--- trunk/libf/phylmd/physiq.f90 2010/06/02 11:01:12 34 +++ trunk/libf/phylmd/physiq.f90 2013/07/23 13:00:07 72 @@ -1,205 +1,196 @@ module physiq_m - ! This module is clean: no C preprocessor directive, no include line. - IMPLICIT none - private - public physiq - contains - SUBROUTINE physiq(firstcal, lafin, rdayvrai, gmtime, pdtphys, paprs, & - pplay, pphi, pphis, u, v, t, qx, omega, d_u, d_v, & - d_t, d_qx, d_ps, dudyn, PVteta) - - ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28 - - ! Author : Z.X. Li (LMD/CNRS), date: 1993/08/18 - - ! Objet: Moniteur general de la physique du modele - !AA Modifications quant aux traceurs : - !AA - uniformisation des parametrisations ds phytrac - !AA - stockage des moyennes des champs necessaires - !AA en mode traceur off-line - - use abort_gcm_m, only: abort_gcm - USE calendar, only: ymds2ju - use clesphys, only: ecrit_hf, ecrit_ins, ecrit_mth, & - cdmmax, cdhmax, & - co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, & - ok_kzmin - use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, & - cycle_diurne, new_oliq, soil_model - use comgeomphy - use conf_gcm_m, only: raz_date, offline - use conf_phys_m, only: conf_phys - use ctherm - use dimens_m, only: jjm, iim, llm, nqmx - use dimphy, only: klon, nbtr - use dimsoil, only: nsoilmx - use hgardfou_m, only: hgardfou - USE histcom, only: histsync - USE histwrite_m, only: histwrite - use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, & - clnsurf, epsfra - use ini_histhf_m, only: ini_histhf - use ini_histday_m, only: ini_histday - use ini_histins_m, only: ini_histins - use iniprint, only: prt_level - use oasis_m - use orbite_m, only: orbite, zenang - use ozonecm_m, only: ozonecm - use phyetat0_m, only: phyetat0, rlat, rlon - use phyredem_m, only: phyredem - use phystokenc_m, only: phystokenc - use phytrac_m, only: phytrac - use qcheck_m, only: qcheck - use radepsi - use radopt - use temps, only: itau_phy, day_ref, annee_ref - use yoethf - use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega + SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, & + u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta) + + ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 + ! (subversion revision 678) + + ! Author: Z.X. Li (LMD/CNRS) 1993 - ! Declaration des constantes et des fonctions thermodynamiques : - use fcttre, only: thermcep, foeew, qsats, qsatl + ! This is the main procedure for the "physics" part of the program. + + use aaam_bud_m, only: aaam_bud + USE abort_gcm_m, ONLY: abort_gcm + use aeropt_m, only: aeropt + use ajsec_m, only: ajsec + USE calendar, ONLY: ymds2ju + use calltherm_m, only: calltherm + USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, & + ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin + USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, & + ok_orodr, ok_orolf, soil_model + USE clmain_m, ONLY: clmain + use clouds_gno_m, only: clouds_gno + USE comgeomphy, ONLY: airephy, cuphy, cvphy + USE concvl_m, ONLY: concvl + USE conf_gcm_m, ONLY: offline, raz_date + USE conf_phys_m, ONLY: conf_phys + use conflx_m, only: conflx + USE ctherm, ONLY: iflag_thermals, nsplit_thermals + use diagcld2_m, only: diagcld2 + use diagetpq_m, only: diagetpq + use diagphy_m, only: diagphy + USE dimens_m, ONLY: iim, jjm, llm, nqmx + USE dimphy, ONLY: klon, nbtr + USE dimsoil, ONLY: nsoilmx + use drag_noro_m, only: drag_noro + USE fcttre, ONLY: foeew, qsatl, qsats, thermcep + use fisrtilp_m, only: fisrtilp + USE hgardfou_m, ONLY: hgardfou + USE histsync_m, ONLY: histsync + USE histwrite_m, ONLY: histwrite + USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & + nbsrf + USE ini_histhf_m, ONLY: ini_histhf + USE ini_histday_m, ONLY: ini_histday + USE ini_histins_m, ONLY: ini_histins + use newmicro_m, only: newmicro + USE oasis_m, ONLY: ok_oasis + USE orbite_m, ONLY: orbite, zenang + USE ozonecm_m, ONLY: ozonecm + USE phyetat0_m, ONLY: phyetat0, rlat, rlon + USE phyredem_m, ONLY: phyredem + USE phystokenc_m, ONLY: phystokenc + USE phytrac_m, ONLY: phytrac + USE qcheck_m, ONLY: qcheck + use radlwsw_m, only: radlwsw + use readsulfate_m, only: readsulfate + use sugwd_m, only: sugwd + USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt + USE temps, ONLY: annee_ref, day_ref, itau_phy + use unit_nml_m, only: unit_nml + USE yoethf_m, ONLY: r2es, rvtmp2 - ! Variables argument: + ! Arguments: REAL, intent(in):: rdayvrai ! (elapsed time since January 1st 0h of the starting year, in days) - REAL, intent(in):: gmtime ! heure de la journée en fraction de jour - REAL, intent(in):: pdtphys ! pas d'integration pour la physique (seconde) - LOGICAL, intent(in):: firstcal ! first call to "calfis" + REAL, intent(in):: time ! heure de la journée en fraction de jour + REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde) logical, intent(in):: lafin ! dernier passage - REAL, intent(in):: paprs(klon, llm+1) + REAL, intent(in):: paprs(klon, llm + 1) ! (pression pour chaque inter-couche, en Pa) - REAL, intent(in):: pplay(klon, llm) + REAL, intent(in):: play(klon, llm) ! (input pression pour le mileu de chaque couche (en Pa)) - REAL pphi(klon, llm) + REAL, intent(in):: pphi(klon, llm) ! (input geopotentiel de chaque couche (g z) (reference sol)) - REAL pphis(klon) ! input geopotentiel du sol + REAL, intent(in):: pphis(klon) ! input geopotentiel du sol - REAL u(klon, llm) ! input vitesse dans la direction X (de O a E) en m/s - REAL v(klon, llm) ! input vitesse Y (de S a N) en m/s - REAL t(klon, llm) ! input temperature (K) + REAL, intent(in):: u(klon, llm) + ! vitesse dans la direction X (de O a E) en m/s + + REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s + REAL, intent(in):: t(klon, llm) ! input temperature (K) REAL, intent(in):: qx(klon, llm, nqmx) ! (humidité spécifique et fractions massiques des autres traceurs) - REAL omega(klon, llm) ! input vitesse verticale en Pa/s - REAL d_u(klon, llm) ! output tendance physique de "u" (m/s/s) - REAL d_v(klon, llm) ! output tendance physique de "v" (m/s/s) - REAL d_t(klon, llm) ! output tendance physique de "t" (K/s) - REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s) - REAL d_ps(klon) ! output tendance physique de la pression au sol + REAL omega(klon, llm) ! input vitesse verticale en Pa/s + REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s) + REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s) + REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s) + REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s) + REAL d_ps(klon) ! output tendance physique de la pression au sol + + LOGICAL:: firstcal = .true. INTEGER nbteta - PARAMETER(nbteta=3) + PARAMETER(nbteta = 3) REAL PVteta(klon, nbteta) ! (output vorticite potentielle a des thetas constantes) - LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE - PARAMETER (ok_cvl=.TRUE.) LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface - PARAMETER (ok_gust=.FALSE.) + PARAMETER (ok_gust = .FALSE.) LOGICAL check ! Verifier la conservation du modele en eau - PARAMETER (check=.FALSE.) - LOGICAL ok_stratus ! Ajouter artificiellement les stratus - PARAMETER (ok_stratus=.FALSE.) + PARAMETER (check = .FALSE.) + + LOGICAL, PARAMETER:: ok_stratus = .FALSE. + ! Ajouter artificiellement les stratus ! Parametres lies au coupleur OASIS: - INTEGER, SAVE :: npas, nexca + INTEGER, SAVE:: npas, nexca logical rnpb - parameter(rnpb=.true.) + parameter(rnpb = .true.) - character(len=6), save:: ocean + character(len = 6):: ocean = 'force ' ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple") - logical ok_ocean - SAVE ok_ocean - - !IM "slab" ocean - REAL tslab(klon) !Temperature du slab-ocean - SAVE tslab - REAL seaice(klon) !glace de mer (kg/m2) - SAVE seaice - REAL fluxo(klon) !flux turbulents ocean-glace de mer - REAL fluxg(klon) !flux turbulents ocean-atmosphere + ! "slab" ocean + REAL, save:: tslab(klon) ! temperature of ocean slab + REAL, save:: seaice(klon) ! glace de mer (kg/m2) + REAL fluxo(klon) ! flux turbulents ocean-glace de mer + REAL fluxg(klon) ! flux turbulents ocean-atmosphere ! Modele thermique du sol, a activer pour le cycle diurne: - logical, save:: ok_veget - LOGICAL, save:: ok_journe ! sortir le fichier journalier - - LOGICAL ok_mensuel ! sortir le fichier mensuel + logical:: ok_veget = .false. ! type de modele de vegetation utilise - LOGICAL ok_instan ! sortir le fichier instantane - save ok_instan + logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false. + ! sorties journalieres, mensuelles et instantanees dans les + ! fichiers histday, histmth et histins LOGICAL ok_region ! sortir le fichier regional - PARAMETER (ok_region=.FALSE.) + PARAMETER (ok_region = .FALSE.) - ! pour phsystoke avec thermiques - REAL fm_therm(klon, llm+1) + ! pour phsystoke avec thermiques + REAL fm_therm(klon, llm + 1) REAL entr_therm(klon, llm) - real q2(klon, llm+1, nbsrf) - save q2 + real, save:: q2(klon, llm + 1, nbsrf) - INTEGER ivap ! indice de traceurs pour vapeur d'eau - PARAMETER (ivap=1) - INTEGER iliq ! indice de traceurs pour eau liquide - PARAMETER (iliq=2) - - REAL t_ancien(klon, llm), q_ancien(klon, llm) - SAVE t_ancien, q_ancien - LOGICAL ancien_ok - SAVE ancien_ok + INTEGER ivap ! indice de traceurs pour vapeur d'eau + PARAMETER (ivap = 1) + INTEGER iliq ! indice de traceurs pour eau liquide + PARAMETER (iliq = 2) + + REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm) + LOGICAL, save:: ancien_ok REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s) - REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s) + REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s) real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) !IM Amip2 PV a theta constante - CHARACTER(LEN=3) ctetaSTD(nbteta) + CHARACTER(LEN = 3) ctetaSTD(nbteta) DATA ctetaSTD/'350', '380', '405'/ REAL rtetaSTD(nbteta) DATA rtetaSTD/350., 380., 405./ !MI Amip2 PV a theta constante - INTEGER klevp1 - PARAMETER(klevp1=llm+1) - - REAL