/[lmdze]/trunk/Sources/phylmd/physiq.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 207 - (show annotations)
Thu Sep 1 10:30:53 2016 UTC (7 years, 8 months ago) by guez
File size: 41535 byte(s)
New philosophy on compiler options.

Removed source code for thermcep = f. (Not used in LMDZ either.)

1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 use aaam_bud_m, only: aaam_bud
18 USE abort_gcm_m, ONLY: abort_gcm
19 use ajsec_m, only: ajsec
20 use calltherm_m, only: calltherm
21 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22 ok_instan
23 USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, &
24 ok_orodr, ok_orolf
25 USE clmain_m, ONLY: clmain
26 use clouds_gno_m, only: clouds_gno
27 use comconst, only: dtphys
28 USE comgeomphy, ONLY: airephy
29 USE concvl_m, ONLY: concvl
30 USE conf_gcm_m, ONLY: offline, lmt_pas
31 USE conf_phys_m, ONLY: conf_phys
32 use conflx_m, only: conflx
33 USE ctherm, ONLY: iflag_thermals, nsplit_thermals
34 use diagcld2_m, only: diagcld2
35 USE dimens_m, ONLY: llm, nqmx
36 USE dimphy, ONLY: klon
37 USE dimsoil, ONLY: nsoilmx
38 use drag_noro_m, only: drag_noro
39 use dynetat0_m, only: day_ref, annee_ref
40 USE fcttre, ONLY: foeew, qsatl, qsats
41 use fisrtilp_m, only: fisrtilp
42 USE hgardfou_m, ONLY: hgardfou
43 USE histsync_m, ONLY: histsync
44 USE histwrite_phy_m, ONLY: histwrite_phy
45 USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
46 nbsrf
47 USE ini_histins_m, ONLY: ini_histins, nid_ins
48 use netcdf95, only: NF95_CLOSE
49 use newmicro_m, only: newmicro
50 use nr_util, only: assert
51 use nuage_m, only: nuage
52 USE orbite_m, ONLY: orbite
53 USE ozonecm_m, ONLY: ozonecm
54 USE phyetat0_m, ONLY: phyetat0, rlat, rlon
55 USE phyredem_m, ONLY: phyredem
56 USE phyredem0_m, ONLY: phyredem0
57 USE phystokenc_m, ONLY: phystokenc
58 USE phytrac_m, ONLY: phytrac
59 use radlwsw_m, only: radlwsw
60 use yoegwd, only: sugwd
61 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt
62 use time_phylmdz, only: itap, increment_itap
63 use transp_m, only: transp
64 use transp_lay_m, only: transp_lay
65 use unit_nml_m, only: unit_nml
66 USE ymds2ju_m, ONLY: ymds2ju
67 USE yoethf_m, ONLY: r2es, rvtmp2
68 use zenang_m, only: zenang
69
70 logical, intent(in):: lafin ! dernier passage
71
72 integer, intent(in):: dayvrai
73 ! current day number, based at value 1 on January 1st of annee_ref
74
75 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
76
77 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
78 ! pression pour chaque inter-couche, en Pa
79
80 REAL, intent(in):: play(:, :) ! (klon, llm)
81 ! pression pour le mileu de chaque couche (en Pa)
82
83 REAL, intent(in):: pphi(:, :) ! (klon, llm)
84 ! géopotentiel de chaque couche (référence sol)
85
86 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
87
88 REAL, intent(in):: u(:, :) ! (klon, llm)
89 ! vitesse dans la direction X (de O a E) en m / s
90
91 REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
92 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
93
94 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
95 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
96
97 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
98 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
99 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
100 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
101
102 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
103 ! tendance physique de "qx" (s-1)
104
105 ! Local:
106
107 LOGICAL:: firstcal = .true.
108
109 LOGICAL, PARAMETER:: ok_stratus = .FALSE.
110 ! Ajouter artificiellement les stratus
111
112 ! pour phystoke avec thermiques
113 REAL fm_therm(klon, llm + 1)
114 REAL entr_therm(klon, llm)
115 real, save:: q2(klon, llm + 1, nbsrf)
116
117 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
118 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
119
120 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
121 LOGICAL, save:: ancien_ok
122
123 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
124 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
125
126 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
127
128 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
129 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
130
131 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
132 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
133
134 ! prw: precipitable water
135 real prw(klon)
136
137 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
138 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
139 REAL flwp(klon), fiwp(klon)
140 REAL flwc(klon, llm), fiwc(klon, llm)
141
142 ! Variables propres a la physique
143
144 INTEGER, save:: radpas
145 ! Radiative transfer computations are made every "radpas" call to
146 ! "physiq".
