/[lmdze]/trunk/Sources/phylmd/physiq.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 224 - (show annotations)
Fri Apr 28 13:40:59 2017 UTC (7 years ago) by guez
File size: 38833 byte(s)
offline allows to save variables for another run with offline
transport, but there is no provision for this other run with offline
transport in LMDZE. The procedures read_pstoke and read_pstoke0 in
LMDZ are never called. So removed the possibility offline = T.

1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 use aaam_bud_m, only: aaam_bud
18 USE abort_gcm_m, ONLY: abort_gcm
19 use ajsec_m, only: ajsec
20 use calltherm_m, only: calltherm
21 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22 ok_instan
23 USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
24 USE clmain_m, ONLY: clmain
25 use clouds_gno_m, only: clouds_gno
26 use comconst, only: dtphys
27 USE comgeomphy, ONLY: airephy
28 USE concvl_m, ONLY: concvl
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: conf_phys
31 use conflx_m, only: conflx
32 USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33 use diagcld2_m, only: diagcld2
34 USE dimens_m, ONLY: llm, nqmx
35 USE dimphy, ONLY: klon
36 USE dimsoil, ONLY: nsoilmx
37 use drag_noro_m, only: drag_noro
38 use dynetat0_m, only: day_ref, annee_ref
39 USE fcttre, ONLY: foeew
40 use fisrtilp_m, only: fisrtilp
41 USE hgardfou_m, ONLY: hgardfou
42 USE histsync_m, ONLY: histsync
43 USE histwrite_phy_m, ONLY: histwrite_phy
44 USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45 nbsrf
46 USE ini_histins_m, ONLY: ini_histins, nid_ins
47 use netcdf95, only: NF95_CLOSE
48 use newmicro_m, only: newmicro
49 use nr_util, only: assert
50 use nuage_m, only: nuage
51 USE orbite_m, ONLY: orbite
52 USE ozonecm_m, ONLY: ozonecm
53 USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54 USE phyredem_m, ONLY: phyredem
55 USE phyredem0_m, ONLY: phyredem0
56 USE phytrac_m, ONLY: phytrac
57 use radlwsw_m, only: radlwsw
58 use yoegwd, only: sugwd
59 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60 use time_phylmdz, only: itap, increment_itap
61 use transp_m, only: transp
62 use transp_lay_m, only: transp_lay
63 use unit_nml_m, only: unit_nml
64 USE ymds2ju_m, ONLY: ymds2ju
65 USE yoethf_m, ONLY: r2es, rvtmp2
66 use zenang_m, only: zenang
67
68 logical, intent(in):: lafin ! dernier passage
69
70 integer, intent(in):: dayvrai
71 ! current day number, based at value 1 on January 1st of annee_ref
72
73 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
74
75 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76 ! pression pour chaque inter-couche, en Pa
77
78 REAL, intent(in):: play(:, :) ! (klon, llm)
79 ! pression pour le mileu de chaque couche (en Pa)
80
81 REAL, intent(in):: pphi(:, :) ! (klon, llm)
82 ! géopotentiel de chaque couche (référence sol)
83
84 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
85
86 REAL, intent(in):: u(:, :) ! (klon, llm)
87 ! vitesse dans la direction X (de O a E) en m / s
88
89 REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
91
92 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94
95 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99
100 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101 ! tendance physique de "qx" (s-1)
102
103 ! Local:
104
105 LOGICAL:: firstcal = .true.
106
107 LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108 ! Ajouter artificiellement les stratus
109
110 ! pour phystoke avec thermiques
111 REAL fm_therm(klon, llm + 1)
112 REAL entr_therm(klon, llm)
113 real, save:: q2(klon, llm + 1, nbsrf)
114
115 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
117
118 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119 LOGICAL, save:: ancien_ok
120
121 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123
124 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125
126 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
128
129 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
131
132 ! prw: precipitable water
133 real prw(klon)
134
135 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137 REAL flwp(klon), fiwp(klon)
138 REAL flwc(klon, llm), fiwc(klon, llm)
139
140 ! Variables propres a la physique
141
142 INTEGER, save:: radpas
143 ! Radiative transfer computations are made every "radpas" call to
144 ! "physiq".
