! deep_cape - trmb2 =0. ! inhibition + trmb2 =0. ! inhibition trmb3 =0. ! Point Omega IF (if_ebil >= 1) d_h_vcol_phy = 0. @@ -623,28 +525,20 @@ ! Initialiser les compteurs: frugs = 0. - itap = 0 - CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, & - fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, & - dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, & - zval, t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & - run_off_lic_0, sig1, w01) + CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, & + fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & + agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & + q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01, ncid_startphy) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 - lmt_pas = day_step / iphysiq - print *, 'Number of time steps of "physics" per day: ', lmt_pas - radpas = lmt_pas / nbapp_rad - - ! On remet le calendrier a zero - IF (raz_date) itau_phy = 0 - - CALL printflag(radpas, ok_journe, ok_instan, ok_region) + print *, "radpas = ", radpas ! Initialisation pour le sch\'ema de convection d'Emanuel : - IF (iflag_con >= 3) THEN + IF (conv_emanuel) THEN ibas_con = 1 itop_con = 1 ENDIF @@ -656,18 +550,15 @@ rugoro = 0. ENDIF - ecrit_ins = NINT(ecrit_ins/dtphys) - ecrit_hf = NINT(ecrit_hf/dtphys) - ecrit_mth = NINT(ecrit_mth/dtphys) - ecrit_tra = NINT(86400.*ecrit_tra/dtphys) - ecrit_reg = NINT(ecrit_reg/dtphys) + ecrit_ins = NINT(ecrit_ins / dtphys) ! Initialisation des sorties - call ini_histins(dtphys, ok_instan, nid_ins) + call ini_histins(dtphys) CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 + CALL phyredem0 ENDIF test_firstcal ! We will modify variables *_seri and we will not touch variables @@ -677,19 +568,19 @@ v_seri = v q_seri = qx(:, :, ivap) ql_seri = qx(:, :, iliq) - tr_seri = qx(:, :, 3: nqmx) + tr_seri = qx(:, :, 3:nqmx) ztsol = sum(ftsol * pctsrf, dim = 2) - IF (if_ebil >= 1) THEN + IF (if_ebil >= 1) THEN tit = 'after dynamics' CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) ! Comme les tendances de la physique sont ajout\'es dans la - ! dynamique, la variation d'enthalpie par la dynamique devrait - ! \^etre \'egale \`a la variation de la physique au pas de temps - ! pr\'ec\'edent. Donc la somme de ces 2 variations devrait \^etre - ! nulle. + ! dynamique, la variation d'enthalpie par la dynamique devrait + ! \^etre \'egale \`a la variation de la physique au pas de temps + ! pr\'ec\'edent. Donc la somme de ces 2 variations devrait \^etre + ! nulle. call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, & d_qt, 0.) @@ -723,8 +614,7 @@ ! Check temperatures: CALL hgardfou(t_seri, ftsol) - ! Incrémenter le compteur de la physique - itap = itap + 1 + call increment_itap julien = MOD(dayvrai, 360) if (julien == 0) julien = 360 @@ -744,7 +634,7 @@ ENDDO ql_seri = 0. - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after reevap' CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -755,14 +645,14 @@ frugs = MAX(frugs, 0.000015) zxrugs = sum(frugs * pctsrf, dim = 2) - ! Calculs nécessaires au calcul de l'albedo dans l'interface avec + ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec ! la surface. CALL orbite(REAL(julien), longi, dist) IF (cycle_diurne) THEN CALL zenang(longi, time, dtphys * radpas, mu0, fract) ELSE - mu0 = -999.999 + mu0 = - 999.999 ENDIF ! Calcul de l'abedo moyen par maille @@ -781,15 +671,14 @@ ! Couche limite: - CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, & - v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, ksta, ksta_ter, & - ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, & - fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, & - firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, & - fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, & - ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, & - pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, & - run_off_lic_0, fluxo, fluxg, tslab) + CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & + ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & + paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & + snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, & + d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & + fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & + u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & + trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! Incr\'ementation des flux @@ -822,7 +711,7 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after clmain' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -833,7 +722,6 @@ ! Update surface temperature: DO i = 1, klon - zxtsol(i) = 0. zxfluxlat(i) = 0. zt2m(i) = 0. @@ -843,8 +731,8 @@ zxffonte(i) = 0. zxfqcalving(i) = 0. - s_pblh(i) = 0. - s_lcl(i) = 0. + s_pblh(i) = 0. + s_lcl(i) = 0. s_capCL(i) = 0. s_oliqCL(i) = 0. s_cteiCL(i) = 0. @@ -853,35 +741,33 @@ s_trmb1(i) = 0. s_trmb2(i) = 0. s_trmb3(i) = 0. - - IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) & - + pctsrf(i, is_sic) - 1.) > EPSFRA) print *, & - 'physiq : probl\`eme sous surface au point ', i, & - pctsrf(i, 1 : nbsrf) ENDDO + + call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') + + ftsol = ftsol + d_ts + zxtsol = sum(ftsol * pctsrf, dim = 2) DO nsrf = 1, nbsrf DO i = 1, klon - ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf) - zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf) - - zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf) - zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf) - zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf) - zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf) - zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf) + zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf) + + zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf) + zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf) + zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf) + zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf) + zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf) zxfqcalving(i) = zxfqcalving(i) + & - fqcalving(i, nsrf)*pctsrf(i, nsrf) - s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf) - s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf) - s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf) - s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf) - s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf) - s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf) - s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf) - s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf) - s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf) - s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf) + fqcalving(i, nsrf) * pctsrf(i, nsrf) + s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf) + s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf) + s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf) + s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf) + s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf) + s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf) + s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf) + s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf) + s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf) + s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO @@ -913,39 +799,23 @@ ! Calculer la dérive du flux infrarouge DO i = 1, klon - dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 + dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 ENDDO IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri) - ! Appeler la convection (au choix) - - if (iflag_con == 2) then - conv_q = d_q_dyn + d_q_vdf / dtphys - conv_t = d_t_dyn + d_t_vdf / dtphys - z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) - CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & - q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & - d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), & - mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & - kdtop, pmflxr, pmflxs) - WHERE (rain_con < 0.) rain_con = 0. - WHERE (snow_con < 0.) snow_con = 0. - ibas_con = llm + 1 - kcbot - itop_con = llm + 1 - kctop - else - ! iflag_con >= 3 + ! Appeler la convection + if (conv_emanuel) then da = 0. mp = 0. phi = 0. - CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, & - w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, & - ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, & - qcondc, wd, pmflxr, pmflxs, da, phi, mp) + CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & + d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & + upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) + snow_con = 0. clwcon0 = qcondc mfu = upwd + dnwd - IF (.NOT. ok_gust) wd = 0. IF (thermcep) THEN zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) @@ -959,11 +829,25 @@ call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) + forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1) mfd = 0. pen_u = 0. pen_d = 0. pde_d = 0. pde_u = 0. + else + conv_q = d_q_dyn + d_q_vdf / dtphys + conv_t = d_t_dyn + d_t_vdf / dtphys + z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & + q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, & + d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & + mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & + kdtop, pmflxr, pmflxs) + WHERE (rain_con < 0.) rain_con = 0. + WHERE (snow_con < 0.) snow_con = 0. + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop END if DO k = 1, llm @@ -975,7 +859,7 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after convect' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -989,15 +873,15 @@ zx_t = 0. za = 0. DO i = 1, klon - za = za + airephy(i)/REAL(klon) + za = za + airephy(i) / REAL(klon) zx_t = zx_t + (rain_con(i)+ & - snow_con(i))*airephy(i)/REAL(klon) + snow_con(i)) * airephy(i) / REAL(klon) ENDDO - zx_t = zx_t/za*dtphys + zx_t = zx_t / za * dtphys print *, "Precip = ", zx_t ENDIF - IF (iflag_con == 2) THEN + IF (.not. conv_emanuel) THEN z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres DO k = 1, llm @@ -1024,12 +908,11 @@ t_seri = t_seri + d_t_ajs q_seri = q_seri + d_q_ajs else - ! Thermiques call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, & q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm) endif - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after dry_adjust' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -1056,7 +939,7 @@ do k = 1, llm do i = 1, klon ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) & - * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) + * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) enddo enddo @@ -1095,15 +978,15 @@ zx_t = 0. za = 0. DO i = 1, klon - za = za + airephy(i)/REAL(klon) + za = za + airephy(i) / REAL(klon) zx_t = zx_t + (rain_lsc(i) & - + snow_lsc(i))*airephy(i)/REAL(klon) + + snow_lsc(i)) * airephy(i) / REAL(klon) ENDDO - zx_t = zx_t/za*dtphys + zx_t = zx_t / za * dtphys print *, "Precip = ", zx_t ENDIF - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after fisrt' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -1115,18 +998,18 @@ ! 