147
148 REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
149
150 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
151
152 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
153 ! soil temperature of surface fraction
154
155 REAL, save:: fevap(klon, nbsrf) ! evaporation
156 REAL, save:: fluxlat(klon, nbsrf)
157
158 REAL, save:: fqsurf(klon, nbsrf)
159 ! humidite de l'air au contact de la surface
160
161 REAL, save:: qsol(klon)
162 ! column-density of water in soil, in kg m-2
163
164 REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
165 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
166
167 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
168 REAL, save:: zmea(klon) ! orographie moyenne
169 REAL, save:: zstd(klon) ! deviation standard de l'OESM
170 REAL, save:: zsig(klon) ! pente de l'OESM
171 REAL, save:: zgam(klon) ! anisotropie de l'OESM
172 REAL, save:: zthe(klon) ! orientation de l'OESM
173 REAL, save:: zpic(klon) ! Maximum de l'OESM
174 REAL, save:: zval(klon) ! Minimum de l'OESM
175 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
176 REAL zulow(klon), zvlow(klon)
177 INTEGER igwd, itest(klon)
178
179 REAL, save:: agesno(klon, nbsrf) ! age de la neige
180 REAL, save:: run_off_lic_0(klon)
181
182 ! Variables li\'ees \`a la convection d'Emanuel :
183 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
184 REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
185 REAL, save:: sig1(klon, llm), w01(klon, llm)
186
187 ! Variables pour la couche limite (Alain Lahellec) :
188 REAL cdragh(klon) ! drag coefficient pour T and Q
189 REAL cdragm(klon) ! drag coefficient pour vent
190
191 ! Pour phytrac :
192 REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
193 REAL yu1(klon) ! vents dans la premiere couche U
194 REAL yv1(klon) ! vents dans la premiere couche V
195
196 REAL, save:: ffonte(klon, nbsrf)
197 ! flux thermique utilise pour fondre la neige
198
199 REAL, save:: fqcalving(klon, nbsrf)
200 ! flux d'eau "perdue" par la surface et necessaire pour limiter la
201 ! hauteur de neige, en kg / m2 / s
202
203 REAL zxffonte(klon), zxfqcalving(klon)
204
205 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
206 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
207
208 REAL, save:: pfrac_1nucl(klon, llm)
209 ! Produits des coefs lessi nucl (alpha = 1)
210
211 REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
212 REAL frac_nucl(klon, llm) ! idem (nucleation)
213
214 REAL, save:: rain_fall(klon)
215 ! liquid water mass flux (kg / m2 / s), positive down
216
217 REAL, save:: snow_fall(klon)
218 ! solid water mass flux (kg / m2 / s), positive down
219
220 REAL rain_tiedtke(klon), snow_tiedtke(klon)
221
222 REAL evap(klon) ! flux d'\'evaporation au sol
223 real devap(klon) ! derivative of the evaporation flux at the surface
224 REAL sens(klon) ! flux de chaleur sensible au sol
225 real dsens(klon) ! derivee du flux de chaleur sensible au sol
226 REAL, save:: dlw(klon) ! derivee infra rouge
227 REAL bils(klon) ! bilan de chaleur au sol
228 REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
229 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
230 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
231 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
232 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
233
234 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
235 REAL zxrugs(klon) ! longueur de rugosite
236
237 ! Conditions aux limites
238
239 INTEGER julien
240 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
241 REAL, save:: albsol(klon) ! albedo du sol total visible
242 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
243
244 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
245 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
246
247 REAL rhcl(klon, llm) ! humiditi relative ciel clair
248 REAL dialiq(klon, llm) ! eau liquide nuageuse
249 REAL diafra(klon, llm) ! fraction nuageuse
250 REAL cldliq(klon, llm) ! eau liquide nuageuse
251 REAL cldfra(klon, llm) ! fraction nuageuse
252 REAL cldtau(klon, llm) ! epaisseur optique
253 REAL cldemi(klon, llm) ! emissivite infrarouge
254
255 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
256 REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
257 REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
258 REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
259
260 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
261 ! les variables soient r\'emanentes.