swdn0(klon, klevp1), swdn(klon, klevp1) - REAL swup0(klon, klevp1), swup(klon, klevp1) + REAL swdn0(klon, llm + 1), swdn(klon, llm + 1) + REAL swup0(klon, llm + 1), swup(klon, llm + 1) SAVE swdn0, swdn, swup0, swup - REAL lwdn0(klon, klevp1), lwdn(klon, klevp1) - REAL lwup0(klon, klevp1), lwup(klon, klevp1) + REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) + REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) SAVE lwdn0, lwdn, lwup0, lwup !IM Amip2 ! variables a une pression donnee integer nlevSTD - PARAMETER(nlevSTD=17) + PARAMETER(nlevSTD = 17) real rlevSTD(nlevSTD) DATA rlevSTD/100000., 92500., 85000., 70000., & 60000., 50000., 40000., 30000., 25000., 20000., & 15000., 10000., 7000., 5000., 3000., 2000., 1000./ - CHARACTER(LEN=4) clevSTD(nlevSTD) + CHARACTER(LEN = 4) clevSTD(nlevSTD) DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', & '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', & - '70 ', '50 ', '30 ', '20 ', '10 '/ + '70 ', '50 ', '30 ', '20 ', '10 '/ ! prw: precipitable water real prw(klon) @@ -210,12 +201,12 @@ REAL flwc(klon, llm), fiwc(klon, llm) INTEGER kmax, lmax - PARAMETER(kmax=8, lmax=8) + PARAMETER(kmax = 8, lmax = 8) INTEGER kmaxm1, lmaxm1 - PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1) + PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1) REAL zx_tau(kmaxm1), zx_pc(lmaxm1) - DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./ + DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./ DATA zx_pc/50., 180., 310., 440., 560., 680., 800./ ! cldtopres pression au sommet des nuages @@ -223,13 +214,13 @@ DATA cldtopres/50., 180., 310., 440., 560., 680., 800./ ! taulev: numero du niveau de tau dans les sorties ISCCP - CHARACTER(LEN=4) taulev(kmaxm1) + CHARACTER(LEN = 4) taulev(kmaxm1) DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/ - CHARACTER(LEN=3) pclev(lmaxm1) + CHARACTER(LEN = 3) pclev(lmaxm1) DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/ - CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1) + CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1) DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', & 'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', & 'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', & @@ -268,34 +259,31 @@ ! "physiq".) REAL radsol(klon) - SAVE radsol ! bilan radiatif au sol calcule par code radiatif + SAVE radsol ! bilan radiatif au sol calcule par code radiatif INTEGER, SAVE:: itap ! number of calls to "physiq" - REAL ftsol(klon, nbsrf) - SAVE ftsol ! temperature du sol + REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction - REAL ftsoil(klon, nsoilmx, nbsrf) - SAVE ftsoil ! temperature dans le sol + REAL, save:: ftsoil(klon, nsoilmx, nbsrf) + ! soil temperature of surface fraction - REAL fevap(klon, nbsrf) - SAVE fevap ! evaporation + REAL, save:: fevap(klon, nbsrf) ! evaporation REAL fluxlat(klon, nbsrf) SAVE fluxlat REAL fqsurf(klon, nbsrf) - SAVE fqsurf ! humidite de l'air au contact de la surface + SAVE fqsurf ! humidite de l'air au contact de la surface - REAL qsol(klon) - SAVE qsol ! hauteur d'eau dans le sol + REAL, save:: qsol(klon) ! hauteur d'eau dans le sol REAL fsnow(klon, nbsrf) - SAVE fsnow ! epaisseur neigeuse + SAVE fsnow ! epaisseur neigeuse REAL falbe(klon, nbsrf) - SAVE falbe ! albedo par type de surface + SAVE falbe ! albedo par type de surface REAL falblw(klon, nbsrf) - SAVE falblw ! albedo par type de surface + SAVE falblw ! albedo par type de surface ! Paramètres de l'orographie à l'échelle sous-maille (OESM) : REAL, save:: zmea(klon) ! orographie moyenne @@ -312,26 +300,23 @@ INTEGER igwd, idx(klon), itest(klon) REAL agesno(klon, nbsrf) - SAVE agesno ! age de la neige + SAVE agesno ! age de la neige REAL run_off_lic_0(klon) SAVE run_off_lic_0 !KE43 ! Variables liees a la convection de K. Emanuel (sb): - REAL bas, top ! cloud base and top levels + REAL bas, top ! cloud base and top levels SAVE bas SAVE top - REAL Ma(klon, llm) ! undilute upward mass flux + REAL Ma(klon, llm) ! undilute upward mass flux SAVE Ma - REAL qcondc(klon, llm) ! in-cld water content from convect + REAL qcondc(klon, llm) ! in-cld water content from convect SAVE qcondc - REAL ema_work1(klon, llm), ema_work2(klon, llm) - SAVE ema_work1, ema_work2 - - REAL wd(klon) ! sb - SAVE wd ! sb + REAL, save:: sig1(klon, llm), w01(klon, llm) + REAL, save:: wd(klon) ! Variables locales pour la couche limite (al1): @@ -340,14 +325,14 @@ REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent - !AA Pour phytrac - REAL ycoefh(klon, llm) ! coef d'echange pour phytrac - REAL yu1(klon) ! vents dans la premiere couche U - REAL yv1(klon) ! vents dans la premiere couche V - REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige + ! Pour phytrac : + REAL ycoefh(klon, llm) ! coef d'echange pour phytrac + REAL yu1(klon) ! vents dans la premiere couche U + REAL yv1(klon) ! vents dans la premiere couche V + REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface - ! !et necessaire pour limiter la - ! !hauteur de neige, en kg/m2/s + ! !et necessaire pour limiter la + ! !hauteur de neige, en kg/m2/s REAL zxffonte(klon), zxfqcalving(klon) REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction @@ -359,16 +344,14 @@ REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) - !AA - REAL rain_fall(klon) ! pluie - REAL snow_fall(klon) ! neige - save snow_fall, rain_fall - !IM cf FH pour Tiedtke 080604 + REAL, save:: rain_fall(klon) ! pluie + REAL, save:: snow_fall(klon) ! neige + REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL evap(klon), devap(klon) ! evaporation et sa derivee + REAL evap(klon), devap(klon) ! evaporation and its derivative REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee - REAL dlw(klon) ! derivee infra rouge + REAL dlw(klon) ! derivee infra rouge SAVE dlw REAL bils(klon) ! bilan de chaleur au sol REAL fder(klon) ! Derive de flux (sensible et latente) @@ -387,75 +370,68 @@ INTEGER julien INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day - REAL pctsrf(klon, nbsrf) - !IM - REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE + REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface + REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE - SAVE pctsrf ! sous-fraction du sol REAL albsol(klon) - SAVE albsol ! albedo du sol total + SAVE albsol ! albedo du sol total REAL albsollw(klon) - SAVE albsollw ! albedo du sol total + SAVE albsollw ! albedo du sol total REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU ! Declaration des procedures appelees - EXTERNAL alboc ! calculer l'albedo sur ocean - EXTERNAL ajsec ! ajustement sec - EXTERNAL clmain ! couche limite + EXTERNAL alboc ! calculer l'albedo sur ocean !KE43 - EXTERNAL conema3 ! convect4.3 - EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie) - EXTERNAL nuage ! calculer les proprietes radiatives - EXTERNAL radlwsw ! rayonnements solaire et infrarouge - EXTERNAL transp ! transport total de l'eau et de l'energie + EXTERNAL conema3 ! convect4.3 + EXTERNAL nuage ! calculer les proprietes radiatives + EXTERNAL transp ! transport total de l'eau et de l'energie ! Variables locales - real clwcon(klon, llm), rnebcon(klon, llm) - real clwcon0(klon, llm), rnebcon0(klon, llm) - - save rnebcon, clwcon + real, save:: clwcon(klon, llm), rnebcon(klon, llm) + real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) - REAL rhcl(klon, llm) ! humiditi relative ciel clair - REAL dialiq(klon, llm) ! eau liquide nuageuse - REAL diafra(klon, llm) ! fraction nuageuse - REAL cldliq(klon, llm) ! eau liquide nuageuse - REAL cldfra(klon, llm) ! fraction nuageuse - REAL cldtau(klon, llm) ! epaisseur optique - REAL cldemi(klon, llm) ! emissivite infrarouge - - REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite - REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur - REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u - REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v + REAL rhcl(klon, llm) ! humiditi relative ciel clair + REAL dialiq(klon, llm) ! eau liquide nuageuse + REAL diafra(klon, llm) ! fraction nuageuse + REAL cldliq(klon, llm) ! eau liquide nuageuse + REAL cldfra(klon, llm) ! fraction nuageuse + REAL cldtau(klon, llm) ! epaisseur optique + REAL cldemi(klon, llm) ! emissivite infrarouge + + REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite + REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur + REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u + REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v REAL zxfluxt(klon, llm) REAL zxfluxq(klon, llm) REAL zxfluxu(klon, llm) REAL zxfluxv(klon, llm) - REAL heat(klon, llm) ! chauffage solaire - REAL heat0(klon, llm) ! chauffage solaire ciel clair - REAL cool(klon, llm) ! refroidissement infrarouge - REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair - REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon) - real sollwdown(klon) ! downward LW flux at surface - REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) + ! Le rayonnement n'est pas calculé tous les pas, il faut donc que + ! les variables soient rémanentes. + REAL, save:: heat(klon, llm) ! chauffage solaire + REAL heat0(klon, llm) ! chauffage solaire ciel clair + REAL, save:: cool(klon, llm) ! refroidissement infrarouge + REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair + REAL, save:: topsw(klon), toplw(klon), solsw(klon) + REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface + real, save:: sollwdown(klon) ! downward LW flux at surface + REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) REAL albpla(klon) - REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface - REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface - ! Le rayonnement n'est pas calcule tous les pas, il faut donc - ! sauvegarder les sorties du rayonnement - SAVE heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown - SAVE