145
146 REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148
149 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
150 ! soil temperature of surface fraction
151
152 REAL, save:: fevap(klon, nbsrf) ! evaporation
153 REAL fluxlat(klon, nbsrf)
154
155 REAL, save:: fqsurf(klon, nbsrf)
156 ! humidite de l'air au contact de la surface
157
158 REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159 REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161
162 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163 REAL, save:: zmea(klon) ! orographie moyenne
164 REAL, save:: zstd(klon) ! deviation standard de l'OESM
165 REAL, save:: zsig(klon) ! pente de l'OESM
166 REAL, save:: zgam(klon) ! anisotropie de l'OESM
167 REAL, save:: zthe(klon) ! orientation de l'OESM
168 REAL, save:: zpic(klon) ! Maximum de l'OESM
169 REAL, save:: zval(klon) ! Minimum de l'OESM
170 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
171 REAL zulow(klon), zvlow(klon)
172 INTEGER igwd, itest(klon)
173
174 REAL, save:: agesno(klon, nbsrf) ! age de la neige
175 REAL, save:: run_off_lic_0(klon)
176
177 ! Variables li\'ees \`a la convection d'Emanuel :
178 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179 REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
180 REAL, save:: sig1(klon, llm), w01(klon, llm)
181
182 ! Variables pour la couche limite (Alain Lahellec) :
183 REAL cdragh(klon) ! drag coefficient pour T and Q
184 REAL cdragm(klon) ! drag coefficient pour vent
185
186 ! Pour phytrac :
187 REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
188 REAL yu1(klon) ! vents dans la premiere couche U
189 REAL yv1(klon) ! vents dans la premiere couche V
190
191 REAL, save:: ffonte(klon, nbsrf)
192 ! flux thermique utilise pour fondre la neige
193
194 REAL, save:: fqcalving(klon, nbsrf)
195 ! flux d'eau "perdue" par la surface et necessaire pour limiter la
196 ! hauteur de neige, en kg / m2 / s
197
198 REAL zxffonte(klon), zxfqcalving(klon)
199
200 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
201 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
202
203 REAL, save:: pfrac_1nucl(klon, llm)
204 ! Produits des coefs lessi nucl (alpha = 1)
205
206 REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
207 REAL frac_nucl(klon, llm) ! idem (nucleation)
208
209 REAL, save:: rain_fall(klon)
210 ! liquid water mass flux (kg / m2 / s), positive down
211
212 REAL, save:: snow_fall(klon)
213 ! solid water mass flux (kg / m2 / s), positive down
214
215 REAL rain_tiedtke(klon), snow_tiedtke(klon)
216
217 REAL evap(klon) ! flux d'\'evaporation au sol
218 real devap(klon) ! derivative of the evaporation flux at the surface
219 REAL sens(klon) ! flux de chaleur sensible au sol
220 real dsens(klon) ! derivee du flux de chaleur sensible au sol
221 REAL, save:: dlw(klon) ! derivative of infra-red flux
222 REAL bils(klon) ! bilan de chaleur au sol
223 REAL fder(klon) ! Derive de flux (sensible et latente)
224 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
225 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
226 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
227 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
228
229 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
230 REAL zxrugs(klon) ! longueur de rugosite
231
232 ! Conditions aux limites
233
234 INTEGER julien
235 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
236 REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
237 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
238 real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
239
240 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
241 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
242
243 REAL rhcl(klon, llm) ! humiditi relative ciel clair
244 REAL dialiq(klon, llm) ! eau liquide nuageuse
245 REAL diafra(klon, llm) ! fraction nuageuse
246 REAL cldliq(klon, llm) ! eau liquide nuageuse
247 REAL cldfra(klon, llm) ! fraction nuageuse
248 REAL cldtau(klon, llm) ! epaisseur optique
249 REAL cldemi(klon, llm) ! emissivite infrarouge
250
251 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
252 REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
253 REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
254 REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
255
256 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
257 ! les variables soient r\'emanentes.