262 REAL, save:: heat(klon, llm) ! chauffage solaire
263 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
264 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
265 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
266 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
267 REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
268 real, save:: sollwdown(klon) ! downward LW flux at surface
269 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
270 REAL, save:: albpla(klon)
271 REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
272 REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
273
274 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
275 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
276
277 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
278 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
279
280 REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
281
282 REAL dist, mu0(klon), fract(klon)
283 real longi
284 REAL z_avant(klon), z_apres(klon), z_factor(klon)
285 REAL zb
286 REAL zx_t, zx_qs, zcor
287 real zqsat(klon, llm)
288 INTEGER i, k, iq, nsrf
289 REAL zphi(klon, llm)
290
291 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
292
293 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
294 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
295 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
296 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
297 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
298 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
299 REAL, SAVE:: therm(klon, nbsrf)
300 REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
301 REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
302 REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
303 ! Grandeurs de sorties
304 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
305 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
306 REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
307 REAL s_trmb3(klon)
308
309 ! Variables pour la convection de K. Emanuel :
310
311 REAL upwd(klon, llm) ! saturated updraft mass flux
312 REAL dnwd(klon, llm) ! saturated downdraft mass flux
313 REAL, save:: cape(klon)
314
315 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
316
317 ! Variables du changement
318
319 ! con: convection
320 ! lsc: large scale condensation
321 ! ajs: ajustement sec
322 ! eva: \'evaporation de l'eau liquide nuageuse
323 ! vdf: vertical diffusion in boundary layer
324 REAL d_t_con(klon, llm), d_q_con(klon, llm)
325 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
326 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
327 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
328 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
329 REAL rneb(klon, llm)
330
331 REAL mfu(klon, llm), mfd(klon, llm)
332 REAL pen_u(klon, llm), pen_d(klon, llm)
333 REAL pde_u(klon, llm), pde_d(klon, llm)
334 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
335 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
336 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
337
338 INTEGER, save:: ibas_con(klon), itop_con(klon)
339 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
340
341 REAL, save:: rain_con(klon)
342 real rain_lsc(klon)
343 REAL, save:: snow_con(klon) ! neige (mm / s)
344 real snow_lsc(klon)
345 REAL d_ts(klon, nbsrf)
346
347 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
348 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
349
350 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
351 REAL d_t_oro(klon, llm)
352 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
353 REAL d_t_lif(klon, llm)
354
355 REAL, save:: ratqs(klon, llm)
356 real ratqss(klon, llm), ratqsc(klon, llm)
357 real:: ratqsbas = 0.01, ratqshaut = 0.3
358
359 ! Parametres lies au nouveau schema de nuages (SB, PDF)
360 real:: fact_cldcon = 0.375
361 real:: facttemps = 1.e-4
362 logical:: ok_newmicro = .true.
363 real facteur
364
365 integer:: iflag_cldcon = 1
366 logical ptconv(klon, llm)
367
368 ! Variables pour effectuer les appels en s\'erie :
369
370 REAL t_seri(klon, llm), q_seri(klon, llm)
371 REAL ql_seri(klon, llm)
372 REAL u_seri(klon, llm), v_seri(klon, llm)
373 REAL tr_seri(klon, llm, nqmx - 2)
374
375 REAL zx_rh(klon, llm)
376
377 REAL zustrdr(klon), zvstrdr(klon)
378 REAL zustrli(klon), zvstrli(klon)
379 REAL zustrph(klon), zvstrph(klon)
380 REAL aam, torsfc
381
382 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
383 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
384 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
385 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
386
387 real date0
388 REAL ztsol(klon)
389
390 REAL d_t_ec(klon, llm)
391 ! tendance due \`a la conversion Ec en énergie thermique
392
393 REAL ZRCPD
394
395 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
396 ! temperature and humidity at 2 m
397
398 REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
399 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
400 REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
401
402 ! Aerosol effects:
403
404 REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3)
405
406 REAL, save:: sulfate_pi(klon, llm)
407 ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value
408
409 REAL cldtaupi(klon, llm)
410 ! cloud optical thickness for pre-industrial aerosols
411
412 REAL re(klon, llm) ! Cloud droplet effective radius
413 REAL fl(klon, llm) ! denominator of re
414
415 ! Aerosol optical properties
416 REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
417 REAL, save:: cg_ae(klon, llm, 2)
418
419 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
420 REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect
421
422 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
423 LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
424
425 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
426 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
427 ! B). They link cloud droplet number concentration to aerosol mass
428 ! concentration.
429
430 real zmasse(klon, llm)
431 ! (column-density of mass of air in a cell, in kg m-2)
432
433 integer, save:: ncid_startphy
434
435 namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
436 ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, &
437 iflag_thermals, nsplit_thermals
438
439 !----------------------------------------------------------------
440
441 IF (nqmx < 2) CALL abort_gcm('physiq', &
442 'eaux vapeur et liquide sont indispensables')
443
444 test_firstcal: IF (firstcal) THEN
445 ! initialiser
446 u10m = 0.
447 v10m = 0.
448 t2m = 0.
449 q2m = 0.