topsw0, toplw0, solsw0, sollw0, heat0, cool0 + REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface + REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface + SAVE albpla + SAVE heat0, cool0 INTEGER itaprad SAVE itaprad REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) - REAL conv_t(klon, llm) ! convergence de la temperature(K/s) + REAL conv_t(klon, llm) ! convergence of temperature (K/s) REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree @@ -465,64 +441,58 @@ REAL dist, rmu0(klon), fract(klon) REAL zdtime ! pas de temps du rayonnement (s) real zlongi - REAL z_avant(klon), z_apres(klon), z_factor(klon) - LOGICAL zx_ajustq - REAL za, zb - REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp + REAL zx_t, zx_qs, zdelta, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf - REAL t_coup - PARAMETER (t_coup=234.0) - + REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) !IM cf. AM Variables locales pour la CLA (hbtm2) - REAL pblh(klon, nbsrf) ! Hauteur de couche limite - REAL plcl(klon, nbsrf) ! Niveau de condensation de la CLA - REAL capCL(klon, nbsrf) ! CAPE de couche limite - REAL oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite - REAL cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite - REAL pblt(klon, nbsrf) ! T a la Hauteur de couche limite - REAL therm(klon, nbsrf) - REAL trmb1(klon, nbsrf) ! deep_cape - REAL trmb2(klon, nbsrf) ! inhibition - REAL trmb3(klon, nbsrf) ! Point Omega + REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite + REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA + REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite + REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite + REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite + REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite + REAL, SAVE:: therm(klon, nbsrf) + REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape + REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition + REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega ! Grdeurs de sorties REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon) REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) REAL s_trmb3(klon) - ! Variables locales pour la convection de K. Emanuel (sb): + ! Variables locales pour la convection de K. Emanuel : - REAL upwd(klon, llm) ! saturated updraft mass flux - REAL dnwd(klon, llm) ! saturated downdraft mass flux - REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux - REAL tvp(klon, llm) ! virtual temp of lifted parcel - REAL cape(klon) ! CAPE + REAL upwd(klon, llm) ! saturated updraft mass flux + REAL dnwd(klon, llm) ! saturated downdraft mass flux + REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux + REAL tvp(klon, llm) ! virtual temp of lifted parcel + REAL cape(klon) ! CAPE SAVE cape - REAL pbase(klon) ! cloud base pressure + REAL pbase(klon) ! cloud base pressure SAVE pbase - REAL bbase(klon) ! cloud base buoyancy + REAL bbase(klon) ! cloud base buoyancy SAVE bbase - REAL rflag(klon) ! flag fonctionnement de convect - INTEGER iflagctrl(klon) ! flag fonctionnement de convect + REAL rflag(klon) ! flag fonctionnement de convect + INTEGER iflagctrl(klon) ! flag fonctionnement de convect ! -- convect43: - INTEGER ntra ! nb traceurs pour convect4.3 REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm) REAL dplcldt(klon), dplcldr(klon) ! Variables du changement ! con: convection - ! lsc: condensation a grande echelle (Large-Scale-Condensation) + ! lsc: large scale condensation ! ajs: ajustement sec - ! eva: evaporation de l'eau liquide nuageuse - ! vdf: couche limite (Vertical DiFfusion) + ! eva: évaporation de l'eau liquide nuageuse + ! vdf: vertical diffusion in boundary layer REAL d_t_con(klon, llm), d_q_con(klon, llm) REAL d_u_con(klon, llm), d_v_con(klon, llm) REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm) @@ -530,16 +500,14 @@ REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm) REAL rneb(klon, llm) - REAL pmfu(klon, llm), pmfd(klon, llm) + REAL mfu(klon, llm), mfd(klon, llm) REAL pen_u(klon, llm), pen_d(klon, llm) REAL pde_u(klon, llm), pde_d(klon, llm) INTEGER kcbot(klon), kctop(klon), kdtop(klon) - REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1) - REAL prfl(klon, llm+1), psfl(klon, llm+1) - - INTEGER ibas_con(klon), itop_con(klon) + REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1) + REAL prfl(klon, llm + 1), psfl(klon, llm + 1) - SAVE ibas_con, itop_con + INTEGER, save:: ibas_con(klon), itop_con(klon) REAL rain_con(klon), rain_lsc(klon) REAL snow_con(klon), snow_lsc(klon) @@ -553,23 +521,20 @@ REAL d_u_lif(klon, llm), d_v_lif(klon, llm) REAL d_t_lif(klon, llm) - REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm) - real ratqsbas, ratqshaut - save ratqsbas, ratqshaut, ratqs + REAL, save:: ratqs(klon, llm) + real ratqss(klon, llm), ratqsc(klon, llm) + real:: ratqsbas = 0.01, ratqshaut = 0.3 ! Parametres lies au nouveau schema de nuages (SB, PDF) - real, save:: fact_cldcon - real, save:: facttemps - logical ok_newmicro - save ok_newmicro + real:: fact_cldcon = 0.375 + real:: facttemps = 1.e-4 + logical:: ok_newmicro = .true. real facteur - integer iflag_cldcon - save iflag_cldcon - + integer:: iflag_cldcon = 1 logical ptconv(klon, llm) - ! Variables locales pour effectuer les appels en serie + ! Variables locales pour effectuer les appels en série : REAL t_seri(klon, llm), q_seri(klon, llm) REAL ql_seri(klon, llm), qs_seri(klon, llm) @@ -585,9 +550,9 @@ REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc - REAL dudyn(iim+1, jjm + 1, llm) + REAL dudyn(iim + 1, jjm + 1, llm) - REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique + REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) INTEGER, SAVE:: nid_day, nid_ins @@ -599,73 +564,63 @@ REAL zsto - character(len=20) modname - character(len=80) abort_message logical ok_sync real date0 - ! Variables liees au bilan d'energie et d'enthalpi + ! Variables liées au bilan d'énergie et d'enthalpie : REAL ztsol(klon) - REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec - REAL d_h_vcol_phy - REAL fs_bound, fq_bound - SAVE d_h_vcol_phy - REAL zero_v(klon) - CHARACTER(LEN=15) ztit - INTEGER ip_ebil ! PRINT level for energy conserv. diag. - SAVE ip_ebil - DATA ip_ebil/0/ - INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics - !+jld ec_conser - REAL d_t_ec(klon, llm) ! tendance du a la conersion Ec -> E thermique + REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec + REAL, SAVE:: d_h_vcol_phy + REAL fs_bound, fq_bound + REAL zero_v(klon) + CHARACTER(LEN = 15) tit + INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics + INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation + + REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique REAL ZRCPD - !-jld ec_conser - !IM: t2m, q2m, u10m, v10m - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) !temperature, humidite a 2m - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m - REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille - REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille - !jq Aerosol effects (Johannes Quaas, 27/11/2003) - REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3] - - REAL sulfate_pi(klon, llm) - ! (SO4 aerosol concentration [ug/m3] (pre-industrial value)) - SAVE sulfate_pi + + REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m + REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m + REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille + REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille + + ! Aerosol effects: + + REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3) + + REAL, save:: sulfate_pi(klon, llm) + ! SO4 aerosol concentration, in micro g/m3, pre-industrial value REAL cldtaupi(klon, llm) - ! (Cloud optical thickness for pre-industrial (pi) aerosols) + ! cloud optical thickness for pre-industrial (pi) aerosols - REAL re(klon, llm) ! Cloud droplet effective radius - REAL fl(klon, llm) ! denominator of re + REAL re(klon, llm) ! Cloud droplet effective radius + REAL fl(klon, llm) ! denominator of re ! Aerosol optical properties - REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2) - REAL cg_ae(klon, llm, 2) + REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2) + REAL, save:: cg_ae(klon, llm, 2) - REAL topswad(klon), solswad(klon) ! Aerosol direct effect. - ! ok_ade=T -ADE=topswad-topsw + REAL topswad(klon), solswad(klon) ! aerosol direct effect + REAL topswai(klon), solswai(klon) ! aerosol indirect effect - REAL topswai(klon), solswai(klon) ! Aerosol indirect effect. - ! ok_aie=T -> - ! ok_ade=T -AIE=topswai-topswad - ! ok_ade=F -AIE=topswai-topsw + REAL aerindex(klon) ! POLDER aerosol index - REAL aerindex(klon) ! POLDER aerosol index + LOGICAL:: ok_ade = .false. ! apply aerosol direct effect + LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect - ! Parameters - LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not - REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995) + REAL:: bl95_b0 = 2., bl95_b1 = 0.2 + ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus + ! B). They link cloud droplet number concentration to aerosol mass + ! concentration. - SAVE ok_ade, ok_aie, bl95_b0, bl95_b1 SAVE u10m SAVE v10m SAVE t2m SAVE q2m SAVE ffonte SAVE fqcalving - SAVE piz_ae - SAVE tau_ae - SAVE cg_ae SAVE rain_con SAVE snow_con SAVE topswai @@ -674,86 +629,69 @@ SAVE solswad SAVE d_u_con SAVE d_v_con - SAVE rnebcon0 - SAVE clwcon0 - SAVE pblh - SAVE plcl - SAVE capCL - SAVE oliqCL - SAVE cteiCL - SAVE pblt - SAVE therm - SAVE trmb1 - SAVE trmb2 - SAVE trmb3 real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 + namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, & + fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, & + ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, & + nsplit_thermals + !