258 REAL, save:: heat(klon, llm) ! chauffage solaire
259 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
260 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
261 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
262 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
263 REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
264 real, save:: sollwdown(klon) ! downward LW flux at surface
265 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
266 REAL, save:: albpla(klon)
267 REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
268 REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
269
270 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
271 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
272
273 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
274 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
275
276 REAL zxfluxlat(klon)
277 REAL dist, mu0(klon), fract(klon)
278 real longi
279 REAL z_avant(klon), z_apres(klon), z_factor(klon)
280 REAL zb
281 REAL zx_t, zx_qs, zcor
282 real zqsat(klon, llm)
283 INTEGER i, k, iq, nsrf
284 REAL zphi(klon, llm)
285
286 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
287
288 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
289 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
290 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
291 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
292 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
293 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
294 REAL, SAVE:: therm(klon, nbsrf)
295 REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
296 REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
297 REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
298 ! Grandeurs de sorties
299 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
300 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
301 REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
302 REAL s_trmb3(klon)
303
304 ! Variables pour la convection de K. Emanuel :
305
306 REAL upwd(klon, llm) ! saturated updraft mass flux
307 REAL dnwd(klon, llm) ! saturated downdraft mass flux
308 REAL, save:: cape(klon)
309
310 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
311
312 ! Variables du changement
313
314 ! con: convection
315 ! lsc: large scale condensation
316 ! ajs: ajustement sec
317 ! eva: \'evaporation de l'eau liquide nuageuse
318 ! vdf: vertical diffusion in boundary layer
319 REAL d_t_con(klon, llm), d_q_con(klon, llm)
320 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
321 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
322 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
323 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
324 REAL rneb(klon, llm)
325
326 REAL mfu(klon, llm), mfd(klon, llm)
327 REAL pen_u(klon, llm), pen_d(klon, llm)
328 REAL pde_u(klon, llm), pde_d(klon, llm)
329 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
330 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
331 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
332
333 INTEGER, save:: ibas_con(klon), itop_con(klon)
334 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
335
336 REAL, save:: rain_con(klon)
337 real rain_lsc(klon)
338 REAL, save:: snow_con(klon) ! neige (mm / s)
339 real snow_lsc(klon)
340 REAL d_ts(klon, nbsrf) ! variation of ftsol
341
342 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
343 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
344
345 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
346 REAL d_t_oro(klon, llm)
347 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
348 REAL d_t_lif(klon, llm)
349
350 REAL, save:: ratqs(klon, llm)
351 real ratqss(klon, llm), ratqsc(klon, llm)
352 real:: ratqsbas = 0.01, ratqshaut = 0.3
353
354 ! Parametres lies au nouveau schema de nuages (SB, PDF)
355 real:: fact_cldcon = 0.375
356 real:: facttemps = 1.e-4
357 logical:: ok_newmicro = .true.
358 real facteur
359
360 integer:: iflag_cldcon = 1
361 logical ptconv(klon, llm)
362
363 ! Variables pour effectuer les appels en s\'erie :
364
365 REAL t_seri(klon, llm), q_seri(klon, llm)
366 REAL ql_seri(klon, llm)
367 REAL u_seri(klon, llm), v_seri(klon, llm)
368 REAL tr_seri(klon, llm, nqmx - 2)
369
370 REAL zx_rh(klon, llm)
371
372 REAL zustrdr(klon), zvstrdr(klon)
373 REAL zustrli(klon), zvstrli(klon)
374 REAL zustrph(klon), zvstrph(klon)
375 REAL aam, torsfc
376
377 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
378 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
379 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
380 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
381
382 real date0
383 REAL tsol(klon)
384
385 REAL d_t_ec(klon, llm)
386 ! tendance due \`a la conversion d'\'energie cin\'etique en
387 ! énergie thermique
388
389 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
390 ! temperature and humidity at 2 m
391
392 REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
393 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
394 REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
395
396 ! Aerosol effects:
397
398 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
399 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
400
401 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
402 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
403 ! B). They link cloud droplet number concentration to aerosol mass
404 ! concentration.
405
406 real zmasse(klon, llm)
407 ! (column-density of mass of air in a cell, in kg m-2)
408
409 integer, save:: ncid_startphy
410
411 namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
412 ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
413 nsplit_thermals
414
415 !----------------------------------------------------------------
416
417 IF (nqmx < 2) CALL abort_gcm('physiq', &
418 'eaux vapeur et liquide sont indispensables')
419
420 test_firstcal: IF (firstcal) THEN
421 ! initialiser
422 u10m = 0.