450 ffonte = 0.
451 fqcalving = 0.
452 piz_ae = 0.
453 tau_ae = 0.
454 cg_ae = 0.
455 rain_con = 0.
456 snow_con = 0.
457 topswai = 0.
458 topswad = 0.
459 solswai = 0.
460 solswad = 0.
461
462 d_u_con = 0.
463 d_v_con = 0.
464 rnebcon0 = 0.
465 clwcon0 = 0.
466 rnebcon = 0.
467 clwcon = 0.
468
469 pblh =0. ! Hauteur de couche limite
470 plcl =0. ! Niveau de condensation de la CLA
471 capCL =0. ! CAPE de couche limite
472 oliqCL =0. ! eau_liqu integree de couche limite
473 cteiCL =0. ! cloud top instab. crit. couche limite
474 pblt =0.
475 therm =0.
476 trmb1 =0. ! deep_cape
477 trmb2 =0. ! inhibition
478 trmb3 =0. ! Point Omega
479
480 iflag_thermals = 0
481 nsplit_thermals = 1
482 print *, "Enter namelist 'physiq_nml'."
483 read(unit=*, nml=physiq_nml)
484 write(unit_nml, nml=physiq_nml)
485
486 call conf_phys
487
488 ! Initialiser les compteurs:
489
490 frugs = 0.
491 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
492 fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
493 agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
494 q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
495 w01, ncid_startphy)
496
497 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
498 q2 = 1e-8
499
500 radpas = lmt_pas / nbapp_rad
501 print *, "radpas = ", radpas
502
503 ! Initialisation pour le sch\'ema de convection d'Emanuel :
504 IF (conv_emanuel) THEN
505 ibas_con = 1
506 itop_con = 1
507 ENDIF
508
509 IF (ok_orodr) THEN
510 rugoro = MAX(1e-5, zstd * zsig / 2)
511 CALL SUGWD(paprs, play)
512 else
513 rugoro = 0.
514 ENDIF
515
516 ecrit_ins = NINT(ecrit_ins / dtphys)
517
518 ! Initialisation des sorties
519
520 call ini_histins(dtphys)
521 CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
522 ! Positionner date0 pour initialisation de ORCHIDEE
523 print *, 'physiq date0: ', date0
524 CALL phyredem0
525 ENDIF test_firstcal
526
527 ! We will modify variables *_seri and we will not touch variables
528 ! u, v, t, qx:
529 t_seri = t
530 u_seri = u
531 v_seri = v
532 q_seri = qx(:, :, ivap)
533 ql_seri = qx(:, :, iliq)
534 tr_seri = qx(:, :, 3:nqmx)
535
536 ztsol = sum(ftsol * pctsrf, dim = 2)
537
538 ! Diagnostic de la tendance dynamique :
539 IF (ancien_ok) THEN
540 DO k = 1, llm
541 DO i = 1, klon
542 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
543 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
544 ENDDO
545 ENDDO
546 ELSE
547 DO k = 1, llm
548 DO i = 1, klon
549 d_t_dyn(i, k) = 0.
550 d_q_dyn(i, k) = 0.
551 ENDDO
552 ENDDO
553 ancien_ok = .TRUE.
554 ENDIF
555
556 ! Ajouter le geopotentiel du sol:
557 DO k = 1, llm
558 DO i = 1, klon
559 zphi(i, k) = pphi(i, k) + pphis(i)
560 ENDDO
561 ENDDO
562
563 ! Check temperatures:
564 CALL hgardfou(t_seri, ftsol)
565
566 call increment_itap
567 julien = MOD(dayvrai, 360)
568 if (julien == 0) julien = 360
569
570 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
571
572 ! Prescrire l'ozone :
573 wo = ozonecm(REAL(julien), paprs)
574
575 ! \'Evaporation de l'eau liquide nuageuse :
576 DO k = 1, llm
577 DO i = 1, klon
578 zb = MAX(0., ql_seri(i, k))
579 t_seri(i, k) = t_seri(i, k) &
580 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
581 q_seri(i, k) = q_seri(i, k) + zb
582 ENDDO
583 ENDDO
584 ql_seri = 0.
585
586 frugs = MAX(frugs, 0.000015)
587 zxrugs = sum(frugs * pctsrf, dim = 2)
588
589 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
590 ! la surface.
