--- trunk/phylmd/physiq.f90 2014/02/28 17:52:47 79 +++ trunk/Sources/phylmd/physiq.f 2016/06/21 15:16:03 205 @@ -4,261 +4,148 @@ contains - SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, & - u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn) + SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, & + qx, omega, d_u, d_v, d_t, d_qx) ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 ! (subversion revision 678) - ! Author: Z.X. Li (LMD/CNRS) 1993 + ! Author: Z. X. Li (LMD/CNRS) 1993 ! This is the main procedure for the "physics" part of the program. use aaam_bud_m, only: aaam_bud USE abort_gcm_m, ONLY: abort_gcm - use aeropt_m, only: aeropt use ajsec_m, only: ajsec - USE calendar, ONLY: ymds2ju use calltherm_m, only: calltherm - USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, & - ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin - USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, & - ok_orodr, ok_orolf, soil_model + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, & + ok_instan + USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & + ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno - USE comgeomphy, ONLY: airephy, cuphy, cvphy + use comconst, only: dtphys + USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, raz_date + USE conf_gcm_m, ONLY: offline, day_step, iphysiq, lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals use diagcld2_m, only: diagcld2 - use diagetpq_m, only: diagetpq - use diagphy_m, only: diagphy - USE dimens_m, ONLY: iim, jjm, llm, nqmx - USE dimphy, ONLY: klon, nbtr + USE dimens_m, ONLY: llm, nqmx + USE dimphy, ONLY: klon USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro + use dynetat0_m, only: day_ref, annee_ref USE fcttre, ONLY: foeew, qsatl, qsats, thermcep use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou USE histsync_m, ONLY: histsync - USE histwrite_m, ONLY: histwrite + USE histwrite_phy_m, ONLY: histwrite_phy USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & nbsrf - USE ini_histhf_m, ONLY: ini_histhf - USE ini_histday_m, ONLY: ini_histday - USE ini_histins_m, ONLY: ini_histins + USE ini_histins_m, ONLY: ini_histins, nid_ins + use netcdf95, only: NF95_CLOSE use newmicro_m, only: newmicro - USE oasis_m, ONLY: ok_oasis - USE orbite_m, ONLY: orbite, zenang + use nr_util, only: assert + use nuage_m, only: nuage + USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm USE phyetat0_m, ONLY: phyetat0, rlat, rlon USE phyredem_m, ONLY: phyredem + USE phyredem0_m, ONLY: phyredem0 USE phystokenc_m, ONLY: phystokenc USE phytrac_m, ONLY: phytrac - USE qcheck_m, ONLY: qcheck use radlwsw_m, only: radlwsw - use readsulfate_m, only: readsulfate - use sugwd_m, only: sugwd - USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt - USE temps, ONLY: annee_ref, day_ref, itau_phy + use yoegwd, only: sugwd + USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt + use time_phylmdz, only: itap, increment_itap + use transp_m, only: transp + use transp_lay_m, only: transp_lay use unit_nml_m, only: unit_nml + USE ymds2ju_m, ONLY: ymds2ju USE yoethf_m, ONLY: r2es, rvtmp2 + use zenang_m, only: zenang - ! Arguments: - - REAL, intent(in):: rdayvrai - ! (elapsed time since January 1st 0h of the starting year, in days) - - REAL, intent(in):: time ! heure de la journée en fraction de jour - REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde) logical, intent(in):: lafin ! dernier passage - REAL, intent(in):: paprs(klon, llm + 1) - ! (pression pour chaque inter-couche, en Pa) + integer, intent(in):: dayvrai + ! current day number, based at value 1 on January 1st of annee_ref - REAL, intent(in):: play(klon, llm) - ! (input pression pour le mileu de chaque couche (en Pa)) + REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour - REAL, intent(in):: pphi(klon, llm) - ! (input geopotentiel de chaque couche (g z) (reference sol)) + REAL, intent(in):: paprs(:, :) ! (klon, llm + 1) + ! pression pour chaque inter-couche, en Pa - REAL, intent(in):: pphis(klon) ! input geopotentiel du sol + REAL, intent(in):: play(:, :) ! (klon, llm) + ! pression pour le mileu de chaque couche (en Pa) - REAL, intent(in):: u(klon, llm) - ! vitesse dans la direction X (de O a E) en m/s + REAL, intent(in):: pphi(:, :) ! (klon, llm) + ! géopotentiel de chaque couche (référence sol) - REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s - REAL, intent(in):: t(klon, llm) ! input temperature (K) + REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol - REAL, intent(in):: qx(klon, llm, nqmx) - ! (humidité spécifique et fractions massiques des autres traceurs) + REAL, intent(in):: u(:, :) ! (klon, llm) + ! vitesse dans la direction X (de O a E) en m / s - REAL omega(klon, llm) ! input vitesse verticale en Pa/s - REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s) - REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s) - REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s) - REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s) - REAL d_ps(klon) ! output tendance physique de la pression au sol + REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s + REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K) - LOGICAL:: firstcal = .true. + REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx) + ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs) - INTEGER nbteta - PARAMETER(nbteta = 3) + REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s + REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2) + REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2) + REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s) - LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface - PARAMETER (ok_gust = .FALSE.) + REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx) + ! tendance physique de "qx" (s-1) - LOGICAL check ! Verifier la conservation du modele en eau - PARAMETER (check = .FALSE.) + ! Local: + + LOGICAL:: firstcal = .true. LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus - ! Parametres lies au coupleur OASIS: - INTEGER, SAVE:: npas, nexca - logical rnpb - parameter(rnpb = .true.) - - character(len = 6):: ocean = 'force ' - ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple") - - ! "slab" ocean - REAL, save:: tslab(klon) ! temperature of ocean slab - REAL, save:: seaice(klon) ! glace de mer (kg/m2) - REAL fluxo(klon) ! flux turbulents ocean-glace de mer - REAL fluxg(klon) ! flux turbulents ocean-atmosphere - - ! Modele thermique du sol, a activer pour le cycle diurne: - logical:: ok_veget = .false. ! type de modele de vegetation utilise - - logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false. - ! sorties journalieres, mensuelles et instantanees dans les - ! fichiers histday, histmth et histins - - LOGICAL ok_region ! sortir le fichier regional - PARAMETER (ok_region = .FALSE.) - - ! pour phsystoke avec thermiques + ! pour phystoke avec thermiques REAL fm_therm(klon, llm + 1) REAL entr_therm(klon, llm) real, save:: q2(klon, llm + 1, nbsrf) - INTEGER ivap ! indice de traceurs pour vapeur d'eau - PARAMETER (ivap = 1) - INTEGER iliq ! indice de traceurs pour eau liquide - PARAMETER (iliq = 2) + INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau + INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm) LOGICAL, save:: ancien_ok - REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s) - REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s) + REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s) + REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s) real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) - !IM Amip2 PV a theta constante + REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1) + REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1) - CHARACTER(LEN = 3) ctetaSTD(nbteta) - DATA ctetaSTD/'350', '380', '405'/ - REAL rtetaSTD(nbteta) - DATA rtetaSTD/350., 380., 405./ - - !MI Amip2 PV a theta constante - - REAL swdn0(klon, llm + 1), swdn(klon, llm + 1) - REAL swup0(klon, llm + 1), swup(klon, llm + 1) - SAVE swdn0, swdn, swup0, swup - - REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) - REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) - SAVE lwdn0, lwdn, lwup0, lwup - - !IM Amip2 - ! variables a une pression donnee - - integer nlevSTD - PARAMETER(nlevSTD = 17) - real rlevSTD(nlevSTD) - DATA rlevSTD/100000., 92500., 85000., 70000., & - 60000., 50000., 40000., 30000., 25000., 20000., & - 15000., 10000., 7000., 5000., 3000., 2000., 1000./ - CHARACTER(LEN = 4) clevSTD(nlevSTD) - DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', & - '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', & - '70 ', '50 ', '30 ', '20 ', '10 '/ + REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1) + REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1) ! prw: precipitable water real prw(klon) - ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2) - ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg) + ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2) + ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg) REAL flwp(klon), fiwp(klon) REAL flwc(klon, llm), fiwc(klon, llm) - INTEGER kmax, lmax - PARAMETER(kmax = 8, lmax = 8) - INTEGER kmaxm1, lmaxm1 - PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1) - - REAL zx_tau(kmaxm1), zx_pc(lmaxm1) - DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./ - DATA zx_pc/50., 180., 310., 440., 560., 680., 800./ - - ! cldtopres pression au sommet des nuages - REAL cldtopres(lmaxm1) - DATA cldtopres/50., 180., 310., 440., 560., 680., 800./ - - ! taulev: numero du niveau de tau dans les sorties ISCCP - CHARACTER(LEN = 4) taulev(kmaxm1) - - DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/ - CHARACTER(LEN = 3) pclev(lmaxm1) - DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/ - - CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1) - DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', & - 'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', & - 'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', & - 'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', & - 'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', & - 'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', & - 'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', & - 'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', & - 'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', & - 'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', & - 'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', & - 'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', & - 'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', & - 'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', & - 'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', & - 'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', & - 'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', & - 'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', & - 'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', & - 'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', & - 'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', & - 'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', & - 'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', & - 'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', & - 'pc= 680-800hPa, tau> 60.'/ - - !IM ISCCP simulator v3.4 - - integer nid_hf, nid_hf3d - save nid_hf, nid_hf3d - ! Variables propres a la physique INTEGER, save:: radpas - ! (Radiative transfer computations are made every "radpas" call to - ! "physiq".) - - REAL radsol(klon) - SAVE radsol ! bilan radiatif au sol calcule par code radiatif + ! Radiative transfer computations are made every "radpas" call to + ! "physiq". - INTEGER, SAVE:: itap ! number of calls to "physiq" + REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction @@ -266,23 +153,18 @@ ! soil temperature of surface fraction REAL, save:: fevap(klon, nbsrf) ! evaporation - REAL fluxlat(klon, nbsrf) - SAVE fluxlat + REAL, save:: fluxlat(klon, nbsrf) - REAL fqsurf(klon, nbsrf) - SAVE fqsurf ! humidite de l'air au contact de la surface + REAL, save:: fqsurf(klon, nbsrf) + ! humidite de l'air au contact de la surface - REAL, save:: qsol(klon) ! hauteur d'eau dans le sol + REAL, save:: qsol(klon) + ! column-density of water in soil, in kg m-2 - REAL fsnow(klon, nbsrf) - SAVE fsnow ! epaisseur neigeuse + REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse + REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface - REAL falbe(klon, nbsrf) - SAVE falbe ! albedo par type de surface - REAL falblw(klon, nbsrf) - SAVE falblw ! albedo par type de surface - - ! Paramètres de l'orographie à l'échelle sous-maille (OESM) : + ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) : REAL, save:: zmea(klon) ! orographie moyenne REAL, save:: zstd(klon) ! deviation standard de l'OESM REAL, save:: zsig(klon) ! pente de l'OESM @@ -291,34 +173,18 @@ REAL, save:: zpic(klon) ! Maximum de l'OESM REAL, save:: zval(klon) ! Minimum de l'OESM REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM - REAL zulow(klon), zvlow(klon) + INTEGER igwd, itest(klon) - INTEGER igwd, idx(klon), itest(klon) + REAL, save:: agesno(klon, nbsrf) ! age de la neige + REAL, save:: run_off_lic_0(klon) - REAL agesno(klon, nbsrf) - SAVE agesno ! age de la neige - - REAL run_off_lic_0(klon) - SAVE run_off_lic_0 - !KE43 - ! Variables liees a la convection de K. Emanuel (sb): - - REAL bas, top ! cloud base and top levels - SAVE bas - SAVE top - - REAL Ma(klon, llm) ! undilute upward mass flux - SAVE Ma - REAL qcondc(klon, llm) ! in-cld water content from convect - SAVE qcondc + ! Variables li\'ees \`a la convection d'Emanuel : + REAL, save:: Ma(klon, llm) ! undilute upward mass flux + REAL, save:: qcondc(klon, llm) ! in-cld water content from convect REAL, save:: sig1(klon, llm), w01(klon, llm) - REAL, save:: wd(klon) - - ! Variables locales pour la couche limite (al1): - - ! Variables locales: + ! Variables pour la couche limite (Alain Lahellec) : REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent @@ -326,67 +192,53 @@ REAL ycoefh(klon, llm) ! coef d'echange pour phytrac REAL yu1(klon) ! vents dans la premiere couche U REAL yv1(klon) ! vents dans la premiere couche V - REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige - REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface - ! !et necessaire pour limiter la - ! !hauteur de neige, en kg/m2/s + + REAL, save:: ffonte(klon, nbsrf) + ! flux thermique utilise pour fondre la neige + + REAL, save:: fqcalving(klon, nbsrf) + ! flux d'eau "perdue" par la surface et necessaire pour limiter la + ! hauteur de neige, en kg / m2 / s + REAL zxffonte(klon), zxfqcalving(klon) - REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction - save pfrac_impa - REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation - save pfrac_nucl - REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1) - save pfrac_1nucl + REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction + REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation + + REAL, save:: pfrac_1nucl(klon, llm) + ! Produits des coefs lessi nucl (alpha = 1) + REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) - REAL, save:: rain_fall(klon) ! pluie - REAL, save:: snow_fall(klon) ! neige + REAL, save:: rain_fall(klon) + ! liquid water mass flux (kg / m2 / s), positive down + + REAL, save:: snow_fall(klon) + ! solid water mass flux (kg / m2 / s), positive down REAL rain_tiedtke(klon), snow_tiedtke(klon) REAL evap(klon), devap(klon) ! evaporation and its derivative REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee - REAL dlw(klon) ! derivee infra rouge - SAVE dlw + REAL, save:: dlw(klon) ! derivee infra rouge REAL bils(klon) ! bilan de chaleur au sol - REAL fder(klon) ! Derive de flux (sensible et latente) - save fder + REAL, save:: fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie REAL uq(klon) ! integr. verticale du transport zonal de l'eau - REAL frugs(klon, nbsrf) ! longueur de rugosite - save frugs + REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite REAL zxrugs(klon) ! longueur de rugosite ! Conditions aux limites INTEGER julien - - INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface - REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE - - REAL albsol(klon) - SAVE albsol ! albedo du sol total - REAL albsollw(klon) - SAVE albsollw ! albedo du sol total - + REAL, save:: albsol(klon) ! albedo du sol total visible REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU - ! Declaration des procedures appelees - - EXTERNAL alboc ! calculer l'albedo sur ocean - !KE43 - EXTERNAL conema3 ! convect4.3 - EXTERNAL nuage ! calculer les proprietes radiatives - EXTERNAL transp ! transport total de l'eau et de l'energie - - ! Variables locales - real, save:: clwcon(klon, llm), rnebcon(klon, llm) real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) @@ -408,45 +260,39 @@ REAL zxfluxu(klon, llm) REAL zxfluxv(klon, llm) - ! Le rayonnement n'est pas calculé tous les pas, il faut donc que - ! les variables soient rémanentes. + ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que + ! les variables soient r\'emanentes. REAL, save:: heat(klon, llm) ! chauffage solaire - REAL heat0(klon, llm) ! chauffage solaire ciel clair + REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair REAL, save:: cool(klon, llm) ! refroidissement infrarouge - REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair + REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair REAL, save:: topsw(klon), toplw(klon), solsw(klon) - REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface + REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) - REAL albpla(klon) - REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface - REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface - SAVE albpla - SAVE heat0, cool0 - - INTEGER itaprad - SAVE itaprad - - REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) - REAL conv_t(klon, llm) ! convergence of temperature (K/s) - - REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut - REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree - - REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) - - REAL dist, rmu0(klon), fract(klon) - REAL zdtime ! pas de temps du rayonnement (s) - real zlongi + REAL, save:: albpla(klon) + REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface + REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface + + REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s) + REAL conv_t(klon, llm) ! convergence of temperature (K / s) + + REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut + REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree + + REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) + + REAL dist, mu0(klon), fract(klon) + real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) - REAL za, zb - REAL zx_t, zx_qs, zdelta, zcor + REAL zb + REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) - !IM cf. AM Variables locales pour la CLA (hbtm2) + ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm) REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA @@ -456,42 +302,32 @@ REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite REAL, SAVE:: therm(klon, nbsrf) REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape - REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition + REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega - ! Grdeurs de sorties + ! Grandeurs de sorties REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon) REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) REAL s_trmb3(klon) - ! Variables locales pour la convection de K. Emanuel : + ! Variables pour la convection de K. Emanuel : REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux - REAL tvp(klon, llm) ! virtual temp of lifted parcel - REAL cape(klon) ! CAPE - SAVE cape - - REAL pbase(klon) ! cloud base pressure - SAVE pbase - REAL bbase(klon) ! cloud base buoyancy - SAVE bbase - REAL rflag(klon) ! flag fonctionnement de convect + REAL, save:: cape(klon) + INTEGER iflagctrl(klon) ! flag fonctionnement de convect - ! -- convect43: - REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm) - REAL dplcldt(klon), dplcldr(klon) ! Variables du changement ! con: convection ! lsc: large scale condensation ! ajs: ajustement sec - ! eva: évaporation de l'eau liquide nuageuse + ! eva: \'evaporation de l'eau liquide nuageuse ! vdf: vertical diffusion in boundary layer REAL d_t_con(klon, llm), d_q_con(klon, llm) - REAL d_u_con(klon, llm), d_v_con(klon, llm) + REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm) REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm) REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm) REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm) @@ -505,9 +341,12 @@ REAL prfl(klon, llm + 1), psfl(klon, llm + 1) INTEGER, save:: ibas_con(klon), itop_con(klon) + real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa - REAL rain_con(klon), rain_lsc(klon) - REAL snow_con(klon), snow_lsc(klon) + REAL, save:: rain_con(klon) + real rain_lsc(klon) + REAL, save:: snow_con(klon) ! neige (mm / s) + real snow_lsc(klon) REAL d_ts(klon, nbsrf) REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm) @@ -531,14 +370,12 @@ integer:: iflag_cldcon = 1 logical ptconv(klon, llm) - ! Variables locales pour effectuer les appels en série : + ! Variables pour effectuer les appels en s\'erie : REAL t_seri(klon, llm), q_seri(klon, llm) - REAL ql_seri(klon, llm), qs_seri(klon, llm) + REAL ql_seri(klon, llm) REAL u_seri(klon, llm), v_seri(klon, llm) - - REAL tr_seri(klon, llm, nbtr) - REAL d_tr(klon, llm, nbtr) + REAL tr_seri(klon, llm, nqmx - 2) REAL zx_rh(klon, llm) @@ -547,50 +384,35 @@ REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc - REAL dudyn(iim + 1, jjm + 1, llm) - - REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique - REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) - - INTEGER, SAVE:: nid_day, nid_ins - REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert. REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert. REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. - REAL zsto - - logical ok_sync real date0 - - ! Variables liées au bilan d'énergie et d'enthalpie : REAL ztsol(klon) - REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec - REAL, SAVE:: d_h_vcol_phy - REAL fs_bound, fq_bound - REAL zero_v(klon) - CHARACTER(LEN = 15) tit - INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics - INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation - REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique + REAL d_t_ec(klon, llm) + ! tendance due \`a la conversion Ec en énergie thermique + REAL ZRCPD - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m + REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf) + ! temperature and humidity at 2 m + + REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille ! Aerosol effects: - REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3) + REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3) REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in micro g/m3, pre-industrial value + ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value REAL cldtaupi(klon, llm) - ! cloud optical thickness for pre-industrial (pi) aerosols + ! cloud optical thickness for pre-industrial aerosols REAL re(klon, llm) ! Cloud droplet effective radius REAL fl(klon, llm) ! denominator of re @@ -599,10 +421,8 @@ REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2) REAL, save:: cg_ae(klon, llm, 2) - REAL topswad(klon), solswad(klon) ! aerosol direct effect - REAL topswai(klon), solswai(klon) ! aerosol indirect effect - - REAL aerindex(klon) ! POLDER aerosol index + REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect + REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect LOGICAL:: ok_ade = .false. ! apply aerosol direct effect LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect @@ -612,37 +432,19 @@ ! B). They link cloud droplet number concentration to aerosol mass ! concentration. - SAVE u10m - SAVE v10m - SAVE t2m - SAVE q2m - SAVE ffonte - SAVE fqcalving - SAVE rain_con - SAVE snow_con - SAVE topswai - SAVE topswad - SAVE solswai - SAVE solswad - SAVE d_u_con - SAVE d_v_con - - real zmasse(klon, llm) + real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) - real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 + integer, save:: ncid_startphy - namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, & - fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, & - ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, & - nsplit_thermals + namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, & + ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, & + iflag_thermals, nsplit_thermals !---------------------------------------------------------------- - IF (if_ebil >= 1) zero_v = 0. - ok_sync = .TRUE. IF (nqmx < 2) CALL abort_gcm('physiq', & - 'eaux vapeur et liquide sont indispensables', 1) + 'eaux vapeur et liquide sont indispensables') test_firstcal: IF (firstcal) THEN ! initialiser @@ -655,12 +457,12 @@ piz_ae = 0. tau_ae = 0. cg_ae = 0. - rain_con(:) = 0. - snow_con(:) = 0. - topswai(:) = 0. - topswad(:) = 0. - solswai(:) = 0. - solswad(:) = 0. + rain_con = 0. + snow_con = 0. + topswai = 0. + topswad = 0. + solswai = 0. + solswad = 0. d_u_con = 0. d_v_con = 0. @@ -677,11 +479,9 @@ pblt =0. ! T a la Hauteur de couche limite therm =0. trmb1 =0. ! deep_cape - trmb2 =0. ! inhibition + trmb2 =0. ! inhibition trmb3 =0. ! Point Omega - IF (if_ebil >= 1) d_h_vcol_phy = 0. - iflag_thermals = 0 nsplit_thermals = 1 print *, "Enter namelist 'physiq_nml'." @@ -693,34 +493,20 @@ ! Initialiser les compteurs: frugs = 0. - itap = 0 - itaprad = 0 - CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, & - seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, & - snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, & - zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, & - ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) + CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, & + fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & + agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & + q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01, ncid_startphy) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 - radpas = NINT(86400. / dtphys / nbapp_rad) + radpas = lmt_pas / nbapp_rad + print *, "radpas = ", radpas - ! on remet le calendrier a zero - IF (raz_date) itau_phy = 0 - - PRINT *, 'cycle_diurne = ', cycle_diurne - CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, & - ok_instan, ok_region) - - IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN - print *, "Au minimum 4 appels par jour si cycle diurne" - call abort_gcm('physiq', & - "Nombre d'appels au rayonnement insuffisant", 1) - ENDIF - - ! Initialisation pour le schéma de convection d'Emanuel : - IF (iflag_con >= 3) THEN + ! Initialisation pour le sch\'ema de convection d'Emanuel : + IF (conv_emanuel) THEN ibas_con = 1 itop_con = 1 ENDIF @@ -732,87 +518,27 @@ rugoro = 0. ENDIF - lmt_pas = NINT(86400. / dtphys) ! tous les jours - print *, 'Number of time steps of "physics" per day: ', lmt_pas - - ecrit_ins = NINT(ecrit_ins/dtphys) - ecrit_hf = NINT(ecrit_hf/dtphys) - ecrit_mth = NINT(ecrit_mth/dtphys) - ecrit_tra = NINT(86400.*ecrit_tra/dtphys) - ecrit_reg = NINT(ecrit_reg/dtphys) - - ! Initialiser le couplage si necessaire - - npas = 0 - nexca = 0 + ecrit_ins = NINT(ecrit_ins / dtphys) ! Initialisation des sorties - call ini_histhf(dtphys, nid_hf, nid_hf3d) - call ini_histday(dtphys, ok_journe, nid_day, nqmx) - call ini_histins(dtphys, ok_instan, nid_ins) - CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0) + call ini_histins(dtphys) + CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 + CALL phyredem0 ENDIF test_firstcal - ! Mettre a zero des variables de sortie (pour securite) - - DO i = 1, klon - d_ps(i) = 0. - ENDDO - DO iq = 1, nqmx - DO k = 1, llm - DO i = 1, klon - d_qx(i, k, iq) = 0. - ENDDO - ENDDO - ENDDO - da = 0. - mp = 0. - phi = 0. + ! We will modify variables *_seri and we will not touch variables + ! u, v, t, qx: + t_seri = t + u_seri = u + v_seri = v + q_seri = qx(:, :, ivap) + ql_seri = qx(:, :, iliq) + tr_seri = qx(:, :, 3:nqmx) - ! Ne pas affecter les valeurs entrées de u, v, h, et q : - - DO k = 1, llm - DO i = 1, klon - t_seri(i, k) = t(i, k) - u_seri(i, k) = u(i, k) - v_seri(i, k) = v(i, k) - q_seri(i, k) = qx(i, k, ivap) - ql_seri(i, k) = qx(i, k, iliq) - qs_seri(i, k) = 0. - ENDDO - ENDDO - IF (nqmx >= 3) THEN - tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx) - ELSE - tr_seri(:, :, 1) = 0. - ENDIF - - DO i = 1, klon - ztsol(i) = 0. - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - ENDDO - ENDDO - - IF (if_ebil >= 1) THEN - tit = 'after dynamics' - CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - ! Comme les tendances de la physique sont ajoutés dans la - ! dynamique, la variation d'enthalpie par la dynamique devrait - ! être égale à la variation de la physique au pas de temps - ! précédent. Donc la somme de ces 2 variations devrait être - ! nulle. - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, & - d_qt, 0., fs_bound, fq_bound) - END IF + ztsol = sum(ftsol * pctsrf, dim = 2) ! Diagnostic de la tendance dynamique : IF (ancien_ok) THEN @@ -842,19 +568,16 @@ ! Check temperatures: CALL hgardfou(t_seri, ftsol) - ! Incrementer le compteur de la physique - itap = itap + 1 - julien = MOD(NINT(rdayvrai), 360) + call increment_itap + julien = MOD(dayvrai, 360) if (julien == 0) julien = 360 - forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg - - ! Mettre en action les conditions aux limites (albedo, sst etc.). + forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg - ! Prescrire l'ozone et calculer l'albedo sur l'ocean. + ! Prescrire l'ozone : wo = ozonecm(REAL(julien), paprs) - ! Évaporation de l'eau liquide nuageuse : + ! \'Evaporation de l'eau liquide nuageuse : DO k = 1, llm DO i = 1, klon zb = MAX(0., ql_seri(i, k)) @@ -865,80 +588,45 @@ ENDDO ql_seri = 0. - IF (if_ebil >= 2) THEN - tit = 'after reevap' - CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - - END IF - - ! Appeler la diffusion verticale (programme de couche limite) - - DO i = 1, klon - zxrugs(i) = 0. - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015) - ENDDO - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf) - ENDDO - ENDDO + frugs = MAX(frugs, 0.000015) + zxrugs = sum(frugs * pctsrf, dim = 2) - ! calculs necessaires au calcul de l'albedo dans l'interface + ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec + ! la surface. - CALL orbite(REAL(julien), zlongi, dist) + CALL orbite(REAL(julien), longi, dist) IF (cycle_diurne) THEN - zdtime = dtphys * REAL(radpas) - CALL zenang(zlongi, time, zdtime, rmu0, fract) + CALL zenang(longi, time, dtphys * radpas, mu0, fract) ELSE - rmu0 = -999.999 + mu0 = - 999.999 ENDIF ! Calcul de l'abedo moyen par maille - albsol(:) = 0. - albsollw(:) = 0. - DO nsrf = 1, nbsrf - DO i = 1, klon - albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf) - albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf) - ENDDO - ENDDO + albsol = sum(falbe * pctsrf, dim = 2) - ! Répartition sous maille des flux longwave et shortwave - ! Répartition du longwave par sous-surface linéarisée + ! R\'epartition sous maille des flux longwave et shortwave + ! R\'epartition du longwave par sous-surface lin\'earis\'ee - DO nsrf = 1, nbsrf - DO i = 1, klon - fsollw(i, nsrf) = sollw(i) & - + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf)) - fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i)) - ENDDO - ENDDO + forall (nsrf = 1: nbsrf) + fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 & + * (ztsol - ftsol(:, nsrf)) + fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) + END forall fder = dlw ! Couche limite: - CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, & - u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, & - ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, & - qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, & - rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, & - frugs, firstcal, agesno, rugoro, d_t_vdf, & - d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, & - cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, & - pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, & - fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice) + CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & + ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & + paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & + snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, & + d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & + fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & + u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & + trmb3, plcl, fqcalving, ffonte, run_off_lic_0) - ! Incrémentation des flux + ! Incr\'ementation des flux zxfluxt = 0. zxfluxq = 0. @@ -956,7 +644,7 @@ END DO DO i = 1, klon sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol - evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol + evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol fder(i) = dlw(i) + dsens(i) + devap(i) ENDDO @@ -969,20 +657,9 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after clmain' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - END IF - ! Update surface temperature: DO i = 1, klon - zxtsol(i) = 0. zxfluxlat(i) = 0. zt2m(i) = 0. @@ -992,8 +669,8 @@ zxffonte(i) = 0. zxfqcalving(i) = 0. - s_pblh(i) = 0. - s_lcl(i) = 0. + s_pblh(i) = 0. + s_lcl(i) = 0. s_capCL(i) = 0. s_oliqCL(i) = 0. s_cteiCL(i) = 0. @@ -1002,144 +679,108 @@ s_trmb1(i) = 0. s_trmb2(i) = 0. s_trmb3(i) = 0. - - IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) & - + pctsrf(i, is_sic) - 1.) > EPSFRA) print *, & - 'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf) ENDDO + + call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') + + ftsol = ftsol + d_ts + ztsol = sum(ftsol * pctsrf, dim = 2) DO nsrf = 1, nbsrf DO i = 1, klon - ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf) - zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf) - - zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf) - zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf) - zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf) - zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf) - zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf) + zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf) + + zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf) + zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf) + zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf) + zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf) + zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf) zxfqcalving(i) = zxfqcalving(i) + & - fqcalving(i, nsrf)*pctsrf(i, nsrf) - s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf) - s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf) - s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf) - s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf) - s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf) - s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf) - s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf) - s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf) - s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf) - s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf) + fqcalving(i, nsrf) * pctsrf(i, nsrf) + s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf) + s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf) + s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf) + s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf) + s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf) + s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf) + s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf) + s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf) + s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf) + s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO - ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne - + ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne : DO nsrf = 1, nbsrf DO i = 1, klon - IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) - - IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i) - IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i) - IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i) - IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i) - IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i) - IF (pctsrf(i, nsrf) < epsfra) & - fqcalving(i, nsrf) = zxfqcalving(i) - IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i) - IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i) - IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i) - IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i) - IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i) - IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i) - IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i) - IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i) - IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i) - IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i) + IF (pctsrf(i, nsrf) < epsfra) then + ftsol(i, nsrf) = ztsol(i) + t2m(i, nsrf) = zt2m(i) + q2m(i, nsrf) = zq2m(i) + u10m(i, nsrf) = zu10m(i) + v10m(i, nsrf) = zv10m(i) + ffonte(i, nsrf) = zxffonte(i) + fqcalving(i, nsrf) = zxfqcalving(i) + pblh(i, nsrf) = s_pblh(i) + plcl(i, nsrf) = s_lcl(i) + capCL(i, nsrf) = s_capCL(i) + oliqCL(i, nsrf) = s_oliqCL(i) + cteiCL(i, nsrf) = s_cteiCL(i) + pblT(i, nsrf) = s_pblT(i) + therm(i, nsrf) = s_therm(i) + trmb1(i, nsrf) = s_trmb1(i) + trmb2(i, nsrf) = s_trmb2(i) + trmb3(i, nsrf) = s_trmb3(i) + end IF ENDDO ENDDO - ! Calculer la derive du flux infrarouge + ! Calculer la dérive du flux infrarouge DO i = 1, klon - dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 - ENDDO - - ! Appeler la convection (au choix) - - DO k = 1, llm - DO i = 1, klon - conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys - conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys - ENDDO + dlw(i) = - 4. * RSIGMA * ztsol(i)**3 ENDDO - IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *, "avantcon = ", za - ENDIF - - if (iflag_con == 2) then - z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) - CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & - q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & - d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), & - mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & - kdtop, pmflxr, pmflxs) - WHERE (rain_con < 0.) rain_con = 0. - WHERE (snow_con < 0.) snow_con = 0. - ibas_con = llm + 1 - kcbot - itop_con = llm + 1 - kctop - else - ! iflag_con >= 3 - - CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, & - v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, & - d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, & - itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, & - pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, & - wd, pmflxr, pmflxs, da, phi, mp, ntra=1) - ! (number of tracers for the convection scheme of Kerry Emanuel: - ! la partie traceurs est faite dans phytrac - ! on met ntra = 1 pour limiter les appels mais on peut - ! supprimer les calculs / ftra.) + ! Appeler la convection + if (conv_emanuel) then + CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & + d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & + upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) + snow_con = 0. clwcon0 = qcondc mfu = upwd + dnwd - IF (.NOT. ok_gust) wd = 0. - ! Calcul des propriétés des nuages convectifs - - DO k = 1, llm - DO i = 1, klon - zx_t = t_seri(i, k) - IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor - ELSE - IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/play(i, k) - ELSE - zx_qs = qsatl(zx_t)/play(i, k) - ENDIF - ENDIF - zqsat(i, k) = zx_qs - ENDDO - ENDDO + IF (thermcep) THEN + zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) + zqsat = zqsat / (1. - retv * zqsat) + ELSE + zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play + ENDIF - ! calcul des proprietes des nuages convectifs + ! Properties of convective clouds clwcon0 = fact_cldcon * clwcon0 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) + forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1) mfd = 0. pen_u = 0. pen_d = 0. pde_d = 0. pde_u = 0. + else + conv_q = d_q_dyn + d_q_vdf / dtphys + conv_t = d_t_dyn + d_t_vdf / dtphys + z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & + q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, & + d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & + mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & + kdtop, pmflxr, pmflxs) + WHERE (rain_con < 0.) rain_con = 0. + WHERE (snow_con < 0.) snow_con = 0. + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop END if DO k = 1, llm @@ -1151,31 +792,7 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after convect' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - END IF - - IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *, "aprescon = ", za - zx_t = 0. - za = 0. - DO i = 1, klon - za = za + airephy(i)/REAL(klon) - zx_t = zx_t + (rain_con(i)+ & - snow_con(i))*airephy(i)/REAL(klon) - ENDDO - zx_t = zx_t/za*dtphys - print *, "Precip = ", zx_t - ENDIF - - IF (iflag_con == 2) THEN + IF (.not. conv_emanuel) THEN z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres DO k = 1, llm @@ -1187,7 +804,7 @@ ENDDO ENDIF - ! Convection sèche (thermiques ou ajustement) + ! Convection s\`eche (thermiques ou ajustement) d_t_ajs = 0. d_u_ajs = 0. @@ -1202,22 +819,14 @@ t_seri = t_seri + d_t_ajs q_seri = q_seri + d_q_ajs else - ! Thermiques call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, & q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm) endif - IF (if_ebil >= 2) THEN - tit = 'after dry_adjust' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - END IF - ! Caclul des ratqs - ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q - ! on écrase le tableau ratqsc calculé par clouds_gno + ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q + ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno if (iflag_cldcon == 1) then do k = 1, llm do i = 1, klon @@ -1235,7 +844,7 @@ do k = 1, llm do i = 1, klon ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) & - * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) + * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) enddo enddo @@ -1268,46 +877,23 @@ IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k) ENDDO ENDDO - IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *, "apresilp = ", za - zx_t = 0. - za = 0. - DO i = 1, klon - za = za + airephy(i)/REAL(klon) - zx_t = zx_t + (rain_lsc(i) & - + snow_lsc(i))*airephy(i)/REAL(klon) - ENDDO - zx_t = zx_t/za*dtphys - print *, "Precip = ", zx_t - ENDIF - - IF (if_ebil >= 2) THEN - tit = 'after fisrt' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - END IF ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT ! 1. NUAGES CONVECTIFS - IF (iflag_cldcon <= -1) THEN + IF (iflag_cldcon <= - 1) THEN ! seulement pour Tiedtke snow_tiedtke = 0. - if (iflag_cldcon == -1) then + if (iflag_cldcon == - 1) then rain_tiedtke = rain_con else rain_tiedtke = 0. do k = 1, llm do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys & - *zmasse(i, k) + rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys & + * zmasse(i, k) endif enddo enddo @@ -1326,7 +912,7 @@ ENDDO ELSE IF (iflag_cldcon == 3) THEN ! On prend pour les nuages convectifs le maximum du calcul de - ! la convection et du calcul du pas de temps précédent diminué + ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e ! d'un facteur facttemps. facteur = dtphys * facttemps do k = 1, llm @@ -1342,7 +928,7 @@ ! On prend la somme des fractions nuageuses et des contenus en eau cldfra = min(max(cldfra, rnebcon), 1.) - cldliq = cldliq + rnebcon*clwcon + cldliq = cldliq + rnebcon * clwcon ENDIF ! 