423 v10m = 0.
424 t2m = 0.
425 q2m = 0.
426 ffonte = 0.
427 fqcalving = 0.
428 rain_con = 0.
429 snow_con = 0.
430 d_u_con = 0.
431 d_v_con = 0.
432 rnebcon0 = 0.
433 clwcon0 = 0.
434 rnebcon = 0.
435 clwcon = 0.
436 pblh =0. ! Hauteur de couche limite
437 plcl =0. ! Niveau de condensation de la CLA
438 capCL =0. ! CAPE de couche limite
439 oliqCL =0. ! eau_liqu integree de couche limite
440 cteiCL =0. ! cloud top instab. crit. couche limite
441 pblt =0.
442 therm =0.
443 trmb1 =0. ! deep_cape
444 trmb2 =0. ! inhibition
445 trmb3 =0. ! Point Omega
446
447 iflag_thermals = 0
448 nsplit_thermals = 1
449 print *, "Enter namelist 'physiq_nml'."
450 read(unit=*, nml=physiq_nml)
451 write(unit_nml, nml=physiq_nml)
452
453 call conf_phys
454
455 ! Initialiser les compteurs:
456
457 frugs = 0.
458 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
459 fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
460 agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
461 q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
462 w01, ncid_startphy)
463
464 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
465 q2 = 1e-8
466
467 radpas = lmt_pas / nbapp_rad
468 print *, "radpas = ", radpas
469
470 ! Initialisation pour le sch\'ema de convection d'Emanuel :
471 IF (conv_emanuel) THEN
472 ibas_con = 1
473 itop_con = 1
474 ENDIF
475
476 IF (ok_orodr) THEN
477 rugoro = MAX(1e-5, zstd * zsig / 2)
478 CALL SUGWD(paprs, play)
479 else
480 rugoro = 0.
481 ENDIF
482
483 ecrit_ins = NINT(ecrit_ins / dtphys)
484
485 ! Initialisation des sorties
486
487 call ini_histins(dtphys, ok_newmicro)
488 CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
489 ! Positionner date0 pour initialisation de ORCHIDEE
490 print *, 'physiq date0: ', date0
491 CALL phyredem0
492 ENDIF test_firstcal
493
494 ! We will modify variables *_seri and we will not touch variables
495 ! u, v, t, qx:
496 t_seri = t
497 u_seri = u
498 v_seri = v
499 q_seri = qx(:, :, ivap)
500 ql_seri = qx(:, :, iliq)
501 tr_seri = qx(:, :, 3:nqmx)
502
503 tsol = sum(ftsol * pctsrf, dim = 2)
504
505 ! Diagnostic de la tendance dynamique :
506 IF (ancien_ok) THEN
507 DO k = 1, llm
508 DO i = 1, klon
509 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
510 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
511 ENDDO
512 ENDDO
513 ELSE
514 DO k = 1, llm
515 DO i = 1, klon
516 d_t_dyn(i, k) = 0.
517 d_q_dyn(i, k) = 0.
518 ENDDO
519 ENDDO
520 ancien_ok = .TRUE.
521 ENDIF
522
523 ! Ajouter le geopotentiel du sol:
524 DO k = 1, llm
525 DO i = 1, klon
526 zphi(i, k) = pphi(i, k) + pphis(i)
527 ENDDO
528 ENDDO
529
530 ! Check temperatures:
531 CALL hgardfou(t_seri, ftsol)
532
533 call increment_itap
534 julien = MOD(dayvrai, 360)
535 if (julien == 0) julien = 360
536
537 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
538
539 ! \'Evaporation de l'eau liquide nuageuse :
540 DO k = 1, llm
541 DO i = 1, klon
542 zb = MAX(0., ql_seri(i, k))
543 t_seri(i, k) = t_seri(i, k) &
544 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
545 q_seri(i, k) = q_seri(i, k) + zb
546 ENDDO
547 ENDDO
548 ql_seri = 0.
549
550 frugs = MAX(frugs, 0.000015)
551 zxrugs = sum(frugs * pctsrf, dim = 2)
552
553 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
554 ! la surface.