591
592 CALL orbite(REAL(julien), longi, dist)
593 IF (cycle_diurne) THEN
594 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
595 ELSE
596 mu0 = - 999.999
597 ENDIF
598
599 ! Calcul de l'abedo moyen par maille
600 albsol = sum(falbe * pctsrf, dim = 2)
601
602 ! R\'epartition sous maille des flux longwave et shortwave
603 ! R\'epartition du longwave par sous-surface lin\'earis\'ee
604
605 forall (nsrf = 1: nbsrf)
606 fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
607 * (ztsol - ftsol(:, nsrf))
608 fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
609 END forall
610
611 fder = dlw
612
613 CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
614 ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
615 paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
616 snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, &
617 d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, &
618 flux_v, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, &
619 u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, &
620 trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
621
622 ! Incr\'ementation des flux
623
624 sens = - sum(flux_t * pctsrf, dim = 2)
625 evap = - sum(flux_q * pctsrf, dim = 2)
626 fder = dlw + dsens + devap
627
628 DO k = 1, llm
629 DO i = 1, klon
630 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
631 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
632 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
633 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
634 ENDDO
635 ENDDO
636
637 ! Update surface temperature:
638
639 DO i = 1, klon
640 zxfluxlat(i) = 0.
641
642 zt2m(i) = 0.
643 zq2m(i) = 0.
644 zu10m(i) = 0.
645 zv10m(i) = 0.
646 zxffonte(i) = 0.
647 zxfqcalving(i) = 0.
648
649 s_pblh(i) = 0.
650 s_lcl(i) = 0.
651 s_capCL(i) = 0.
652 s_oliqCL(i) = 0.
653 s_cteiCL(i) = 0.
654 s_pblT(i) = 0.
655 s_therm(i) = 0.
656 s_trmb1(i) = 0.
657 s_trmb2(i) = 0.
658 s_trmb3(i) = 0.
659 ENDDO
660
661 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
662
663 ftsol = ftsol + d_ts
664 ztsol = sum(ftsol * pctsrf, dim = 2)
665 DO nsrf = 1, nbsrf
666 DO i = 1, klon
667 zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf)
668
669 zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf)
670 zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf)
671 zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf)
672 zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf)
673 zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf)
674 zxfqcalving(i) = zxfqcalving(i) + &
675 fqcalving(i, nsrf) * pctsrf(i, nsrf)
676 s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf)
677 s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf)
678 s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf)
679 s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf)
680 s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf)
681 s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf)
682 s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf)
683 s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf)
684 s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf)
685 s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf)
686 ENDDO
687 ENDDO
688
689 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
690 DO nsrf = 1, nbsrf
691 DO i = 1, klon
692 IF (pctsrf(i, nsrf) < epsfra) then
693 ftsol(i, nsrf) = ztsol(i)
694 t2m(i, nsrf) = zt2m(i)
695 q2m(i, nsrf) = zq2m(i)
696 u10m(i, nsrf) = zu10m(i)
697 v10m(i, nsrf) = zv10m(i)
698 ffonte(i, nsrf) = zxffonte(i)
699 fqcalving(i, nsrf) = zxfqcalving(i)
700 pblh(i, nsrf) = s_pblh(i)
701 plcl(i, nsrf) = s_lcl(i)
702 capCL(i, nsrf) = s_capCL(i)
703 oliqCL(i, nsrf) = s_oliqCL(i)
704 cteiCL(i, nsrf) = s_cteiCL(i)
705 pblT(i, nsrf) = s_pblT(i)
706 therm(i, nsrf) = s_therm(i)
707 trmb1(i, nsrf) = s_trmb1(i)
708 trmb2(i, nsrf) = s_trmb2(i)
709 trmb3(i, nsrf) = s_trmb3(i)
710 end IF
711 ENDDO
712 ENDDO
713
714 ! Calculer la dérive du flux infrarouge
715
716 DO i = 1, klon
717 dlw(i) = - 4. * RSIGMA * ztsol(i)**3
718 ENDDO
719
720 ! Appeler la convection
721
722 if (conv_emanuel) then
723 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
724 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
725 upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
726 snow_con = 0.
727 clwcon0 = qcondc
728 mfu = upwd + dnwd
729
730 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
731 zqsat = zqsat / (1. - retv * zqsat)
732
733 ! Properties of convective clouds
734 clwcon0 = fact_cldcon * clwcon0
735 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
736 rnebcon0)
737
738 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
739 mfd = 0.
740 pen_u = 0.
741 pen_d = 0.
742 pde_d = 0.
743 pde_u = 0.