1. NUAGES CONVECTIFS - IF (iflag_cldcon <= -1) THEN + IF (iflag_cldcon <= - 1) THEN ! seulement pour Tiedtke snow_tiedtke = 0. - if (iflag_cldcon == -1) then + if (iflag_cldcon == - 1) then rain_tiedtke = rain_con else rain_tiedtke = 0. do k = 1, llm do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys & - *zmasse(i, k) + rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys & + * zmasse(i, k) endif enddo enddo @@ -1161,7 +1044,7 @@ ! On prend la somme des fractions nuageuses et des contenus en eau cldfra = min(max(cldfra, rnebcon), 1.) - cldliq = cldliq + rnebcon*clwcon + cldliq = cldliq + rnebcon * clwcon ENDIF ! 2. Nuages stratiformes @@ -1193,35 +1076,26 @@ DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN - zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor ELSE IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/play(i, k) + zx_qs = qsats(zx_t) / play(i, k) ELSE - zx_qs = qsatl(zx_t)/play(i, k) + zx_qs = qsatl(zx_t) / play(i, k) ENDIF ENDIF - zx_rh(i, k) = q_seri(i, k)/zx_qs + zx_rh(i, k) = q_seri(i, k) / zx_qs zqsat(i, k) = zx_qs ENDDO ENDDO ! Introduce the aerosol direct and first indirect radiative forcings: - IF (ok_ade .OR. ok_aie) THEN - ! Get sulfate aerosol distribution : - CALL readsulfate(dayvrai, time, firstcal, sulfate) - CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi) - - CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, & - aerindex) - ELSE - tau_ae = 0. - piz_ae = 0. - cg_ae = 0. - ENDIF + tau_ae = 0. + piz_ae = 0. + cg_ae = 0. ! Param\`etres optiques des nuages et quelques param\`etres pour ! diagnostics : @@ -1253,11 +1127,12 @@ DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys & + / 86400. ENDDO ENDDO - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after rad' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -1272,8 +1147,8 @@ ENDDO DO nsrf = 1, nbsrf DO i = 1, klon - zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf) - zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf) + zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf) + zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO @@ -1286,14 +1161,13 @@ ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille : IF (ok_orodr) THEN - ! selection des points pour lesquels le shema est actif: + ! S\'election des points pour lesquels le sch\'ema est actif : igwd = 0 DO i = 1, klon itest(i) = 0 - IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN + IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO @@ -1316,10 +1190,9 @@ igwd = 0 DO i = 1, klon itest(i) = 0 - IF ((zpic(i) - zmea(i)) > 100.) THEN + IF (zpic(i) - zmea(i) > 100.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO @@ -1352,35 +1225,34 @@ ENDDO ENDDO - CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, & - zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) + CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, & + zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, & 2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & d_qt, d_ec) ! Calcul des tendances traceurs - call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, & - paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, & - yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, da, phi, mp, & - upwd, dnwd, tr_seri, zmasse) - - IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, & - pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) + call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, & + mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, & + pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, & + zmasse, ncid_startphy) + + IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, & + pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, & + frac_impa, frac_nucl, pphis, airephy, dtphys) ! Calculer le transport de l'eau et de l'energie (diagnostique) - CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, & - ue, uq) + CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq) ! diag. bilKP - CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, & + CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, & ve_lay, vq_lay, ue_lay, uq_lay) ! Accumuler les variables a stocker dans les fichiers histoire: - ! conversion Ec -> E thermique + ! conversion Ec en énergie thermique DO k = 1, llm DO i = 1, klon ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k)) @@ -1391,11 +1263,11 @@ END DO END DO - IF (if_ebil >= 1) THEN + IF (if_ebil >= 1) THEN tit = 'after physic' CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, + ! Comme les tendances de la physique sont ajoute dans la dynamique, ! on devrait avoir que la variation d'entalpie par la dynamique ! est egale a la variation de la physique au pas de temps precedent. ! Donc la somme de ces 2 variations devrait etre nulle. @@ -1410,7 +1282,7 @@ DO i = 1, klon prw(i) = 0. DO k = 1, llm - prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k) + prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k) ENDDO ENDDO @@ -1429,7 +1301,7 @@ DO iq = 3, nqmx DO k = 1, llm DO i = 1, klon - d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys + d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys ENDDO ENDDO ENDDO @@ -1442,246 +1314,79 @@ ENDDO ENDDO - ! Ecriture des sorties - call write_histins - - ! Si c'est la fin, il faut conserver l'etat de redemarrage - IF (lafin) THEN - itau_phy = itau_phy + itap - CALL phyredem("restartphy.nc", pctsrf, ftsol, ftsoil, tslab, seaice, & - fqsurf, qsol, fsnow, falbe, fevap, rain_fall, snow_fall, & - solsw, sollw, dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, & - zthe, zpic, zval, t_ancien, q_ancien, rnebcon, ratqs, clwcon, & - run_off_lic_0, sig1, w01) - ENDIF - - firstcal = .FALSE. - - contains - - subroutine write_histins - - ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09 + CALL histwrite_phy("phis", pphis) + CALL histwrite_phy("aire", airephy) + CALL histwrite_phy("psol", paprs(:, 1)) + CALL histwrite_phy("precip", rain_fall + snow_fall) + CALL histwrite_phy("plul", rain_lsc + snow_lsc) + CALL histwrite_phy("pluc", rain_con + snow_con) + CALL histwrite_phy("tsol", zxtsol) + CALL histwrite_phy("t2m", zt2m) + CALL histwrite_phy("q2m", zq2m) + CALL histwrite_phy("u10m", zu10m) + CALL histwrite_phy("v10m", zv10m) + CALL histwrite_phy("snow", snow_fall) + CALL histwrite_phy("cdrm", cdragm) + CALL histwrite_phy("cdrh", cdragh) + CALL histwrite_phy("topl", toplw) + CALL histwrite_phy("evap", evap) + CALL histwrite_phy("sols", solsw) + CALL histwrite_phy("soll", sollw) + CALL histwrite_phy("solldown", sollwdown) + CALL histwrite_phy("bils", bils) + CALL histwrite_phy("sens", - sens) + CALL histwrite_phy("fder", fder) + CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce)) + CALL histwrite_phy("dtsvdft", d_ts(:, is_ter)) + CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic)) + CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic)) - use dimens_m, only: iim, jjm - USE histsync_m, ONLY: histsync - USE histwrite_m, ONLY: histwrite - - integer i, itau_w ! pas de temps ecriture - REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) - - !-------------------------------------------------- - - IF (ok_instan) THEN - ! Champs 2D: - - itau_w = itau_phy + itap - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) - CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) - CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = paprs(i, 1) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d) - !ccIM - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d) - CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d) - CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d) - CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d) - CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d) - CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d) - CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d) - CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d) - CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d) - CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d) - CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d) - CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d) - - zx_tmp_fi2d(1:klon) = -1*sens(1:klon) - ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d) - CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d) - - DO nsrf = 1, nbsrf - !XXX - zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100. - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = falbe(:, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - END DO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d) - CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d) - - !HBTM2 - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d) - CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d) - CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d) - - ! Champs 3D: - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d) - CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d) - CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) + DO nsrf = 1, nbsrf + CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) + CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) + CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf)) + CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf)) + CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf)) + CALL histwrite_phy("taux_"//clnsurf(nsrf), fluxu(:, 1, nsrf)) + CALL histwrite_phy("tauy_"//clnsurf(nsrf), fluxv(:, 1, nsrf)) + CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) + CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) + END DO - call histsync(nid_ins) - ENDIF + CALL histwrite_phy("albs", albsol) + CALL histwrite_phy("rugs", zxrugs) + CALL histwrite_phy("s_pblh", s_pblh) + CALL histwrite_phy("s_pblt", s_pblt) + CALL histwrite_phy("s_lcl", s_lcl) + CALL histwrite_phy("s_capCL", s_capCL) + CALL histwrite_phy("s_oliqCL", s_oliqCL) + CALL histwrite_phy("s_cteiCL", s_cteiCL) + CALL histwrite_phy("s_therm", s_therm) + CALL histwrite_phy("s_trmb1", s_trmb1) + CALL histwrite_phy("s_trmb2", s_trmb2) + CALL histwrite_phy("s_trmb3", s_trmb3) + if (conv_emanuel) CALL histwrite_phy("ptop", ema_pct) + CALL histwrite_phy("temp", t_seri) + CALL histwrite_phy("vitu", u_seri) + CALL histwrite_phy("vitv", v_seri) + CALL histwrite_phy("geop", zphi) + CALL histwrite_phy("pres", play) + CALL histwrite_phy("dtvdf", d_t_vdf) + CALL histwrite_phy("dqvdf", d_q_vdf) + CALL histwrite_phy("rhum", zx_rh) + + if (ok_instan) call histsync(nid_ins) + + IF (lafin) then + call NF95_CLOSE(ncid_startphy) + CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, & + fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & + radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & + t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01) + end IF - end subroutine write_histins + firstcal = .FALSE. END SUBROUTINE physiq