2. Nuages stratiformes @@ -1365,47 +951,34 @@ snow_fall(i) = snow_con(i) + snow_lsc(i) ENDDO - IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, & - dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, & - d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - - ! Humidité relative pour diagnostic : + ! Humidit\'e relative pour diagnostic : DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor ELSE IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/play(i, k) + zx_qs = qsats(zx_t) / play(i, k) ELSE - zx_qs = qsatl(zx_t)/play(i, k) + zx_qs = qsatl(zx_t) / play(i, k) ENDIF ENDIF - zx_rh(i, k) = q_seri(i, k)/zx_qs + zx_rh(i, k) = q_seri(i, k) / zx_qs zqsat(i, k) = zx_qs ENDDO ENDDO ! Introduce the aerosol direct and first indirect radiative forcings: - IF (ok_ade .OR. ok_aie) THEN - ! Get sulfate aerosol distribution : - CALL readsulfate(rdayvrai, firstcal, sulfate) - CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi) - - CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, & - aerindex) - ELSE - tau_ae = 0. - piz_ae = 0. - cg_ae = 0. - ENDIF + tau_ae = 0. + piz_ae = 0. + cg_ae = 0. - ! Paramètres optiques des nuages et quelques paramètres pour diagnostics : + ! Param\`etres optiques des nuages et quelques param\`etres pour + ! diagnostics : if (ok_newmicro) then CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, & cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, & @@ -1416,47 +989,29 @@ bl95_b1, cldtaupi, re, fl) endif - ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. - IF (MOD(itaprad, radpas) == 0) THEN - DO i = 1, klon - albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) & - + falbe(i, is_lic) * pctsrf(i, is_lic) & - + falbe(i, is_ter) * pctsrf(i, is_ter) & - + falbe(i, is_sic) * pctsrf(i, is_sic) - albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) & - + falblw(i, is_lic) * pctsrf(i, is_lic) & - + falblw(i, is_ter) * pctsrf(i, is_ter) & - + falblw(i, is_sic) * pctsrf(i, is_sic) - ENDDO + IF (MOD(itap - 1, radpas) == 0) THEN + ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. + ! Calcul de l'abedo moyen par maille + albsol = sum(falbe * pctsrf, dim = 2) + ! Rayonnement (compatible Arpege-IFS) : - CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, & - albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, & - heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, & - sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, & - lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, & - cg_ae, topswad, solswad, cldtaupi, topswai, solswai) - itaprad = 0 + CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, & + q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, & + radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, & + toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, & + swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, & + solswad, cldtaupi, topswai, solswai) ENDIF - itaprad = itaprad + 1 ! Ajouter la tendance des rayonnements (tous les pas) DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys & + / 86400. ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after rad' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - END IF - ! Calculer l'hydrologie de la surface DO i = 1, klon zxqsurf(i) = 0. @@ -1464,34 +1019,33 @@ ENDDO DO nsrf = 1, nbsrf DO i = 1, klon - zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf) - zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf) + zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf) + zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO - ! Calculer le bilan du sol et la dérive de température (couplage) + ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage) DO i = 1, klon bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO - ! Paramétrisation de l'orographie à l'échelle sous-maille : + ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille : IF (ok_orodr) THEN - ! selection des points pour lesquels le shema est actif: + ! S\'election des points pour lesquels le sch\'ema est actif : igwd = 0 DO i = 1, klon itest(i) = 0 - IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN + IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, & - zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, & - zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) + zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, & + zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) ! ajout des tendances DO k = 1, llm @@ -1504,14 +1058,13 @@ ENDIF IF (ok_orolf) THEN - ! Sélection des points pour lesquels le schéma est actif : + ! S\'election des points pour lesquels le sch\'ema est actif : igwd = 0 DO i = 1, klon itest(i) = 0 - IF ((zpic(i) - zmea(i)) > 100.) THEN + IF (zpic(i) - zmea(i) > 100.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO @@ -1529,7 +1082,7 @@ ENDDO ENDIF - ! Stress nécessaires : toute la physique + ! Stress n\'ecessaires : toute la physique DO i = 1, klon zustrph(i) = 0. @@ -1544,36 +1097,30 @@ ENDDO ENDDO - CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, & - zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) - - IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, & - 2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, & - d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) + CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, & + zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) ! Calcul des tendances traceurs - call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, & - dtphys, u, t, paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, & - entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, & - albsol, rhcl, cldfra, rneb, diafra, cldliq, pmflxr, pmflxs, prfl, & - psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse) - - IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, & - pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) + call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, & + mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, & + pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, & + zmasse, ncid_startphy) + + IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, & + pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, & + frac_impa, frac_nucl, pphis, airephy, dtphys) ! Calculer le transport de l'eau et de l'energie (diagnostique) - CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, & - ue, uq) + CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq) ! diag. bilKP - CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, & + CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, & ve_lay, vq_lay, ue_lay, uq_lay) ! Accumuler les variables a stocker dans les fichiers histoire: - ! conversion Ec -> E thermique + ! conversion Ec en énergie thermique DO k = 1, llm DO i = 1, klon ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k)) @@ -1584,30 +1131,13 @@ END DO END DO - IF (if_ebil >= 1) THEN - tit = 'after physic' - CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, - ! on devrait avoir que la variation d'entalpie par la dynamique - ! est egale a la variation de la physique au pas de temps precedent. - ! Donc la somme de ces 2 variations devrait etre nulle. - call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, & - evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - - d_h_vcol_phy = d_h_vcol - - END IF - ! SORTIES ! prw = eau precipitable DO i = 1, klon prw(i) = 0. DO k = 1, llm - prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k) + prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k) ENDDO ENDDO @@ -1623,15 +1153,13 @@ ENDDO ENDDO - IF (nqmx >= 3) THEN - DO iq = 3, nqmx - DO k = 1, llm - DO i = 1, klon - d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys - ENDDO + DO iq = 3, nqmx + DO k = 1, llm + DO i = 1, klon + d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys ENDDO ENDDO - ENDIF + ENDDO ! Sauvegarder les valeurs de t et q a la fin de la physique: DO k = 1, llm @@ -1641,329 +1169,79 @@ ENDDO ENDDO - ! Ecriture des sorties - call write_histhf - call write_histday - call write_histins - - ! Si c'est la fin, il faut conserver l'etat de redemarrage - IF (lafin) THEN - itau_phy = itau_phy + itap - CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, & - tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, & - rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & - agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & - q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) - ENDIF - - firstcal = .FALSE. - - contains - - subroutine write_histday - - use gr_phy_write_3d_m, only: gr_phy_write_3d - integer itau_w ! pas de temps ecriture - - !