744 else
745 conv_q = d_q_dyn + d_q_vdf / dtphys
746 conv_t = d_t_dyn + d_t_vdf / dtphys
747 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
748 CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
749 q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
750 d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
751 mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
752 kdtop, pmflxr, pmflxs)
753 WHERE (rain_con < 0.) rain_con = 0.
754 WHERE (snow_con < 0.) snow_con = 0.
755 ibas_con = llm + 1 - kcbot
756 itop_con = llm + 1 - kctop
757 END if
758
759 DO k = 1, llm
760 DO i = 1, klon
761 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
762 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
763 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
764 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
765 ENDDO
766 ENDDO
767
768 IF (.not. conv_emanuel) THEN
769 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
770 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
771 DO k = 1, llm
772 DO i = 1, klon
773 IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
774 q_seri(i, k) = q_seri(i, k) * z_factor(i)
775 ENDIF
776 ENDDO
777 ENDDO
778 ENDIF
779
780 ! Convection s\`eche (thermiques ou ajustement)
781
782 d_t_ajs = 0.
783 d_u_ajs = 0.
784 d_v_ajs = 0.
785 d_q_ajs = 0.
786 fm_therm = 0.
787 entr_therm = 0.
788
789 if (iflag_thermals == 0) then
790 ! Ajustement sec
791 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
792 t_seri = t_seri + d_t_ajs
793 q_seri = q_seri + d_q_ajs
794 else
795 call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
796 q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
797 endif
798
799 ! Caclul des ratqs
800
801 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
802 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
803 if (iflag_cldcon == 1) then
804 do k = 1, llm
805 do i = 1, klon
806 if(ptconv(i, k)) then
807 ratqsc(i, k) = ratqsbas + fact_cldcon &
808 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
809 else
810 ratqsc(i, k) = 0.
811 endif
812 enddo
813 enddo
814 endif
815
816 ! ratqs stables
817 do k = 1, llm
818 do i = 1, klon
819 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
820 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
821 enddo
822 enddo
823
824 ! ratqs final
825 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
826 ! les ratqs sont une conbinaison de ratqss et ratqsc
827 ! ratqs final
828 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
829 ! relaxation des ratqs
830 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
831 ratqs = max(ratqs, ratqsc)
832 else
833 ! on ne prend que le ratqs stable pour fisrtilp
834 ratqs = ratqss
835 endif
836
837 CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
838 d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
839 pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
840 psfl, rhcl)
841
842 WHERE (rain_lsc < 0) rain_lsc = 0.
843 WHERE (snow_lsc < 0) snow_lsc = 0.
844 DO k = 1, llm
845 DO i = 1, klon
846 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
847 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
848 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
849 cldfra(i, k) = rneb(i, k)
850 IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
851 ENDDO
852 ENDDO
853
854 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
855
856 ! 1. NUAGES CONVECTIFS
857
858 IF (iflag_cldcon <= - 1) THEN
859 ! seulement pour Tiedtke
860 snow_tiedtke = 0.
861 if (iflag_cldcon == - 1) then
862 rain_tiedtke = rain_con
863 else
864 rain_tiedtke = 0.
865 do k = 1, llm
866 do i = 1, klon
867 if (d_q_con(i, k) < 0.) then
868 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
869 * zmasse(i, k)
870 endif
871 enddo
872 enddo
873 endif
874
875 ! Nuages diagnostiques pour Tiedtke
876 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
877 itop_con, diafra, dialiq)
878 DO k = 1, llm
879 DO i = 1, klon
880 IF (diafra(i, k) > cldfra(i, k)) THEN
881 cldliq(i, k) = dialiq(i, k)
882 cldfra(i, k) = diafra(i, k)
883 ENDIF
884 ENDDO
885 ENDDO
886 ELSE IF (iflag_cldcon == 3) THEN
887 ! On prend pour les nuages convectifs le maximum du calcul de
888 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
889 ! d'un facteur facttemps.
890 facteur = dtphys * facttemps
891 do k = 1, llm
892 do i = 1, klon
893 rnebcon(i, k) = rnebcon(i, k) * facteur
894 if (rnebcon0(i, k) * clwcon0(i, k) &
895 > rnebcon(i, k) * clwcon(i, k)) then
896 rnebcon(i, k) = rnebcon0(i, k)
897 clwcon(i, k) = clwcon0(i, k)
898 endif
899 enddo
900 enddo
901
902 ! On prend la somme des fractions nuageuses et des contenus en eau
903 cldfra = min(max(cldfra, rnebcon), 1.)