---------------------------------------------------------------- - modname = 'physiq' - IF (if_ebil >= 1) THEN - DO i=1, klon - zero_v(i)=0. - END DO - END IF - ok_sync=.TRUE. - IF (nqmx < 2) THEN - abort_message = 'eaux vapeur et liquide sont indispensables' - CALL abort_gcm(modname, abort_message, 1) - ENDIF + IF (if_ebil >= 1) zero_v = 0. + ok_sync = .TRUE. + IF (nqmx < 2) CALL abort_gcm('physiq', & + 'eaux vapeur et liquide sont indispensables', 1) test_firstcal: IF (firstcal) THEN - ! initialiser - u10m=0. - v10m=0. - t2m=0. - q2m=0. - ffonte=0. - fqcalving=0. - piz_ae(:, :, :)=0. - tau_ae(:, :, :)=0. - cg_ae(:, :, :)=0. - rain_con(:)=0. - snow_con(:)=0. - bl95_b0=0. - bl95_b1=0. - topswai(:)=0. - topswad(:)=0. - solswai(:)=0. - solswad(:)=0. - - d_u_con = 0.0 - d_v_con = 0.0 - rnebcon0 = 0.0 - clwcon0 = 0.0 - rnebcon = 0.0 - clwcon = 0.0 - - pblh =0. ! Hauteur de couche limite - plcl =0. ! Niveau de condensation de la CLA - capCL =0. ! CAPE de couche limite - oliqCL =0. ! eau_liqu integree de couche limite - cteiCL =0. ! cloud top instab. crit. couche limite - pblt =0. ! T a la Hauteur de couche limite - therm =0. - trmb1 =0. ! deep_cape - trmb2 =0. ! inhibition - trmb3 =0. ! Point Omega - - IF (if_ebil >= 1) d_h_vcol_phy=0. - - ! appel a la lecture du run.def physique - - call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, & - ok_instan, fact_cldcon, facttemps, ok_newmicro, & - iflag_cldcon, ratqsbas, ratqshaut, if_ebil, & - ok_ade, ok_aie, & - bl95_b0, bl95_b1, & - iflag_thermals, nsplit_thermals) + ! initialiser + u10m = 0. + v10m = 0. + t2m = 0. + q2m = 0. + ffonte = 0. + fqcalving = 0. + piz_ae = 0. + tau_ae = 0. + cg_ae = 0. + rain_con(:) = 0. + snow_con(:) = 0. + topswai(:) = 0. + topswad(:) = 0. + solswai(:) = 0. + solswad(:) = 0. + + d_u_con = 0. + d_v_con = 0. + rnebcon0 = 0. + clwcon0 = 0. + rnebcon = 0. + clwcon = 0. + + pblh =0. ! Hauteur de couche limite + plcl =0. ! Niveau de condensation de la CLA + capCL =0. ! CAPE de couche limite + oliqCL =0. ! eau_liqu integree de couche limite + cteiCL =0. ! cloud top instab. crit. couche limite + pblt =0. ! T a la Hauteur de couche limite + therm =0. + trmb1 =0. ! deep_cape + trmb2 =0. ! inhibition + trmb3 =0. ! Point Omega + + IF (if_ebil >= 1) d_h_vcol_phy = 0. + + iflag_thermals = 0 + nsplit_thermals = 1 + print *, "Enter namelist 'physiq_nml'." + read(unit=*, nml=physiq_nml) + write(unit_nml, nml=physiq_nml) + + call conf_phys ! Initialiser les compteurs: @@ -761,118 +699,90 @@ itap = 0 itaprad = 0 CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, & - seaice, fqsurf, qsol, fsnow, & - falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, & - dlw, radsol, frugs, agesno, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, & - t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & - run_off_lic_0) + seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, & + snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, & + zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, & + ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) - ! ATTENTION : il faudra a terme relire q2 dans l'etat initial - q2(:, :, :)=1.e-8 + ! ATTENTION : il faudra a terme relire q2 dans l'etat initial + q2 = 1e-8 - radpas = NINT( 86400. / pdtphys / nbapp_rad) + radpas = NINT(86400. / dtphys / nbapp_rad) ! on remet le calendrier a zero IF (raz_date) itau_phy = 0 PRINT *, 'cycle_diurne = ', cycle_diurne + CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, & + ok_instan, ok_region) - IF(ocean.NE.'force ') THEN - ok_ocean=.TRUE. + IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN + print *, "Au minimum 4 appels par jour si cycle diurne" + call abort_gcm('physiq', & + "Nombre d'appels au rayonnement insuffisant", 1) ENDIF - CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, & - ok_region) - - IF (pdtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN - print *,'Nbre d appels au rayonnement insuffisant' - print *,"Au minimum 4 appels par jour si cycle diurne" - abort_message='Nbre d appels au rayonnement insuffisant' - call abort_gcm(modname, abort_message, 1) - ENDIF - print *,"Clef pour la convection, iflag_con=", iflag_con - print *,"Clef pour le driver de la convection, ok_cvl=", & - ok_cvl - - ! Initialisation pour la convection de K.E. (sb): + ! Initialisation pour le schéma de convection d'Emanuel : IF (iflag_con >= 3) THEN - - print *,"*** Convection de Kerry Emanuel 4.3 " - - !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG - DO i = 1, klon - ibas_con(i) = 1 - itop_con(i) = 1 - ENDDO - !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END - + ibas_con = 1 + itop_con = 1 ENDIF IF (ok_orodr) THEN rugoro = MAX(1e-5, zstd * zsig / 2) - CALL SUGWD(klon, llm, paprs, pplay) + CALL SUGWD(paprs, play) else rugoro = 0. ENDIF - lmt_pas = NINT(86400. / pdtphys) ! tous les jours + lmt_pas = NINT(86400. / dtphys) ! tous les jours print *, 'Number of time steps of "physics" per day: ', lmt_pas - ecrit_ins = NINT(ecrit_ins/pdtphys) - ecrit_hf = NINT(ecrit_hf/pdtphys) - ecrit_mth = NINT(ecrit_mth/pdtphys) - ecrit_tra = NINT(86400.*ecrit_tra/pdtphys) - ecrit_reg = NINT(ecrit_reg/pdtphys) + ecrit_ins = NINT(ecrit_ins/dtphys) + ecrit_hf = NINT(ecrit_hf/dtphys) + ecrit_mth = NINT(ecrit_mth/dtphys) + ecrit_tra = NINT(86400.*ecrit_tra/dtphys) + ecrit_reg = NINT(ecrit_reg/dtphys) ! Initialiser le couplage si necessaire npas = 0 nexca = 0 - print *,'AVANT HIST IFLAG_CON=', iflag_con - - ! Initialisation des sorties + ! Initialisation des sorties - call ini_histhf(pdtphys, nid_hf, nid_hf3d) - call ini_histday(pdtphys, ok_journe, nid_day, nqmx) - call ini_histins(pdtphys, ok_instan, nid_ins) + call ini_histhf(dtphys, nid_hf, nid_hf3d) + call ini_histday(dtphys, ok_journe, nid_day, nqmx) + call ini_histins(dtphys, ok_instan, nid_ins) CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0) - !XXXPB Positionner date0 pour initialisation de ORCHIDEE - WRITE(*, *) 'physiq date0 : ', date0 + ! Positionner date0 pour initialisation de ORCHIDEE + print *, 'physiq date0: ', date0 ENDIF test_firstcal ! Mettre a zero des variables de sortie (pour securite) DO i = 1, klon - d_ps(i) = 0.0 - ENDDO - DO k = 1, llm - DO i = 1, klon - d_t(i, k) = 0.0 - d_u(i, k) = 0.0 - d_v(i, k) = 0.0 - ENDDO + d_ps(i) = 0. ENDDO DO iq = 1, nqmx DO k = 1, llm DO i = 1, klon - d_qx(i, k, iq) = 0.0 + d_qx(i, k, iq) = 0. ENDDO ENDDO ENDDO - da=0. - mp=0. - phi(:, :, :)=0. + da = 0. + mp = 0. + phi = 0. - ! Ne pas affecter les valeurs entrees de u, v, h, et q + ! Ne pas affecter les valeurs entrées de u, v, h, et q : DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t(i, k) - u_seri(i, k) = u(i, k) - v_seri(i, k) = v(i, k) - q_seri(i, k) = qx(i, k, ivap) + t_seri(i, k) = t(i, k) + u_seri(i, k) = u(i, k) + v_seri(i, k) = v(i, k) + q_seri(i, k) = qx(i, k, ivap) ql_seri(i, k) = qx(i, k, iliq) qs_seri(i, k) = 0. ENDDO @@ -893,102 +803,86 @@ ENDDO IF (if_ebil >= 1) THEN - ztit='after dynamic' - CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, - ! on devrait avoir que la variation d'entalpie par la dynamique - ! est egale a la variation de la physique au pas de temps precedent. - ! Donc la somme de ces 2 variations devrait etre nulle. - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, zero_v, zero_v, ztsol & - , d_h_vcol+d_h_vcol_phy, d_qt, 0. & - , fs_bound, fq_bound ) + tit = 'after dynamics' + CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) + ! Comme les tendances de la physique sont ajoutés dans la + ! dynamique, la variation d'enthalpie par la dynamique devrait + ! être égale à la variation de la physique au pas de temps + ! précédent. Donc la somme de ces 2 variations devrait être + ! nulle. + call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & + zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, & + d_qt, 0., fs_bound, fq_bound) END IF - ! Diagnostiquer la tendance dynamique - + ! Diagnostic de la tendance dynamique : IF (ancien_ok) THEN DO k = 1, llm DO i = 1, klon - d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/pdtphys - d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/pdtphys + d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys + d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys ENDDO ENDDO ELSE DO k = 1, llm DO i = 1, klon - d_t_dyn(i, k) = 0.0 - d_q_dyn(i, k) = 0.0 + d_t_dyn(i, k) = 0. + d_q_dyn(i, k) = 0. ENDDO ENDDO ancien_ok = .TRUE. ENDIF ! Ajouter le geopotentiel du sol: - DO k = 1, llm DO i = 1, klon zphi(i, k) = pphi(i, k) + pphis(i) ENDDO ENDDO - ! Verifier les temperatures - + ! Check temperatures: CALL hgardfou(t_seri, ftsol) ! Incrementer le compteur de la physique - itap = itap + 1 julien = MOD(NINT(rdayvrai), 360) if (julien == 0) julien = 360 - forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg + forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg - ! Mettre en action les conditions aux limites (albedo, sst, etc.). - ! Prescrire l'ozone et calculer l'albedo sur l'ocean. + ! Mettre en action les conditions aux limites (albedo, sst etc.). - if (nqmx >= 5) then - wo = qx(:, :, 5) * zmasse / dobson_u / 1e3 - else IF (MOD(itap - 1, lmt_pas) == 0) THEN - wo = ozonecm(REAL(julien), paprs) - ENDIF - - ! Re-evaporer l'eau liquide nuageuse + ! Prescrire l'ozone et calculer l'albedo sur l'ocean. + wo = ozonecm(REAL(julien), paprs) - DO k = 1, llm ! re-evaporation de l'eau liquide nuageuse + ! Évaporation de l'eau liquide nuageuse : + DO k = 1, llm DO i = 1, klon - zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k)) - zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k)) - zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k))) - zb = MAX(0.0, ql_seri(i, k)) - za = - MAX(0.0, ql_seri(i, k)) & - * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta) - t_seri(i, k) = t_seri(i, k) + za + zb = MAX(0., ql_seri(i, k)) + t_seri(i, k) = t_seri(i, k) & + - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k)) q_seri(i, k) = q_seri(i, k) + zb - ql_seri(i, k) = 0.0 ENDDO ENDDO + ql_seri = 0. IF (if_ebil >= 2) THEN - ztit='after reevap' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, zero_v, zero_v, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) + tit = 'after reevap' + CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) + call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & + zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & + fs_bound, fq_bound) END IF ! Appeler la diffusion verticale (programme de couche limite) DO i = 1, klon - zxrugs(i) = 0.0 + zxrugs(i) = 0. ENDDO DO nsrf = 1, nbsrf DO i = 1, klon @@ -1005,15 +899,15 @@ CALL orbite(REAL(julien), zlongi, dist) IF (cycle_diurne) THEN - zdtime = pdtphys * REAL(radpas) - CALL zenang(zlongi, gmtime, zdtime, rmu0, fract) + zdtime = dtphys * REAL(radpas) + CALL zenang(zlongi, time, zdtime, rmu0, fract) ELSE rmu0 = -999.999 ENDIF - ! Calcul de l'abedo moyen par maille - albsol(:)=0. - albsollw(:)=0. + ! Calcul de l'abedo moyen par maille + albsol(:) = 0. + albsollw(:) = 0. DO nsrf = 1, nbsrf DO i = 1, klon albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf) @@ -1021,62 +915,51 @@ ENDDO ENDDO - ! Repartition sous maille des flux LW et SW - ! Repartition du longwave par sous-surface linearisee + ! Répartition sous maille des flux longwave et shortwave + ! Répartition du longwave par sous-surface linéarisée DO nsrf = 1, nbsrf DO i = 1, klon fsollw(i, nsrf) = sollw(i) & - + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf)) - fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i)) + + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf)) + fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i)) ENDDO ENDDO fder = dlw - CALL clmain(pdtphys, itap, date0, pctsrf, pctsrf_new, & - t_seri, q_seri, u_seri, v_seri, & - julien, rmu0, co2_ppm, & - ok_veget, ocean, npas, nexca, ftsol, & - soil_model, cdmmax, cdhmax, & - ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & - paprs, pplay, fsnow, fqsurf, fevap, falbe, falblw, & - fluxlat, rain_fall, snow_fall, & - fsolsw, fsollw, sollwdown, fder, & - rlon, rlat, cuphy, cvphy, frugs, & - firstcal, lafin, agesno, rugoro, & - d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, & - fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, & - q2, dsens, devap, & - ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, & - pblh, capCL, oliqCL, cteiCL, pblT, & - therm, trmb1, trmb2, trmb3, plcl, & - fqcalving, ffonte, run_off_lic_0, & - fluxo, fluxg, tslab, seaice) - - !XXX Incrementation des flux - - zxfluxt=0. - zxfluxq=0. - zxfluxu=0. - zxfluxv=0. + ! Couche limite: + + CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, & + u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, & + ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, & + qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, & + rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, & + frugs, firstcal, agesno, rugoro, d_t_vdf, & + d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, & + cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, & + pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, & + fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice) + + ! Incrémentation des flux + + zxfluxt = 0. + zxfluxq = 0. + zxfluxu = 0. + zxfluxv = 0. DO nsrf = 1, nbsrf DO k = 1, llm DO i = 1, klon - zxfluxt(i, k) = zxfluxt(i, k) + & - fluxt(i, k, nsrf) * pctsrf( i, nsrf) - zxfluxq(i, k) = zxfluxq(i, k) + & - fluxq(i, k, nsrf) * pctsrf( i, nsrf) - zxfluxu(i, k) = zxfluxu(i, k) + & - fluxu(i, k, nsrf) * pctsrf( i, nsrf) - zxfluxv(i, k) = zxfluxv(i, k) + & - fluxv(i, k, nsrf) * pctsrf( i, nsrf) + zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf) END DO END DO END DO DO i = 1, klon sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol - evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol + evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol fder(i) = dlw(i) + dsens(i) + devap(i) ENDDO @@ -1090,47 +973,42 @@ ENDDO IF (if_ebil >= 2) THEN - ztit='after clmain' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, sens & - , evap, zero_v, zero_v, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) + tit = 'after clmain' + CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) + call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & + sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & + fs_bound, fq_bound) END IF - ! Incrementer la temperature du sol + ! Update surface temperature: DO i = 1, klon - zxtsol(i) = 0.0 - zxfluxlat(i) = 0.0 + zxtsol(i) = 0. + zxfluxlat(i) = 0. - zt2m(i) = 0.0 - zq2m(i) = 0.0 - zu10m(i) = 0.0 - zv10m(i) = 0.0 - zxffonte(i) = 0.0 - zxfqcalving(i) = 0.0 - - s_pblh(i) = 0.0 - s_lcl(i) = 0.0 - s_capCL(i) = 0.0 - s_oliqCL(i) = 0.0 - s_cteiCL(i) = 0.0 - s_pblT(i) = 0.0 - s_therm(i) = 0.0 - s_trmb1(i) = 0.0 - s_trmb2(i) = 0.0 - s_trmb3(i) = 0.0 - - IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) + & - pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.) .GT. EPSFRA) & - THEN - WRITE(*, *) 'physiq : pb sous surface au point ', i, & - pctsrf(i, 1 : nbsrf) - ENDIF + zt2m(i) = 0. + zq2m(i) = 0. + zu10m(i) = 0. + zv10m(i) = 0. + zxffonte(i) = 0. + zxfqcalving(i) = 0. + + s_pblh(i) = 0. + s_lcl(i) = 0. + s_capCL(i) = 0. + s_oliqCL(i) = 0. + s_cteiCL(i) = 0. + s_pblT(i) = 0. + s_therm(i) = 0. + s_trmb1(i) = 0. + s_trmb2(i) = 0. + s_trmb3(i) = 0. + + IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) & + + pctsrf(i, is_sic) - 1.) > EPSFRA) print *, & + 'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf) ENDDO DO nsrf = 1, nbsrf DO i = 1, klon @@ -1143,7 +1021,7 @@ zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf) zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf) zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf) - zxfqcalving(i) = zxfqcalving(i) + & + zxfqcalving(i) = zxfqcalving(i) + & fqcalving(i, nsrf)*pctsrf(i, nsrf) s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf) s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf) @@ -1162,148 +1040,110 @@ DO nsrf = 1, nbsrf DO i = 1, klon - IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) + IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) - IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i) - IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i) - IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i) - IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i) - IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i) - IF (pctsrf(i, nsrf) < epsfra) & + IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i) + IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i) + IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i) + IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i) + IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i) + IF (pctsrf(i, nsrf) < epsfra) & fqcalving(i, nsrf) = zxfqcalving(i) - IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf)=s_pblh(i) - IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf)=s_lcl(i) - IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf)=s_capCL(i) - IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf)=s_oliqCL(i) - IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf)=s_cteiCL(i) - IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf)=s_pblT(i) - IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf)=s_therm(i) - IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf)=s_trmb1(i) - IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf)=s_trmb2(i) - IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf)=s_trmb3(i) + IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i) + IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i) + IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i) + IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i) + IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i) + IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i) + IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i) + IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i) + IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i) + IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i) ENDDO ENDDO ! Calculer la derive du flux infrarouge DO i = 1, klon - dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3 + dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 ENDDO ! Appeler la convection (au choix) DO k = 1, llm DO i = 1, klon - conv_q(i, k) = d_q_dyn(i, k) & - + d_q_vdf(i, k)/pdtphys - conv_t(i, k) = d_t_dyn(i, k) & - + d_t_vdf(i, k)/pdtphys + conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys + conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys ENDDO ENDDO + IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *, "avantcon=", za - ENDIF - zx_ajustq = .FALSE. - IF (iflag_con == 2) zx_ajustq=.TRUE. - IF (zx_ajustq) THEN - DO i = 1, klon - z_avant(i) = 0.0 - ENDDO - DO k = 1, llm - DO i = 1, klon - z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) & - *zmasse(i, k) - ENDDO - ENDDO + print *, "avantcon = ", za ENDIF - IF (iflag_con == 1) THEN - stop 'reactiver le call conlmd dans physiq.F' - ELSE IF (iflag_con == 2) THEN - CALL conflx(pdtphys, paprs, pplay, t_seri, q_seri, & - conv_t, conv_q, zxfluxq(1, 1), omega, & - d_t_con, d_q_con, rain_con, snow_con, & - pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & - kcbot, kctop, kdtop, pmflxr, pmflxs) + + if (iflag_con == 2) then + z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & + q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & + d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), & + mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & + kdtop, pmflxr, pmflxs) WHERE (rain_con < 0.) rain_con = 0. WHERE (snow_con < 0.) snow_con = 0. - DO i = 1, klon - ibas_con(i) = llm+1 - kcbot(i) - itop_con(i) = llm+1 - kctop(i) - ENDDO - ELSE IF (iflag_con >= 3) THEN - ! nb of tracers for the KE convection: - ! MAF la partie traceurs est faite dans phytrac - ! on met