--- trunk/Sources/phylmd/physiq.f 2016/06/21 15:16:03 205 +++ trunk/Sources/phylmd/physiq.f 2017/03/28 12:46:28 215 @@ -20,14 +20,13 @@ use calltherm_m, only: calltherm USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, & ok_instan - USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & - ok_orodr, ok_orolf + USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno use comconst, only: dtphys USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, day_step, iphysiq, lmt_pas + USE conf_gcm_m, ONLY: offline, lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals @@ -37,7 +36,7 @@ USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro use dynetat0_m, only: day_ref, annee_ref - USE fcttre, ONLY: foeew, qsatl, qsats, thermcep + USE fcttre, ONLY: foeew, qsatl, qsats use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou USE histsync_m, ONLY: histsync @@ -58,7 +57,7 @@ USE phytrac_m, ONLY: phytrac use radlwsw_m, only: radlwsw use yoegwd, only: sugwd - USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt + USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md use time_phylmdz, only: itap, increment_itap use transp_m, only: transp use transp_lay_m, only: transp_lay @@ -146,22 +145,19 @@ ! "physiq". REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif - REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction REAL, save:: ftsoil(klon, nsoilmx, nbsrf) ! soil temperature of surface fraction REAL, save:: fevap(klon, nbsrf) ! evaporation - REAL, save:: fluxlat(klon, nbsrf) + REAL fluxlat(klon, nbsrf) REAL, save:: fqsurf(klon, nbsrf) ! humidite de l'air au contact de la surface - REAL, save:: qsol(klon) - ! column-density of water in soil, in kg m-2 - - REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse + REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2 + REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) : @@ -208,7 +204,7 @@ REAL, save:: pfrac_1nucl(klon, llm) ! Produits des coefs lessi nucl (alpha = 1) - REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) + REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) REAL, save:: rain_fall(klon) @@ -219,8 +215,10 @@ REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL evap(klon), devap(klon) ! evaporation and its derivative - REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee + REAL evap(klon) ! flux d'\'evaporation au sol + real devap(klon) ! derivative of the evaporation flux at the surface + REAL sens(klon) ! flux de chaleur sensible au sol + real dsens(klon) ! derivee du flux de chaleur sensible au sol REAL, save:: dlw(klon) ! derivee infra rouge REAL bils(klon) ! bilan de chaleur au sol REAL, save:: fder(klon) ! Derive de flux (sensible et latente) @@ -238,6 +236,7 @@ REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface REAL, save:: albsol(klon) ! albedo du sol total visible REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU + real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 real, save:: clwcon(klon, llm), rnebcon(klon, llm) real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) @@ -250,15 +249,10 @@ REAL cldtau(klon, llm) ! epaisseur optique REAL cldemi(klon, llm) ! emissivite infrarouge - REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite - REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur - REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u - REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v - - REAL zxfluxt(klon, llm) - REAL zxfluxq(klon, llm) - REAL zxfluxu(klon, llm) - REAL zxfluxv(klon, llm) + REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface + REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface + REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface + REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que ! les variables soient r\'emanentes. @@ -280,7 +274,7 @@ REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree - REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) + REAL zxqsurf(klon), zxfluxlat(klon) REAL dist, mu0(klon), fract(klon) real longi @@ -289,7 +283,6 @@ REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf - REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm) @@ -299,7 +292,7 @@ REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite - REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite + REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite REAL, SAVE:: therm(klon, nbsrf) REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition @@ -314,7 +307,6 @@ REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux - REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux REAL, save:: cape(klon) INTEGER iflagctrl(klon) ! flag