555
556 CALL orbite(REAL(julien), longi, dist)
557 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
558 albsol = sum(falbe * pctsrf, dim = 2)
559
560 ! R\'epartition sous maille des flux longwave et shortwave
561 ! R\'epartition du longwave par sous-surface lin\'earis\'ee
562
563 forall (nsrf = 1: nbsrf)
564 fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
565 * (tsol - ftsol(:, nsrf))
566 fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
567 END forall
568
569 CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
570 ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
571 paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
572 snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
573 d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
574 cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &
575 pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
576 fqcalving, ffonte, run_off_lic_0)
577
578 ! Incr\'ementation des flux
579
580 sens = - sum(flux_t * pctsrf, dim = 2)
581 evap = - sum(flux_q * pctsrf, dim = 2)
582 fder = dlw + dsens + devap
583
584 DO k = 1, llm
585 DO i = 1, klon
586 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
587 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
588 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
589 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
590 ENDDO
591 ENDDO
592
593 ! Update surface temperature:
594
595 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
596 ftsol = ftsol + d_ts
597 tsol = sum(ftsol * pctsrf, dim = 2)
598 zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
599 zt2m = sum(t2m * pctsrf, dim = 2)
600 zq2m = sum(q2m * pctsrf, dim = 2)
601 zu10m = sum(u10m * pctsrf, dim = 2)
602 zv10m = sum(v10m * pctsrf, dim = 2)
603 zxffonte = sum(ffonte * pctsrf, dim = 2)
604 zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
605 s_pblh = sum(pblh * pctsrf, dim = 2)
606 s_lcl = sum(plcl * pctsrf, dim = 2)
607 s_capCL = sum(capCL * pctsrf, dim = 2)
608 s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
609 s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
610 s_pblT = sum(pblT * pctsrf, dim = 2)
611 s_therm = sum(therm * pctsrf, dim = 2)
612 s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
613 s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
614 s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
615
616 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
617 DO nsrf = 1, nbsrf
618 DO i = 1, klon
619 IF (pctsrf(i, nsrf) < epsfra) then
620 ftsol(i, nsrf) = tsol(i)
621 t2m(i, nsrf) = zt2m(i)
622 q2m(i, nsrf) = zq2m(i)
623 u10m(i, nsrf) = zu10m(i)
624 v10m(i, nsrf) = zv10m(i)
625 ffonte(i, nsrf) = zxffonte(i)
626 fqcalving(i, nsrf) = zxfqcalving(i)
627 pblh(i, nsrf) = s_pblh(i)
628 plcl(i, nsrf) = s_lcl(i)
629 capCL(i, nsrf) = s_capCL(i)
630 oliqCL(i, nsrf) = s_oliqCL(i)
631 cteiCL(i, nsrf) = s_cteiCL(i)
632 pblT(i, nsrf) = s_pblT(i)
633 therm(i, nsrf) = s_therm(i)
634 trmb1(i, nsrf) = s_trmb1(i)
635 trmb2(i, nsrf) = s_trmb2(i)
636 trmb3(i, nsrf) = s_trmb3(i)
637 end IF
638 ENDDO
639 ENDDO
640
641 dlw = - 4. * RSIGMA * tsol**3
642
643 ! Appeler la convection
644
645 if (conv_emanuel) then
646 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
647 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
648 upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
649 snow_con = 0.
650 clwcon0 = qcondc
651 mfu = upwd + dnwd
652
653 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
654 zqsat = zqsat / (1. - retv * zqsat)
655
656 ! Properties of convective clouds
657 clwcon0 = fact_cldcon * clwcon0
658 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
659 rnebcon0)
660
661 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
662 mfd = 0.
663 pen_u = 0.
664 pen_d = 0.
665 pde_d = 0.
666 pde_u = 0.
667 else
668 conv_q = d_q_dyn + d_q_vdf / dtphys
669 conv_t = d_t_dyn + d_t_vdf / dtphys
670 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
671 CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
672 q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
673 d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
674 mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
675 kdtop, pmflxr, pmflxs)
676 WHERE (rain_con < 0.) rain_con = 0.
677 WHERE (snow_con < 0.) snow_con = 0.
678 ibas_con = llm + 1 - kcbot
679 itop_con = llm + 1 - kctop
680 END if
681
682 DO k = 1, llm
683 DO i = 1, klon
684 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
685 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
686 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
687 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
688 ENDDO
689 ENDDO
690
691 IF (.not. conv_emanuel) THEN
692 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
693 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
694 DO k = 1, llm
695 DO i = 1, klon
696 IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
697 q_seri(i, k) = q_seri(i, k) * z_factor(i)
698 ENDIF
699 ENDDO
700 ENDDO
701 ENDIF
702
703 ! Convection s\`eche (thermiques ou ajustement)
704
705 d_t_ajs = 0.