904 cldliq = cldliq + rnebcon * clwcon
905 ENDIF
906
907 ! 2. Nuages stratiformes
908
909 IF (ok_stratus) THEN
910 CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
911 DO k = 1, llm
912 DO i = 1, klon
913 IF (diafra(i, k) > cldfra(i, k)) THEN
914 cldliq(i, k) = dialiq(i, k)
915 cldfra(i, k) = diafra(i, k)
916 ENDIF
917 ENDDO
918 ENDDO
919 ENDIF
920
921 ! Precipitation totale
922 DO i = 1, klon
923 rain_fall(i) = rain_con(i) + rain_lsc(i)
924 snow_fall(i) = snow_con(i) + snow_lsc(i)
925 ENDDO
926
927 ! Humidit\'e relative pour diagnostic :
928 DO k = 1, llm
929 DO i = 1, klon
930 zx_t = t_seri(i, k)
931 zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
932 zx_qs = MIN(0.5, zx_qs)
933 zcor = 1. / (1. - retv * zx_qs)
934 zx_qs = zx_qs * zcor
935 zx_rh(i, k) = q_seri(i, k) / zx_qs
936 zqsat(i, k) = zx_qs
937 ENDDO
938 ENDDO
939
940 ! Introduce the aerosol direct and first indirect radiative forcings:
941 tau_ae = 0.
942 piz_ae = 0.
943 cg_ae = 0.
944
945 ! Param\`etres optiques des nuages et quelques param\`etres pour
946 ! diagnostics :
947 if (ok_newmicro) then
948 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
949 cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
950 sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)
951 else
952 CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
953 cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &
954 bl95_b1, cldtaupi, re, fl)
955 endif
956
957 IF (MOD(itap - 1, radpas) == 0) THEN
958 ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
959 ! Calcul de l'abedo moyen par maille
960 albsol = sum(falbe * pctsrf, dim = 2)
961
962 ! Rayonnement (compatible Arpege-IFS) :
963 CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, &
964 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
965 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
966 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
967 swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, &
968 solswad, cldtaupi, topswai, solswai)
969 ENDIF
970
971 ! Ajouter la tendance des rayonnements (tous les pas)
972
973 DO k = 1, llm
974 DO i = 1, klon
975 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
976 / 86400.
977 ENDDO
978 ENDDO
979
980 ! Calculer l'hydrologie de la surface
981 DO i = 1, klon
982 zxqsurf(i) = 0.
983 zxsnow(i) = 0.
984 ENDDO
985 DO nsrf = 1, nbsrf
986 DO i = 1, klon
987 zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf)
988 zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf)
989 ENDDO
990 ENDDO
991
992 ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
993
994 DO i = 1, klon
995 bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
996 ENDDO
997
998 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
999
1000 IF (ok_orodr) THEN
1001 ! S\'election des points pour lesquels le sch\'ema est actif :
1002 igwd = 0
1003 DO i = 1, klon
1004 itest(i) = 0
1005 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
1006 itest(i) = 1
1007 igwd = igwd + 1
1008 ENDIF
1009 ENDDO
1010
1011 CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
1012 zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
1013 zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
1014
1015 ! ajout des tendances
1016 DO k = 1, llm
1017 DO i = 1, klon
1018 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
1019 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
1020 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
1021 ENDDO
1022 ENDDO
1023 ENDIF
1024
1025 IF (ok_orolf) THEN
1026 ! S\'election des points pour lesquels le sch\'ema est actif :
1027 igwd = 0
1028 DO i = 1, klon
1029 itest(i) = 0
1030 IF (zpic(i) - zmea(i) > 100.) THEN
1031 itest(i) = 1
1032 igwd = igwd + 1
1033 ENDIF
1034 ENDDO
1035
1036 CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &
1037 itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &
1038 d_t_lif, d_u_lif, d_v_lif)
1039
1040 ! Ajout des tendances :
1041 DO k = 1, llm
1042 DO i = 1, klon
1043 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
1044 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
1045 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
1046 ENDDO
1047 ENDDO
1048 ENDIF
1049
1050 ! Stress n\'ecessaires : toute la physique
1051
1052 DO i = 1, klon
1053 zustrph(i) = 0.
1054 zvstrph(i) = 0.
1055 ENDDO
1056 DO k = 1, llm
1057 DO i = 1, klon
1058 zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
1059 * zmasse(i, k)
1060 zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
1061 * zmasse(i, k)
1062 ENDDO
1063 ENDDO
1064
1065 CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
1066 zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
1067
1068 ! Calcul des tendances traceurs
1069 call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
1070 mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
1071 pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
1072 zmasse, ncid_startphy)
1073
1074 IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, &
1075 pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, &
1076 frac_impa, frac_nucl, pphis, airephy, dtphys)
1077
1078 ! Calculer le transport de l'eau et de l'energie (diagnostique)
1079 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
1080
1081 ! diag. bilKP
1082
1083 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
1084 ve_lay, vq_lay, ue_lay, uq_lay)
1085
1086 ! Accumuler les variables a stocker dans les fichiers histoire:
1087
1088 ! conversion Ec en énergie thermique
1089 DO k = 1, llm
1090 DO i = 1, klon
1091 ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))
1092 d_t_ec(i, k) = 0.5 / ZRCPD &
1093 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
1094 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
1095 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
1096 END DO
1097 END DO
1098
1099 ! SORTIES
1100
1101 ! prw = eau precipitable
1102 DO i = 1, klon
1103 prw(i) = 0.