fonctionnement de convect @@ -393,16 +385,15 @@ REAL ztsol(klon) REAL d_t_ec(klon, llm) - ! tendance due \`a la conversion Ec en énergie thermique - - REAL ZRCPD + ! tendance due \`a la conversion d'\'energie cin\'etique en + ! énergie thermique REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m - REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille - REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille + REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille + REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille ! Aerosol effects: @@ -476,7 +467,7 @@ capCL =0. ! CAPE de couche limite oliqCL =0. ! eau_liqu integree de couche limite cteiCL =0. ! cloud top instab. crit. couche limite - pblt =0. ! T a la Hauteur de couche limite + pblt =0. therm =0. trmb1 =0. ! deep_cape trmb2 =0. ! inhibition @@ -574,9 +565,6 @@ forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg - ! Prescrire l'ozone : - wo = ozonecm(REAL(julien), paprs) - ! \'Evaporation de l'eau liquide nuageuse : DO k = 1, llm DO i = 1, klon @@ -595,11 +583,7 @@ ! la surface. CALL orbite(REAL(julien), longi, dist) - IF (cycle_diurne) THEN - CALL zenang(longi, time, dtphys * radpas, mu0, fract) - ELSE - mu0 = - 999.999 - ENDIF + CALL zenang(longi, time, dtphys * radpas, mu0, fract) ! Calcul de l'abedo moyen par maille albsol = sum(falbe * pctsrf, dim = 2) @@ -615,38 +599,20 @@ fder = dlw - ! Couche limite: - CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & - snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, & - d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & - fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & - u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & - trmb3, plcl, fqcalving, ffonte, run_off_lic_0) + snow_fall, fsolsw, fsollw, fder, frugs, agesno, rugoro, d_t_vdf, & + d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, & + cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, & + v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, & + plcl, fqcalving, ffonte, run_off_lic_0) ! Incr\'ementation des flux - zxfluxt = 0. - zxfluxq = 0. - zxfluxu = 0. - zxfluxv = 0. - DO nsrf = 1, nbsrf - DO k = 1, llm - DO i = 1, klon - zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf) - END DO - END DO - END DO - DO i = 1, klon - sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol - evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol - fder(i) = dlw(i) + dsens(i) + devap(i) - ENDDO + sens = - sum(flux_t * pctsrf, dim = 2) + evap = - sum(flux_q * pctsrf, dim = 2) + fder = dlw + dsens + devap DO k = 1, llm DO i = 1, klon @@ -659,55 +625,26 @@ ! Update surface temperature: - DO i = 1, klon - zxfluxlat(i) = 0. - - zt2m(i) = 0. - zq2m(i) = 0. - zu10m(i) = 0. - zv10m(i) = 0. - zxffonte(i) = 0. - zxfqcalving(i) = 0. - - s_pblh(i) = 0. - s_lcl(i) = 0. - s_capCL(i) = 0. - s_oliqCL(i) = 0. - s_cteiCL(i) = 0. - s_pblT(i) = 0. - s_therm(i) = 0. - s_trmb1(i) = 0. - s_trmb2(i) = 0. - s_trmb3(i) = 0. - ENDDO - call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') - ftsol = ftsol + d_ts ztsol = sum(ftsol * pctsrf, dim = 2) - DO nsrf = 1, nbsrf - DO i = 1, klon - zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf) - - zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf) - zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf) - zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf) - zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf) - zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf) - zxfqcalving(i) = zxfqcalving(i) + & - fqcalving(i, nsrf) * pctsrf(i, nsrf) - s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf) - s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf) - s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf) - s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf) - s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf) - s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf) - s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf) - s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf) - s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf) - s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf) - ENDDO - ENDDO + zxfluxlat = sum(fluxlat * pctsrf, dim = 2) + zt2m = sum(t2m * pctsrf, dim = 2) + zq2m = sum(q2m * pctsrf, dim = 2) + zu10m = sum(u10m * pctsrf, dim = 2) + zv10m = sum(v10m * pctsrf, dim = 2) + zxffonte = sum(ffonte * pctsrf, dim = 2) + zxfqcalving = sum(fqcalving * pctsrf, dim = 2) + s_pblh = sum(pblh * pctsrf, dim = 2) + s_lcl = sum(plcl * pctsrf, dim = 2) + s_capCL = sum(capCL * pctsrf, dim = 2) + s_oliqCL = sum(oliqCL * pctsrf, dim = 2) + s_cteiCL = sum(cteiCL * pctsrf, dim = 2) + s_pblT = sum(pblT * pctsrf, dim = 2) + s_therm = sum(therm * pctsrf, dim = 2) + s_trmb1 = sum(trmb1 * pctsrf, dim = 2) + s_trmb2 = sum(trmb2 * pctsrf, dim = 2) + s_trmb3 = sum(trmb3 * pctsrf, dim = 2) ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne : DO nsrf = 1, nbsrf @@ -745,17 +682,13 @@ if (conv_emanuel) then CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & - upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) + upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) snow_con = 0. clwcon0 = qcondc mfu = upwd + dnwd - IF (thermcep) THEN - zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) - zqsat = zqsat / (1. - retv * zqsat) - ELSE - zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play - ENDIF + zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) + zqsat = zqsat / (1. - retv * zqsat) ! Properties of convective clouds clwcon0 = fact_cldcon * clwcon0 @@ -773,7 +706,7 @@ conv_t = d_t_dyn + d_t_vdf / dtphys z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & - q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, & + q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, & d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & kdtop, pmflxr, pmflxs) @@ -955,18 +888,10 @@ DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) - IF (thermcep) THEN - zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1. / (1. - retv * zx_qs) - zx_qs = zx_qs * zcor - ELSE - IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t) / play(i, k) - ELSE - zx_qs = qsatl(zx_t) / play(i, k) - ENDIF - ENDIF + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) + zx_qs = MIN(0.5, zx_qs) + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor zx_rh(i, k) = q_seri(i, k) / zx_qs zqsat(i, k) = zx_qs ENDDO @@ -990,6 +915,9 @@ endif IF (MOD(itap - 1, radpas) == 0) THEN + ! Prescrire l'ozone : + wo = ozonecm(REAL(julien), paprs) + ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. ! Calcul de l'abedo moyen par maille albsol = sum(falbe * pctsrf, dim = 2) @@ -1004,7 +932,6 @@ ENDIF ! Ajouter la tendance des rayonnements (tous les pas) - DO k = 1, llm DO i = 1, klon t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys & @@ -1013,19 +940,9 @@ ENDDO ! Calculer l'hydrologie de la surface - DO i = 1, klon - zxqsurf(i) = 0. - zxsnow(i) = 0. - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf) - zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf) - ENDDO - ENDDO + zxqsurf = sum(fqsurf * pctsrf, dim = 2) ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage) - DO i = 1, klon bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO @@ -1123,8 +1040,7 @@ ! conversion Ec en énergie thermique DO k = 1, llm DO i = 1, klon - ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k)) - d_t_ec(i, k) = 0.5 / ZRCPD & + d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) & * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2) t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k) d_t_ec(i, k) = d_t_ec(i, k) / dtphys @@ -1199,16 +1115,17 @@ DO nsrf = 1, nbsrf CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) - CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf)) + CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf)) CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf)) CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf)) - CALL histwrite_phy("taux_"//clnsurf(nsrf), fluxu(:, 1, nsrf)) - CALL histwrite_phy("tauy_"//clnsurf(nsrf), fluxv(:, 1, nsrf)) + CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf)) + CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf)) CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) END DO CALL histwrite_phy("albs", albsol) + CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md) CALL histwrite_phy("rugs", zxrugs) CALL histwrite_phy("s_pblh", s_pblh) CALL histwrite_phy("s_pblt", s_pblt) @@ -1220,7 +1137,12 @@ CALL histwrite_phy("s_trmb1", s_trmb1) CALL histwrite_phy("s_trmb2", s_trmb2) CALL histwrite_phy("s_trmb3", s_trmb3) - if (conv_emanuel) CALL histwrite_phy("ptop", ema_pct) + + if (conv_emanuel) then + CALL histwrite_phy("ptop", ema_pct) + CALL histwrite_phy("dnwd0", - mp) + end if + CALL histwrite_phy("temp", t_seri) CALL histwrite_phy("vitu", u_seri) CALL histwrite_phy("vitv", v_seri) @@ -1229,6 +1151,10 @@ CALL histwrite_phy("dtvdf", d_t_vdf) CALL histwrite_phy("dqvdf", d_q_vdf) CALL histwrite_phy("rhum", zx_rh) + CALL histwrite_phy("d_t_ec", d_t_ec) + CALL histwrite_phy("dtsw0", heat0 / 86400.) + CALL histwrite_phy("dtlw0", - cool0 / 86400.) + CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2)) if (ok_instan) call histsync(nid_ins)