706 d_u_ajs = 0.
707 d_v_ajs = 0.
708 d_q_ajs = 0.
709 fm_therm = 0.
710 entr_therm = 0.
711
712 if (iflag_thermals == 0) then
713 ! Ajustement sec
714 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
715 t_seri = t_seri + d_t_ajs
716 q_seri = q_seri + d_q_ajs
717 else
718 call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
719 q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
720 endif
721
722 ! Caclul des ratqs
723
724 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
725 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
726 if (iflag_cldcon == 1) then
727 do k = 1, llm
728 do i = 1, klon
729 if(ptconv(i, k)) then
730 ratqsc(i, k) = ratqsbas + fact_cldcon &
731 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
732 else
733 ratqsc(i, k) = 0.
734 endif
735 enddo
736 enddo
737 endif
738
739 ! ratqs stables
740 do k = 1, llm
741 do i = 1, klon
742 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
743 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
744 enddo
745 enddo
746
747 ! ratqs final
748 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
749 ! les ratqs sont une conbinaison de ratqss et ratqsc
750 ! ratqs final
751 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
752 ! relaxation des ratqs
753 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
754 ratqs = max(ratqs, ratqsc)
755 else
756 ! on ne prend que le ratqs stable pour fisrtilp
757 ratqs = ratqss
758 endif
759
760 CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
761 d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
762 pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
763 psfl, rhcl)
764
765 WHERE (rain_lsc < 0) rain_lsc = 0.
766 WHERE (snow_lsc < 0) snow_lsc = 0.
767 DO k = 1, llm
768 DO i = 1, klon
769 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
770 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
771 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
772 cldfra(i, k) = rneb(i, k)
773 IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
774 ENDDO
775 ENDDO
776
777 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
778
779 ! 1. NUAGES CONVECTIFS
780
781 IF (iflag_cldcon <= - 1) THEN
782 ! seulement pour Tiedtke
783 snow_tiedtke = 0.
784 if (iflag_cldcon == - 1) then
785 rain_tiedtke = rain_con
786 else
787 rain_tiedtke = 0.
788 do k = 1, llm
789 do i = 1, klon
790 if (d_q_con(i, k) < 0.) then
791 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
792 * zmasse(i, k)
793 endif
794 enddo
795 enddo
796 endif
797
798 ! Nuages diagnostiques pour Tiedtke
799 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
800 itop_con, diafra, dialiq)
801 DO k = 1, llm
802 DO i = 1, klon
803 IF (diafra(i, k) > cldfra(i, k)) THEN
804 cldliq(i, k) = dialiq(i, k)
805 cldfra(i, k) = diafra(i, k)
806 ENDIF
807 ENDDO
808 ENDDO
809 ELSE IF (iflag_cldcon == 3) THEN
810 ! On prend pour les nuages convectifs le maximum du calcul de
811 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
812 ! d'un facteur facttemps.
813 facteur = dtphys * facttemps
814 do k = 1, llm
815 do i = 1, klon
816 rnebcon(i, k) = rnebcon(i, k) * facteur
817 if (rnebcon0(i, k) * clwcon0(i, k) &
818 > rnebcon(i, k) * clwcon(i, k)) then
819 rnebcon(i, k) = rnebcon0(i, k)
820 clwcon(i, k) = clwcon0(i, k)
821 endif
822 enddo
823 enddo
824
825 ! On prend la somme des fractions nuageuses et des contenus en eau
826 cldfra = min(max(cldfra, rnebcon), 1.)