ntra=1 pour limiter les appels mais on peut - ! supprimer les calculs / ftra. - ntra = 1 - ! Schema de convection modularise et vectorise: - ! (driver commun aux versions 3 et 4) - - IF (ok_cvl) THEN ! new driver for convectL - CALL concvl(iflag_con, pdtphys, paprs, pplay, t_seri, q_seri, & - u_seri, v_seri, tr_seri, ntra, & - ema_work1, ema_work2, & - d_t_con, d_q_con, d_u_con, d_v_con, d_tr, & - rain_con, snow_con, ibas_con, itop_con, & - upwd, dnwd, dnwd0, & - Ma, cape, tvp, iflagctrl, & - pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, & - pmflxr, pmflxs, & - da, phi, mp) - - clwcon0=qcondc - pmfu=upwd+dnwd - ELSE ! ok_cvl - ! MAF conema3 ne contient pas les traceurs - CALL conema3 (pdtphys, paprs, pplay, t_seri, q_seri, & - u_seri, v_seri, tr_seri, ntra, & - ema_work1, ema_work2, & - d_t_con, d_q_con, d_u_con, d_v_con, d_tr, & - rain_con, snow_con, ibas_con, itop_con, & - upwd, dnwd, dnwd0, bas, top, & - Ma, cape, tvp, rflag, & - pbase & - , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr & - , clwcon0) - ENDIF ! ok_cvl + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop + else + ! iflag_con >= 3 - IF (.NOT. ok_gust) THEN - do i = 1, klon - wd(i)=0.0 - enddo - ENDIF + CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, & + v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, & + d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, & + itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, & + pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, & + wd, pmflxr, pmflxs, da, phi, mp, ntra=1) + ! (number of tracers for the convection scheme of Kerry Emanuel: + ! la partie traceurs est faite dans phytrac + ! on met ntra = 1 pour limiter les appels mais on peut + ! supprimer les calculs / ftra.) + + clwcon0 = qcondc + mfu = upwd + dnwd + IF (.NOT. ok_gust) wd = 0. - ! Calcul des proprietes des nuages convectifs + ! Calcul des propriétés des nuages convectifs DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/pplay(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor + zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k) + zx_qs = MIN(0.5, zx_qs) + zcor = 1./(1.-retv*zx_qs) + zx_qs = zx_qs*zcor ELSE IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/pplay(i, k) + zx_qs = qsats(zx_t)/play(i, k) ELSE - zx_qs = qsatl(zx_t)/pplay(i, k) + zx_qs = qsatl(zx_t)/play(i, k) ENDIF ENDIF - zqsat(i, k)=zx_qs + zqsat(i, k) = zx_qs ENDDO ENDDO - ! calcul des proprietes des nuages convectifs - clwcon0=fact_cldcon*clwcon0 - call clouds_gno & - (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0) - ELSE - print *, "iflag_con non-prevu", iflag_con - stop 1 - ENDIF + ! calcul des proprietes des nuages convectifs + clwcon0 = fact_cldcon * clwcon0 + call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & + rnebcon0) + + mfd = 0. + pen_u = 0. + pen_d = 0. + pde_d = 0. + pde_u = 0. + END if DO k = 1, llm DO i = 1, klon @@ -1315,142 +1155,112 @@ ENDDO IF (if_ebil >= 2) THEN - ztit='after convect' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, rain_con, snow_con, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) + tit = 'after convect' + CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) + call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & + zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, & + fs_bound, fq_bound) END IF IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *,"aprescon=", za - zx_t = 0.0 - za = 0.0 + print *, "aprescon = ", za + zx_t = 0. + za = 0. DO i = 1, klon za = za + airephy(i)/REAL(klon) zx_t = zx_t + (rain_con(i)+ & snow_con(i))*airephy(i)/REAL(klon) ENDDO - zx_t = zx_t/za*pdtphys - print *,"Precip=", zx_t + zx_t = zx_t/za*dtphys + print *, "Precip = ", zx_t ENDIF - IF (zx_ajustq) THEN - DO i = 1, klon - z_apres(i) = 0.0 - ENDDO - DO k = 1, llm - DO i = 1, klon - z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) & - *zmasse(i, k) - ENDDO - ENDDO - DO i = 1, klon - z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*pdtphys) & - /z_apres(i) - ENDDO + + IF (iflag_con == 2) THEN + z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) + z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres DO k = 1, llm DO i = 1, klon - IF (z_factor(i).GT.(1.0+1.0E-08) .OR. & - z_factor(i) < (1.0-1.0E-08)) THEN + IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN q_seri(i, k) = q_seri(i, k) * z_factor(i) ENDIF ENDDO ENDDO ENDIF - zx_ajustq=.FALSE. - ! Convection seche (thermiques ou ajustement) + ! Convection sèche (thermiques ou ajustement) - d_t_ajs=0. - d_u_ajs=0. - d_v_ajs=0. - d_q_ajs=0. - fm_therm=0. - entr_therm=0. - - IF(prt_level>9)print *, & - 'AVANT LA CONVECTION SECHE, iflag_thermals=' & - , iflag_thermals, ' nsplit_thermals=', nsplit_thermals - if(iflag_thermals < 0) then - ! Rien - IF(prt_level>9)print *,'pas de convection' - else if(iflag_thermals == 0) then - ! Ajustement sec - IF(prt_level>9)print *,'ajsec' - CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs) + d_t_ajs = 0. + d_u_ajs = 0. + d_v_ajs = 0. + d_q_ajs = 0. + fm_therm = 0. + entr_therm = 0. + + if (iflag_thermals == 0) then + ! Ajustement sec + CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs) t_seri = t_seri + d_t_ajs q_seri = q_seri + d_q_ajs else - ! Thermiques - IF(prt_level>9)print *,'JUSTE AVANT, iflag_thermals=' & - , iflag_thermals, ' nsplit_thermals=', nsplit_thermals - call calltherm(pdtphys & - , pplay, paprs, pphi & - , u_seri, v_seri, t_seri, q_seri & - , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs & - , fm_therm, entr_therm) + ! Thermiques + call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, & + q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm) endif IF (if_ebil >= 2) THEN - ztit='after dry_adjust' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) + tit = 'after dry_adjust' + CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) END IF - ! Caclul des ratqs + ! Caclul des ratqs - ! ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q - ! on ecrase le tableau ratqsc calcule par clouds_gno + ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q + ! on écrase le tableau ratqsc calculé par clouds_gno if (iflag_cldcon == 1) then - do k=1, llm - do i=1, klon + do k = 1, llm + do i = 1, klon if(ptconv(i, k)) then - ratqsc(i, k)=ratqsbas & - +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k) + ratqsc(i, k) = ratqsbas + fact_cldcon & + * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k) else - ratqsc(i, k)=0. + ratqsc(i, k) = 0. endif enddo enddo endif - ! ratqs stables - do k=1, llm - do i=1, klon - ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* & - min((paprs(i, 1)-pplay(i, k))/(paprs(i, 1)-30000.), 1.) + ! ratqs stables + do k = 1, llm + do i = 1, klon + ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) & + * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) enddo enddo - ! ratqs final - if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then - ! les ratqs sont une conbinaison de ratqss et ratqsc - ! ratqs final - ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de - ! relaxation des ratqs - facteur=exp(-pdtphys*facttemps) - ratqs=max(ratqs*facteur, ratqss) - ratqs=max(ratqs, ratqsc) + ! ratqs final + if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then + ! les ratqs sont une conbinaison de ratqss et ratqsc + ! ratqs final + ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de + ! relaxation des ratqs + ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss) + ratqs = max(ratqs, ratqsc) else - ! on ne prend que le ratqs stable pour fisrtilp - ratqs=ratqss + ! on ne prend que le ratqs stable pour fisrtilp + ratqs = ratqss endif - ! Appeler le processus de condensation a grande echelle - ! et le processus de precipitation - CALL fisrtilp(pdtphys, paprs, pplay, & - t_seri, q_seri, ptconv, ratqs, & - d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, & - rain_lsc, snow_lsc, & - pfrac_impa, pfrac_nucl, pfrac_1nucl, & - frac_impa, frac_nucl, & - prfl, psfl, rhcl) + ! Processus de condensation à grande echelle et processus de + ! précipitation : + CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, & + d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, & + pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, & + psfl, rhcl) WHERE (rain_lsc < 0) rain_lsc = 0. WHERE (snow_lsc < 0) snow_lsc = 0. @@ -1465,44 +1275,43 @@ ENDDO IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *,"apresilp=", za - zx_t = 0.0 - za = 0.0 + print *, "apresilp = ", za + zx_t = 0. + za = 0. DO i = 1, klon za = za + airephy(i)/REAL(klon) zx_t = zx_t + (rain_lsc(i) & + snow_lsc(i))*airephy(i)/REAL(klon) ENDDO - zx_t = zx_t/za*pdtphys - print *,"Precip=", zx_t + zx_t = zx_t/za*dtphys + print *, "Precip = ", zx_t ENDIF IF (if_ebil >= 2) THEN - ztit='after fisrt' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, rain_lsc, snow_lsc, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) + tit = 'after fisrt' + CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) + call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & + zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, & + fs_bound, fq_bound) END IF - ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT + ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT ! 