------------------------------------------------ - - if (ok_journe) THEN - itau_w = itau_phy + itap - if (nqmx <= 4) then - call histwrite(nid_day, "Sigma_O3_Royer", itau_w, & - gr_phy_write_3d(wo) * 1e3) - ! (convert "wo" from kDU to DU) - end if - if (ok_sync) then - call histsync(nid_day) - endif - ENDIF - - End subroutine write_histday - - !**************************** - - subroutine write_histhf - - ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09 - - !------------------------------------------------ - - call write_histhf3d - - IF (ok_sync) THEN - call histsync(nid_hf) - ENDIF - - end subroutine write_histhf - - !*************************************************************** - - subroutine write_histins - - ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09 - - real zout - integer itau_w ! pas de temps ecriture - - !-------------------------------------------------- - - IF (ok_instan) THEN - ! Champs 2D: - - zsto = dtphys * ecrit_ins - zout = dtphys * ecrit_ins - itau_w = itau_phy + itap - - i = NINT(zout/zsto) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) - CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) - - i = NINT(zout/zsto) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) - CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = paprs(i, 1) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d) - !ccIM - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d) - CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d) + CALL histwrite_phy("phis", pphis) + CALL histwrite_phy("aire", airephy) + CALL histwrite_phy("psol", paprs(:, 1)) + CALL histwrite_phy("precip", rain_fall + snow_fall) + CALL histwrite_phy("plul", rain_lsc + snow_lsc) + CALL histwrite_phy("pluc", rain_con + snow_con) + CALL histwrite_phy("tsol", ztsol) + CALL histwrite_phy("t2m", zt2m) + CALL histwrite_phy("q2m", zq2m) + CALL histwrite_phy("u10m", zu10m) + CALL histwrite_phy("v10m", zv10m) + CALL histwrite_phy("snow", snow_fall) + CALL histwrite_phy("cdrm", cdragm) + CALL histwrite_phy("cdrh", cdragh) + CALL histwrite_phy("topl", toplw) + CALL histwrite_phy("evap", evap) + CALL histwrite_phy("sols", solsw) + CALL histwrite_phy("soll", sollw) + CALL histwrite_phy("solldown", sollwdown) + CALL histwrite_phy("bils", bils) + CALL histwrite_phy("sens", - sens) + CALL histwrite_phy("fder", fder) + CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce)) + CALL histwrite_phy("dtsvdft", d_ts(:, is_ter)) + CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic)) + CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic)) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d) - CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d) - CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d) - CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d) - CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d) - CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d) - CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d) - CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d) - CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d) - CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d) - CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d) - - zx_tmp_fi2d(1:klon) = -1*sens(1:klon) - ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d) - CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d) - - DO nsrf = 1, nbsrf - !XXX - zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100. - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - END DO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d) - CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d) - CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d) - - !HBTM2 - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d) - CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d) - CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d) - - ! Champs 3D: - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d) - CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d) - CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) - - if (ok_sync) then - call histsync(nid_ins) - endif - ENDIF - - end subroutine write_histins - - !**************************************************** - - subroutine write_histhf3d - - ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09 - - integer itau_w ! pas de temps ecriture - - !------------------------------------------------------- - - itau_w = itau_phy + itap - - ! Champs 3D: - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d) - CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d) - - if (nbtr >= 3) then - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), & - zx_tmp_3d) - CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d) - end if + DO nsrf = 1, nbsrf + CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) + CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) + CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf)) + CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf)) + CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf)) + CALL histwrite_phy("taux_"//clnsurf(nsrf), fluxu(:, 1, nsrf)) + CALL histwrite_phy("tauy_"//clnsurf(nsrf), fluxv(:, 1, nsrf)) + CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) + CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) + END DO - if (ok_sync) then - call histsync(nid_hf3d) - endif + CALL histwrite_phy("albs", albsol) + CALL histwrite_phy("rugs", zxrugs) + CALL histwrite_phy("s_pblh", s_pblh) + CALL histwrite_phy("s_pblt", s_pblt) + CALL histwrite_phy("s_lcl", s_lcl) + CALL histwrite_phy("s_capCL", s_capCL) + CALL histwrite_phy("s_oliqCL", s_oliqCL) + CALL histwrite_phy("s_cteiCL", s_cteiCL) + CALL histwrite_phy("s_therm", s_therm) + CALL histwrite_phy("s_trmb1", s_trmb1) + CALL histwrite_phy("s_trmb2", s_trmb2) + CALL histwrite_phy("s_trmb3", s_trmb3) + if (conv_emanuel) CALL histwrite_phy("ptop", ema_pct) + CALL histwrite_phy("temp", t_seri) + CALL histwrite_phy("vitu", u_seri) + CALL histwrite_phy("vitv", v_seri) + CALL histwrite_phy("geop", zphi) + CALL histwrite_phy("pres", play) + CALL histwrite_phy("dtvdf", d_t_vdf) + CALL histwrite_phy("dqvdf", d_q_vdf) + CALL histwrite_phy("rhum", zx_rh) + + if (ok_instan) call histsync(nid_ins) + + IF (lafin) then + call NF95_CLOSE(ncid_startphy) + CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, & + fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & + radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & + t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01) + end IF - end subroutine write_histhf3d + firstcal = .FALSE. END SUBROUTINE physiq