1104 DO k = 1, llm
1105 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
1106 ENDDO
1107 ENDDO
1108
1109 ! Convertir les incrementations en tendances
1110
1111 DO k = 1, llm
1112 DO i = 1, klon
1113 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
1114 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
1115 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
1116 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
1117 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
1118 ENDDO
1119 ENDDO
1120
1121 DO iq = 3, nqmx
1122 DO k = 1, llm
1123 DO i = 1, klon
1124 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
1125 ENDDO
1126 ENDDO
1127 ENDDO
1128
1129 ! Sauvegarder les valeurs de t et q a la fin de la physique:
1130 DO k = 1, llm
1131 DO i = 1, klon
1132 t_ancien(i, k) = t_seri(i, k)
1133 q_ancien(i, k) = q_seri(i, k)
1134 ENDDO
1135 ENDDO
1136
1137 CALL histwrite_phy("phis", pphis)
1138 CALL histwrite_phy("aire", airephy)
1139 CALL histwrite_phy("psol", paprs(:, 1))
1140 CALL histwrite_phy("precip", rain_fall + snow_fall)
1141 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1142 CALL histwrite_phy("pluc", rain_con + snow_con)
1143 CALL histwrite_phy("tsol", ztsol)
1144 CALL histwrite_phy("t2m", zt2m)
1145 CALL histwrite_phy("q2m", zq2m)
1146 CALL histwrite_phy("u10m", zu10m)
1147 CALL histwrite_phy("v10m", zv10m)
1148 CALL histwrite_phy("snow", snow_fall)
1149 CALL histwrite_phy("cdrm", cdragm)
1150 CALL histwrite_phy("cdrh", cdragh)
1151 CALL histwrite_phy("topl", toplw)
1152 CALL histwrite_phy("evap", evap)
1153 CALL histwrite_phy("sols", solsw)
1154 CALL histwrite_phy("soll", sollw)
1155 CALL histwrite_phy("solldown", sollwdown)
1156 CALL histwrite_phy("bils", bils)
1157 CALL histwrite_phy("sens", - sens)
1158 CALL histwrite_phy("fder", fder)
1159 CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1160 CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1161 CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1162 CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1163
1164 DO nsrf = 1, nbsrf
1165 CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1166 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1167 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1168 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1169 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1170 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1171 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1172 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1173 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1174 END DO
1175
1176 CALL histwrite_phy("albs", albsol)
1177 CALL histwrite_phy("rugs", zxrugs)
1178 CALL histwrite_phy("s_pblh", s_pblh)
1179 CALL histwrite_phy("s_pblt", s_pblt)
1180 CALL histwrite_phy("s_lcl", s_lcl)
1181 CALL histwrite_phy("s_capCL", s_capCL)
1182 CALL histwrite_phy("s_oliqCL", s_oliqCL)
1183 CALL histwrite_phy("s_cteiCL", s_cteiCL)
1184 CALL histwrite_phy("s_therm", s_therm)
1185 CALL histwrite_phy("s_trmb1", s_trmb1)
1186 CALL histwrite_phy("s_trmb2", s_trmb2)
1187 CALL histwrite_phy("s_trmb3", s_trmb3)
1188
1189 if (conv_emanuel) then
1190 CALL histwrite_phy("ptop", ema_pct)
1191 CALL histwrite_phy("dnwd0", - mp)
1192 end if
1193
1194 CALL histwrite_phy("temp", t_seri)
1195 CALL histwrite_phy("vitu", u_seri)
1196 CALL histwrite_phy("vitv", v_seri)
1197 CALL histwrite_phy("geop", zphi)
1198 CALL histwrite_phy("pres", play)
1199 CALL histwrite_phy("dtvdf", d_t_vdf)
1200 CALL histwrite_phy("dqvdf", d_q_vdf)
1201 CALL histwrite_phy("rhum", zx_rh)
1202
1203 if (ok_instan) call histsync(nid_ins)
1204
1205 IF (lafin) then
1206 call NF95_CLOSE(ncid_startphy)
1207 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1208 fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1209 radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1210 t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1211 w01)
1212 end IF
1213
1214 firstcal = .FALSE.
1215
1216 END SUBROUTINE physiq
1217
1218 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21