1. NUAGES CONVECTIFS - IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke - snow_tiedtke=0. + IF (iflag_cldcon <= -1) THEN + ! seulement pour Tiedtke + snow_tiedtke = 0. if (iflag_cldcon == -1) then - rain_tiedtke=rain_con + rain_tiedtke = rain_con else - rain_tiedtke=0. - do k=1, llm - do i=1, klon + rain_tiedtke = 0. + do k = 1, llm + do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys & + rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys & *zmasse(i, k) endif enddo @@ -1510,47 +1319,44 @@ endif ! Nuages diagnostiques pour Tiedtke - CALL diagcld1(paprs, pplay, & - rain_tiedtke, snow_tiedtke, ibas_con, itop_con, & - diafra, dialiq) + CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, & + itop_con, diafra, dialiq) DO k = 1, llm DO i = 1, klon - IF (diafra(i, k).GT.cldfra(i, k)) THEN + IF (diafra(i, k) > cldfra(i, k)) THEN cldliq(i, k) = dialiq(i, k) cldfra(i, k) = diafra(i, k) ENDIF ENDDO ENDDO - ELSE IF (iflag_cldcon == 3) THEN - ! On prend pour les nuages convectifs le max du calcul de la - ! convection et du calcul du pas de temps précédent diminué d'un facteur - ! facttemps - facteur = pdtphys *facttemps - do k=1, llm - do i=1, klon - rnebcon(i, k)=rnebcon(i, k)*facteur - if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) & - then - rnebcon(i, k)=rnebcon0(i, k) - clwcon(i, k)=clwcon0(i, k) + ! On prend pour les nuages convectifs le maximum du calcul de + ! la convection et du calcul du pas de temps précédent diminué + ! d'un facteur facttemps. + facteur = dtphys * facttemps + do k = 1, llm + do i = 1, klon + rnebcon(i, k) = rnebcon(i, k) * facteur + if (rnebcon0(i, k) * clwcon0(i, k) & + > rnebcon(i, k) * clwcon(i, k)) then + rnebcon(i, k) = rnebcon0(i, k) + clwcon(i, k) = clwcon0(i, k) endif enddo enddo - ! On prend la somme des fractions nuageuses et des contenus en eau - cldfra=min(max(cldfra, rnebcon), 1.) - cldliq=cldliq+rnebcon*clwcon - + ! On prend la somme des fractions nuageuses et des contenus en eau + cldfra = min(max(cldfra, rnebcon), 1.) + cldliq = cldliq + rnebcon*clwcon ENDIF - ! 2. NUAGES STARTIFORMES + ! 2. Nuages stratiformes IF (ok_stratus) THEN - CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq) + CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq) DO k = 1, llm DO i = 1, klon - IF (diafra(i, k).GT.cldfra(i, k)) THEN + IF (diafra(i, k) > cldfra(i, k)) THEN cldliq(i, k) = dialiq(i, k) cldfra(i, k) = diafra(i, k) ENDIF @@ -1559,82 +1365,63 @@ ENDIF ! Precipitation totale - DO i = 1, klon rain_fall(i) = rain_con(i) + rain_lsc(i) snow_fall(i) = snow_con(i) + snow_lsc(i) ENDDO - IF (if_ebil >= 2) THEN - ztit="after diagcld" - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - END IF - - ! Calculer l'humidite relative pour diagnostique + IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, & + dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, & + d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) + ! Humidité relative pour diagnostic : DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/pplay(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor + zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k) + zx_qs = MIN(0.5, zx_qs) + zcor = 1./(1.-retv*zx_qs) + zx_qs = zx_qs*zcor ELSE IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/pplay(i, k) + zx_qs = qsats(zx_t)/play(i, k) ELSE - zx_qs = qsatl(zx_t)/pplay(i, k) + zx_qs = qsatl(zx_t)/play(i, k) ENDIF ENDIF zx_rh(i, k) = q_seri(i, k)/zx_qs - zqsat(i, k)=zx_qs + zqsat(i, k) = zx_qs ENDDO ENDDO - !jq - introduce the aerosol direct and first indirect radiative forcings - !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr) - IF (ok_ade.OR.ok_aie) THEN - ! Get sulfate aerosol distribution + + ! Introduce the aerosol direct and first indirect radiative forcings: + IF (ok_ade .OR. ok_aie) THEN + ! Get sulfate aerosol distribution : CALL readsulfate(rdayvrai, firstcal, sulfate) CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi) - ! Calculate aerosol optical properties (Olivier Boucher) - CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, & - tau_ae, piz_ae, cg_ae, aerindex) + CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, & + aerindex) ELSE - tau_ae(:, :, :)=0.0 - piz_ae(:, :, :)=0.0 - cg_ae(:, :, :)=0.0 + tau_ae = 0. + piz_ae = 0. + cg_ae = 0. ENDIF - ! Calculer les parametres optiques des nuages et quelques - ! parametres pour diagnostiques: - + ! Paramètres optiques des nuages et quelques paramètres pour diagnostics : if (ok_newmicro) then - CALL newmicro (paprs, pplay, ok_newmicro, & - t_seri, cldliq, cldfra, cldtau, cldemi, & - cldh, cldl, cldm, cldt, cldq, & - flwp, fiwp, flwc, fiwc, & - ok_aie, & - sulfate, sulfate_pi, & - bl95_b0, bl95_b1, & - cldtaupi, re, fl) + CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, & + cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, & + sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl) else - CALL nuage (paprs, pplay, & - t_seri, cldliq, cldfra, cldtau, cldemi, & - cldh, cldl, cldm, cldt, cldq, & - ok_aie, & - sulfate, sulfate_pi, & - bl95_b0, bl95_b1, & - cldtaupi, re, fl) - + CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, & + cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, & + bl95_b1, cldtaupi, re, fl) endif ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. - IF (MOD(itaprad, radpas) == 0) THEN DO i = 1, klon albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) & @@ -1646,22 +1433,13 @@ + falblw(i, is_ter) * pctsrf(i, is_ter) & + falblw(i, is_sic) * pctsrf(i, is_sic) ENDDO - ! nouveau rayonnement (compatible Arpege-IFS): - CALL radlwsw(dist, rmu0, fract, & - paprs, pplay, zxtsol, albsol, albsollw, t_seri, q_seri, & - wo, & - cldfra, cldemi, cldtau, & - heat, heat0, cool, cool0, radsol, albpla, & - topsw, toplw, solsw, sollw, & - sollwdown, & - topsw0, toplw0, solsw0, sollw0, & - lwdn0, lwdn, lwup0, lwup, & - swdn0, swdn, swup0, swup, & - ok_ade, ok_aie, & ! new for aerosol radiative effects - tau_ae, piz_ae, cg_ae, & - topswad, solswad, & - cldtaupi, & - topswai, solswai) + ! Rayonnement (compatible Arpege-IFS) : + CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, & + albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, & + heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, & + sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, & + lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, & + cg_ae, topswad, solswad, cldtaupi, topswai, solswai) itaprad = 0 ENDIF itaprad = itaprad + 1 @@ -1670,28 +1448,24 @@ DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) & - + (heat(i, k)-cool(i, k)) * pdtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400. ENDDO ENDDO IF (if_ebil >= 2) THEN - ztit='after rad' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , topsw, toplw, solsw, sollw, zero_v & - , zero_v, zero_v, zero_v, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) + tit = 'after rad' + CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) + call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, & + zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & + fs_bound, fq_bound) END IF ! Calculer l'hydrologie de la surface - DO i = 1, klon - zxqsurf(i) = 0.0 - zxsnow(i) = 0.0 + zxqsurf(i) = 0. + zxsnow(i) = 0. ENDDO DO nsrf = 1, nbsrf DO i = 1, klon @@ -1700,36 +1474,31 @@ ENDDO ENDDO - ! Calculer le bilan du sol et la derive de temperature (couplage) + ! Calculer le bilan du sol et la dérive de température (couplage) DO i = 1, klon bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO - !mod deb lott(jan95) - ! Appeler le programme de parametrisation de l'orographie - ! a l'echelle sous-maille: + ! Paramétrisation de l'orographie à l'échelle sous-maille : IF (ok_orodr) THEN - ! selection des points pour lesquels le shema est actif: - igwd=0 - DO i=1, klon - itest(i)=0 - IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN - itest(i)=1 - igwd=igwd+1 - idx(igwd)=i + ! selection des points pour lesquels le shema est actif: + igwd = 0 + DO i = 1, klon + itest(i) = 0 + IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN + itest(i) = 1 + igwd = igwd + 1 + idx(igwd) = i ENDIF ENDDO - CALL drag_noro(klon, llm, pdtphys, paprs, pplay, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, & - igwd, idx, itest, & - t_seri, u_seri, v_seri, & - zulow, zvlow, zustrdr, zvstrdr, & - d_t_oro, d_u_oro, d_v_oro) + CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, & + zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, & + zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) - ! ajout des tendances + ! ajout des tendances DO k = 1, llm DO i = 1, klon t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k) @@ -1740,26 +1509,22 @@ ENDIF IF (ok_orolf) THEN - - ! selection des points pour lesquels le shema est actif: - igwd=0 - DO i=1, klon - itest(i)=0 - IF ((zpic(i)-zmea(i)).GT.100.) THEN - itest(i)=1 - igwd=igwd+1 - idx(igwd)=i + ! Sélection des points pour lesquels le schéma est actif : + igwd = 0 + DO i = 1, klon + itest(i) = 0 + IF ((zpic(i) - zmea(i)) > 100.) THEN + itest(i) = 1 + igwd = igwd + 1 + idx(igwd) = i ENDIF ENDDO - CALL lift_noro(klon, llm, pdtphys, paprs, pplay, & - rlat, zmea, zstd, zpic, & - itest, & - t_seri, u_seri, v_seri, & - zulow, zvlow, zustrli, zvstrli, & + CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, & + itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, & d_t_lif, d_u_lif, d_v_lif) - ! ajout des tendances + ! Ajout des tendances : DO k = 1, llm DO i = 1, klon t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k) @@ -1767,51 +1532,41 @@ v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k) ENDDO ENDDO + ENDIF - ENDIF ! fin de test sur ok_orolf - - ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE + ! Stress nécessaires : toute la physique DO i = 1, klon - zustrph(i)=0. - zvstrph(i)=0. + zustrph(i) = 0. + zvstrph(i) = 0. ENDDO DO k = 1, llm DO i = 1, klon - zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/pdtphys* zmasse(i, k) - zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/pdtphys* zmasse(i, k) + zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys & + * zmasse(i, k) + zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys & + * zmasse(i, k) ENDDO ENDDO - !IM calcul composantes axiales du moment angulaire et couple des montagnes - - CALL aaam_bud(27, klon, llm, gmtime, & - ra, rg, romega, & - rlat, rlon, pphis, & - zustrdr, zustrli, zustrph, & - zvstrdr, zvstrli, zvstrph, & - paprs, u, v, & - aam, torsfc) - - IF (if_ebil >= 2) THEN - ztit='after orography' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - END IF - - ! Calcul des tendances