--- trunk/Sources/phylmd/physiq.f 2016/06/21 15:16:03 205 +++ trunk/Sources/phylmd/physiq.f 2016/09/01 10:30:53 207 @@ -27,7 +27,7 @@ use comconst, only: dtphys USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, day_step, iphysiq, lmt_pas + USE conf_gcm_m, ONLY: offline, lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals @@ -37,7 +37,7 @@ USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro use dynetat0_m, only: day_ref, annee_ref - USE fcttre, ONLY: foeew, qsatl, qsats, thermcep + USE fcttre, ONLY: foeew, qsatl, qsats use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou USE histsync_m, ONLY: histsync @@ -219,8 +219,10 @@ REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL evap(klon), devap(klon) ! evaporation and its derivative - REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee + REAL evap(klon) ! flux d'\'evaporation au sol + real devap(klon) ! derivative of the evaporation flux at the surface + REAL sens(klon) ! flux de chaleur sensible au sol + real dsens(klon) ! derivee du flux de chaleur sensible au sol REAL, save:: dlw(klon) ! derivee infra rouge REAL bils(klon) ! bilan de chaleur au sol REAL, save:: fder(klon) ! Derive de flux (sensible et latente) @@ -250,15 +252,10 @@ REAL cldtau(klon, llm) ! epaisseur optique REAL cldemi(klon, llm) ! emissivite infrarouge - REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite - REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur - REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u - REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v - - REAL zxfluxt(klon, llm) - REAL zxfluxq(klon, llm) - REAL zxfluxu(klon, llm) - REAL zxfluxv(klon, llm) + REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface + REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface + REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface + REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que ! les variables soient r\'emanentes. @@ -289,7 +286,6 @@ REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf - REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm) @@ -299,7 +295,7 @@ REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite - REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite + REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite REAL, SAVE:: therm(klon, nbsrf) REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition @@ -314,7 +310,6 @@ REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux - REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux REAL, save:: cape(klon) INTEGER iflagctrl(klon) ! flag fonctionnement de convect @@ -401,8 +396,8 @@ ! temperature and humidity at 2 m REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m - REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille - REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille + REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille + REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille ! Aerosol effects: @@ -476,7 +471,7 @@ capCL =0. ! CAPE de couche limite oliqCL =0. ! eau_liqu integree de couche limite cteiCL =0. ! cloud top instab. crit. couche limite - pblt =0. ! T a la Hauteur de couche limite + pblt =0. therm =0. trmb1 =0. ! deep_cape trmb2 =0. ! inhibition @@ -615,38 +610,20 @@ fder = dlw - ! Couche limite: - CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, & - d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & - fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & + d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, & + flux_v, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! Incr\'ementation des flux - zxfluxt = 0. - zxfluxq = 0. - zxfluxu = 0. - zxfluxv = 0. - DO nsrf = 1, nbsrf - DO k = 1, llm - DO i = 1, klon - zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf) - END DO - END DO - END DO - DO i = 1, klon - sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol - evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol - fder(i) = dlw(i) + dsens(i) + devap(i) - ENDDO + sens = - sum(flux_t * pctsrf, dim = 2) + evap = - sum(flux_q * pctsrf, dim = 2) + fder = dlw + dsens + devap DO k = 1, llm DO i = 1, klon @@ -745,17 +722,13 @@ if (conv_emanuel) then CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & - upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) + upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) snow_con = 0. clwcon0 = qcondc mfu = upwd + dnwd - IF (thermcep) THEN - zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) - zqsat = zqsat / (1. - retv * zqsat) - ELSE - zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play - ENDIF + zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) + zqsat = zqsat / (1. - retv * zqsat) ! Properties of convective clouds clwcon0 = fact_cldcon * clwcon0 @@ -773,7 +746,7 @@ conv_t = d_t_dyn + d_t_vdf / dtphys z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & - q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, & + q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, & d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & kdtop, pmflxr, pmflxs) @@ -955,18 +928,10 @@ DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) - IF (thermcep) THEN - zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1. / (1. - retv * zx_qs) - zx_qs = zx_qs * zcor - ELSE - IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t) / play(i, k) - ELSE - zx_qs = qsatl(zx_t) / play(i, k) - ENDIF - ENDIF + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) + zx_qs = MIN(0.5, zx_qs) + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor zx_rh(i, k) = q_seri(i, k) / zx_qs zqsat(i, k) = zx_qs ENDDO @@ -1199,11 +1164,11 @@ DO nsrf = 1, nbsrf CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) - CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf)) + CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf)) CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf)) CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf)) - CALL histwrite_phy("taux_"//clnsurf(nsrf), fluxu(:, 1, nsrf)) - CALL histwrite_phy("tauy_"//clnsurf(nsrf), fluxv(:, 1, nsrf)) + CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf)) + CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf)) CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) END DO @@ -1220,7 +1185,12 @@ CALL histwrite_phy("s_trmb1", s_trmb1) CALL histwrite_phy("s_trmb2", s_trmb2) CALL histwrite_phy("s_trmb3", s_trmb3) - if (conv_emanuel) CALL histwrite_phy("ptop", ema_pct) + + if (conv_emanuel) then + CALL histwrite_phy("ptop", ema_pct) + CALL histwrite_phy("dnwd0", - mp) + end if + CALL histwrite_phy("temp", t_seri) CALL histwrite_phy("vitu", u_seri) CALL histwrite_phy("vitv", v_seri)