827 cldliq = cldliq + rnebcon * clwcon
828 ENDIF
829
830 ! 2. Nuages stratiformes
831
832 IF (ok_stratus) THEN
833 CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
834 DO k = 1, llm
835 DO i = 1, klon
836 IF (diafra(i, k) > cldfra(i, k)) THEN
837 cldliq(i, k) = dialiq(i, k)
838 cldfra(i, k) = diafra(i, k)
839 ENDIF
840 ENDDO
841 ENDDO
842 ENDIF
843
844 ! Precipitation totale
845 DO i = 1, klon
846 rain_fall(i) = rain_con(i) + rain_lsc(i)
847 snow_fall(i) = snow_con(i) + snow_lsc(i)
848 ENDDO
849
850 ! Humidit\'e relative pour diagnostic :
851 DO k = 1, llm
852 DO i = 1, klon
853 zx_t = t_seri(i, k)
854 zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
855 zx_qs = MIN(0.5, zx_qs)
856 zcor = 1. / (1. - retv * zx_qs)
857 zx_qs = zx_qs * zcor
858 zx_rh(i, k) = q_seri(i, k) / zx_qs
859 zqsat(i, k) = zx_qs
860 ENDDO
861 ENDDO
862
863 ! Param\`etres optiques des nuages et quelques param\`etres pour
864 ! diagnostics :
865 if (ok_newmicro) then
866 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
867 cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
868 else
869 CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
870 cldl, cldm, cldt, cldq)
871 endif
872
873 IF (MOD(itap - 1, radpas) == 0) THEN
874 wo = ozonecm(REAL(julien), paprs)
875 albsol = sum(falbe * pctsrf, dim = 2)
876 CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
877 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
878 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
879 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
880 swup0, swup, ok_ade, topswad, solswad)
881 ENDIF
882
883 ! Ajouter la tendance des rayonnements (tous les pas)
884 DO k = 1, llm
885 DO i = 1, klon
886 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
887 / 86400.
888 ENDDO
889 ENDDO
890
891 ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
892 DO i = 1, klon
893 bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
894 ENDDO
895
896 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
897
898 IF (ok_orodr) THEN
899 ! S\'election des points pour lesquels le sch\'ema est actif :
900 igwd = 0
901 DO i = 1, klon
902 itest(i) = 0
903 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
904 itest(i) = 1
905 igwd = igwd + 1
906 ENDIF
907 ENDDO
908
909 CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
910 zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
911 zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
912
913 ! ajout des tendances
914 DO k = 1, llm
915 DO i = 1, klon
916 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
917 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
918 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
919 ENDDO
920 ENDDO
921 ENDIF
922
923 IF (ok_orolf) THEN
924 ! S\'election des points pour lesquels le sch\'ema est actif :
925 igwd = 0
926 DO i = 1, klon
927 itest(i) = 0
928 IF (zpic(i) - zmea(i) > 100.) THEN
929 itest(i) = 1
930 igwd = igwd + 1
931 ENDIF
932 ENDDO
933
934 CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &
935 itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &
936 d_t_lif, d_u_lif, d_v_lif)
937
938 ! Ajout des tendances :
939 DO k = 1, llm
940 DO i = 1, klon
941 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
942 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
943 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
944 ENDDO
945 ENDDO
946 ENDIF
947
948 ! Stress n\'ecessaires : toute la physique
949
950 DO i = 1, klon
951 zustrph(i) = 0.
952 zvstrph(i) = 0.
953 ENDDO
954 DO k = 1, llm
955 DO i = 1, klon
956 zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
957 * zmasse(i, k)
958 zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
959 * zmasse(i, k)
960 ENDDO
961 ENDDO
962
963 CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
964 zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
965
966 ! Calcul des tendances traceurs
967 call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
968 mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
969 pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
970 zmasse, ncid_startphy)
971
972 ! Calculer le transport de l'eau et de l'energie (diagnostique)
973 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
974
975 ! diag. bilKP
976
977 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
978 ve_lay, vq_lay, ue_lay, uq_lay)
979
980 ! Accumuler les variables a stocker dans les fichiers histoire:
981
982 ! conversion Ec en énergie thermique
983 DO k = 1, llm
984 DO i = 1, klon
985 d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
986 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
987 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
988 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
989 END DO
990 END DO
991
992 ! SORTIES
993
994 ! prw = eau precipitable
995 DO i = 1, klon
996 prw(i) = 0.