traceurs - call phytrac(rnpb, itap, lmt_pas, julien, gmtime, firstcal, lafin, nqmx-2, & - pdtphys, u, v, t, paprs, pplay, pmfu, pmfd, pen_u, pde_u, pen_d, & - pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, & - frac_impa, frac_nucl, pphis, pphi, albsol, rhcl, cldfra, rneb, & - diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, & - tr_seri, zmasse) + CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, & + zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) + + IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, & + 2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, & + d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) + + ! Calcul des tendances traceurs + call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, & + dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, & + ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, & + frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, & + pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse) IF (offline) THEN - call phystokenc(pdtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, & + call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, & pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, pphis, airephy, pdtphys, itap) + pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) ENDIF ! Calculer le transport de l'eau et de l'energie (diagnostique) @@ -1820,45 +1575,42 @@ ! diag. bilKP - CALL transp_lay (paprs, zxtsol, & - t_seri, q_seri, u_seri, v_seri, zphi, & + CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, & ve_lay, vq_lay, ue_lay, uq_lay) ! Accumuler les variables a stocker dans les fichiers histoire: - !+jld ec_conser + ! conversion Ec -> E thermique DO k = 1, llm DO i = 1, klon - ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k)) - d_t_ec(i, k)=0.5/ZRCPD & - *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2) - t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k) - d_t_ec(i, k) = d_t_ec(i, k)/pdtphys + ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k)) + d_t_ec(i, k) = 0.5 / ZRCPD & + * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2) + t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k) + d_t_ec(i, k) = d_t_ec(i, k) / dtphys END DO END DO - !-jld ec_conser + IF (if_ebil >= 1) THEN - ztit='after physic' - CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, - ! on devrait avoir que la variation d'entalpie par la dynamique - ! est egale a la variation de la physique au pas de temps precedent. - ! Donc la somme de ces 2 variations devrait etre nulle. - call diagphy(airephy, ztit, ip_ebil & - , topsw, toplw, solsw, sollw, sens & - , evap, rain_fall, snow_fall, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) + tit = 'after physic' + CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & + ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & + d_ql, d_qs, d_ec) + ! Comme les tendances de la physique sont ajoute dans la dynamique, + ! on devrait avoir que la variation d'entalpie par la dynamique + ! est egale a la variation de la physique au pas de temps precedent. + ! Donc la somme de ces 2 variations devrait etre nulle. + call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, & + evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, & + fs_bound, fq_bound) - d_h_vcol_phy=d_h_vcol + d_h_vcol_phy = d_h_vcol END IF - ! SORTIES + ! SORTIES - !cc prw = eau precipitable + ! prw = eau precipitable DO i = 1, klon prw(i) = 0. DO k = 1, llm @@ -1870,19 +1622,19 @@ DO k = 1, llm DO i = 1, klon - d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / pdtphys - d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / pdtphys - d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / pdtphys - d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / pdtphys - d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / pdtphys + d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys + d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys + d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys + d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys + d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys ENDDO ENDDO IF (nqmx >= 3) THEN DO iq = 3, nqmx - DO k = 1, llm - DO i = 1, klon - d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / pdtphys + DO k = 1, llm + DO i = 1, klon + d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys ENDDO ENDDO ENDDO @@ -1896,7 +1648,7 @@ ENDDO ENDDO - ! Ecriture des sorties + ! Ecriture des sorties call write_histhf call write_histday call write_histins @@ -1904,21 +1656,21 @@ ! Si c'est la fin, il faut conserver l'etat de redemarrage IF (lafin) THEN itau_phy = itau_phy + itap - CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, & - ftsoil, tslab, seaice, fqsurf, qsol, & - fsnow, falbe, falblw, fevap, rain_fall, snow_fall, & - solsw, sollwdown, dlw, & - radsol, frugs, agesno, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, & - t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0) + CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, & + tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, & + rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & + agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & + q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) ENDIF + firstcal = .FALSE. + contains subroutine write_histday use gr_phy_write_3d_m, only: gr_phy_write_3d - integer itau_w ! pas de temps ecriture + integer itau_w ! pas de temps ecriture !------------------------------------------------ @@ -1940,7 +1692,7 @@ subroutine write_histhf - ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09 + ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09 !------------------------------------------------ @@ -1956,227 +1708,223 @@ subroutine write_histins - ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09 + ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09 real zout - integer itau_w ! pas de temps ecriture + integer itau_w ! pas de temps ecriture !-------------------------------------------------- IF (ok_instan) THEN ! Champs 2D: - zsto = pdtphys * ecrit_ins - zout = pdtphys * ecrit_ins + zsto = dtphys * ecrit_ins + zout = dtphys * ecrit_ins itau_w = itau_phy + itap i = NINT(zout/zsto) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) i = NINT(zout/zsto) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = paprs(i, 1) ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d) CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d) !ccIM - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d) CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d) CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d) CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d) CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d) CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d) CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d) CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d) CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d) CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d) CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d) CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d) CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d) CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d) - zx_tmp_fi2d(1:klon)=-1*sens(1:klon) - ! CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1:klon) = -1*sens(1:klon) + ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d) CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d) CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d) CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d) CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d) CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d) DO nsrf = 1, nbsrf !XXX - zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100. - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100. + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) END DO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d) CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d) CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d) CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d) - !IM cf. AM 081204 BEG - !HBTM2 - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d) CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d) CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d) CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d) CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d) CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d) CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d) CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d) CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d) CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d) + CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d) CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d) - !IM cf. AM 081204 END - ! Champs 3D: - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d) CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d) CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d) CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d) CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) if (ok_sync) then @@ -2190,9 +1938,9 @@ subroutine write_histhf3d - ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09 + ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09 - integer itau_w ! pas de temps ecriture + integer itau_w ! pas de temps ecriture !------------------------------------------------------- @@ -2200,20 +1948,20 @@ ! Champs 3D: - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d) CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d) if (nbtr >= 3) then - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), & + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), & zx_tmp_3d) CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d) end if