997 DO k = 1, llm
998 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
999 ENDDO
1000 ENDDO
1001
1002 ! Convertir les incrementations en tendances
1003
1004 DO k = 1, llm
1005 DO i = 1, klon
1006 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
1007 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
1008 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
1009 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
1010 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
1011 ENDDO
1012 ENDDO
1013
1014 DO iq = 3, nqmx
1015 DO k = 1, llm
1016 DO i = 1, klon
1017 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
1018 ENDDO
1019 ENDDO
1020 ENDDO
1021
1022 ! Sauvegarder les valeurs de t et q a la fin de la physique:
1023 DO k = 1, llm
1024 DO i = 1, klon
1025 t_ancien(i, k) = t_seri(i, k)
1026 q_ancien(i, k) = q_seri(i, k)
1027 ENDDO
1028 ENDDO
1029
1030 CALL histwrite_phy("phis", pphis)
1031 CALL histwrite_phy("aire", airephy)
1032 CALL histwrite_phy("psol", paprs(:, 1))
1033 CALL histwrite_phy("precip", rain_fall + snow_fall)
1034 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1035 CALL histwrite_phy("pluc", rain_con + snow_con)
1036 CALL histwrite_phy("tsol", tsol)
1037 CALL histwrite_phy("t2m", zt2m)
1038 CALL histwrite_phy("q2m", zq2m)
1039 CALL histwrite_phy("u10m", zu10m)
1040 CALL histwrite_phy("v10m", zv10m)
1041 CALL histwrite_phy("snow", snow_fall)
1042 CALL histwrite_phy("cdrm", cdragm)
1043 CALL histwrite_phy("cdrh", cdragh)
1044 CALL histwrite_phy("topl", toplw)
1045 CALL histwrite_phy("evap", evap)
1046 CALL histwrite_phy("sols", solsw)
1047 CALL histwrite_phy("soll", sollw)
1048 CALL histwrite_phy("solldown", sollwdown)
1049 CALL histwrite_phy("bils", bils)
1050 CALL histwrite_phy("sens", - sens)
1051 CALL histwrite_phy("fder", fder)
1052 CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1053 CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1054 CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1055 CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1056
1057 DO nsrf = 1, nbsrf
1058 CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1059 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1060 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1061 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1062 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1063 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1064 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1065 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1066 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1067 END DO
1068
1069 CALL histwrite_phy("albs", albsol)
1070 CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1071 CALL histwrite_phy("rugs", zxrugs)
1072 CALL histwrite_phy("s_pblh", s_pblh)
1073 CALL histwrite_phy("s_pblt", s_pblt)
1074 CALL histwrite_phy("s_lcl", s_lcl)
1075 CALL histwrite_phy("s_capCL", s_capCL)
1076 CALL histwrite_phy("s_oliqCL", s_oliqCL)
1077 CALL histwrite_phy("s_cteiCL", s_cteiCL)
1078 CALL histwrite_phy("s_therm", s_therm)
1079 CALL histwrite_phy("s_trmb1", s_trmb1)
1080 CALL histwrite_phy("s_trmb2", s_trmb2)
1081 CALL histwrite_phy("s_trmb3", s_trmb3)
1082
1083 if (conv_emanuel) then
1084 CALL histwrite_phy("ptop", ema_pct)
1085 CALL histwrite_phy("dnwd0", - mp)
1086 end if
1087
1088 CALL histwrite_phy("temp", t_seri)
1089 CALL histwrite_phy("vitu", u_seri)
1090 CALL histwrite_phy("vitv", v_seri)
1091 CALL histwrite_phy("geop", zphi)
1092 CALL histwrite_phy("pres", play)
1093 CALL histwrite_phy("dtvdf", d_t_vdf)
1094 CALL histwrite_phy("dqvdf", d_q_vdf)
1095 CALL histwrite_phy("rhum", zx_rh)
1096 CALL histwrite_phy("d_t_ec", d_t_ec)
1097 CALL histwrite_phy("dtsw0", heat0 / 86400.)
1098 CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1099 CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1100 call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1101
1102 if (ok_instan) call histsync(nid_ins)
1103
1104 IF (lafin) then
1105 call NF95_CLOSE(ncid_startphy)
1106 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1107 fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1108 radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1109 t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1110 w01)
1111 end IF
1112
1113 firstcal = .FALSE.
1114
1115 END SUBROUTINE physiq
1116
1117 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21