/[lmdze]/trunk/Sources/phylmd/suphec.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/suphec.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/suphec.f90 revision 37 by guez, Tue Dec 21 15:45:48 2010 UTC trunk/Sources/phylmd/suphec.f revision 169 by guez, Mon Sep 14 17:13:16 2015 UTC
# Line 1  Line 1 
1  module suphec_m  module suphec_m
2    
3      use nr_util, only: pi
4    
5    implicit none    implicit none
6    
7  contains    ! A1.0 Fundamental constants
8      real, parameter:: RCLUM = 299792458. ! speed of light, m s-1
9      real, parameter:: RHPLA = 6.6260755E-34 ! Planck constant, J s
10      real, parameter:: KBOL = 1.380658E-23 ! Boltzmann constant, in J K-1
11      real, parameter:: NAVO = 6.0221367E23 ! Avogadro number, in mol-1
12    
13      ! A1.1 Astronomical constants
14      REAL RSIYEA, RSIDAY, ROMEGA
15      real, parameter:: RDAY = 86400.
16      real, parameter:: REA = 149597870000.
17      real, parameter:: REPSM = 0.409093
18    
19      ! A1.2 Geoide
20      real, parameter:: RG = 9.80665 ! acceleration of gravity, in m s-2
21      real, parameter:: RA = 6371229.
22    
23      ! A1.3 Radiation
24      REAL, parameter:: rsigma = 2. * pi**5 * (kbol / rhpla)**3 * kbol / rclum**2 &
25           / 15.
26    
27      ! A1.4 Thermodynamic gas phase
28      REAL, parameter:: R = NAVO * KBOL ! ideal gas constant, in J K-1 mol-1
29      real, parameter:: MV = 18.0153 ! molar mass of water, in g mol-1
30    
31      real, parameter:: RV = 1e3 * R / MV
32      ! specific ideal gas constant for water vapor, in J K-1 kg-1
33      ! (factor 1e3: conversion from g to kg)
34    
35      real, parameter:: MD = 28.9644 ! molar mass of dry air, in g mol-1
36    
37      real, parameter:: RD = 1e3 * R / MD
38      ! specific ideal gas constant for dry air, in J K-1 kg-1
39      ! (factor 1e3: conversion from g to kg)
40    
41      real, save:: RCPV, RCVD, RCVV
42    
43      real, parameter:: RCPD = 7. / 2 * RD
44      ! specific heat capacity for dry air, in J K-1 kg-1
45    
46      real, parameter:: RMO3 = 47.9942
47      REAL, parameter:: RKAPPA = RD/RCPD
48      real, save:: RETV
49    
50      ! A1.5, 6 Thermodynamic liquid, solid phases
51      REAL, save:: RCW, RCS
52    
53      ! A1.7 Thermodynamic transition of phase
54      REAL, save:: RLMLT
55      real, parameter:: RTT = 273.16
56      real, parameter:: RLVTT = 2.5008E+6
57      real, parameter:: RLSTT = 2.8345E+6
58      real, parameter:: RATM = 1e5
59    
60      ! A1.8 Curve of saturation
61      REAL, save:: RALPW, RBETW, RGAMW, RALPS, RBETS, RGAMS
62      real, parameter:: RESTT = 611.14
63      REAL, save:: RALPD, RBETD, RGAMD
64    
65    SUBROUTINE suphec    private pi
66    
67      ! From phylmd/suphec.F,v 1.2 2005/06/06 13:16:33  contains
68    
69      ! Initialise certaines constantes et parametres physiques.    SUBROUTINE suphec
70    
71      use YOMCST, only: rpi, rclum, rhpla, rkbol, rnavo, rday, rea, repsm, &      ! From phylmd/suphec.F, version 1.2 2005/06/06 13:16:33
72           rsiyea, rsiday,romega, rg, ra, r1sa, rsigma, r, rmd, rmo3, rmv, rd, &      ! Initialise certaines constantes et certains paramètres physiques.
          rv, rcpd, rcvd, rcpv, rcvv, rkappa, retv, rcw, rcs, rtt, rlvtt, &  
          rlstt, rlmlt, ratm, restt, rgamw, rbetw, ralpw, rgams, rbets, ralps, &  
          rgamd, rbetd, ralpd  
     use yoethf, only: r2es, r3ies, r3les, r4ies, r4les, r5ies, r5les, rhoh2o, &  
          rvtmp2  
73    
74      !------------------------------------------      !------------------------------------------
75    
76      PRINT *, 'Call sequence information: suphec'      PRINT *, 'Call sequence information: suphec'
77    
     ! 1. DEFINE FUNDAMENTAL CONSTANTS  
   
     print *, 'Constants of the ICM'  
     RPI=2.*ASIN(1.)  
     RCLUM=299792458.  
     RHPLA=6.6260755E-34  
     RKBOL=1.380658E-23  
     RNAVO=6.0221367E+23  
     print *, 'Fundamental constants '  
     print '(''           PI = '',E13.7,'' -'')', RPI  
     print '(''            c = '',E13.7,''m s-1'')', RCLUM  
     print '(''            h = '',E13.7,''J s'')', RHPLA  
     print '(''            K = '',E13.7,''J K-1'')', RKBOL  
     print '(''            N = '',E13.7,''mol-1'')', RNAVO  
   
78      ! 2. DEFINE ASTRONOMICAL CONSTANTS      ! 2. DEFINE ASTRONOMICAL CONSTANTS
79    
80      RDAY=86400.      RSIYEA = 365.25*RDAY*2.*PI/6.283076
81      REA=149597870000.      RSIDAY = RDAY/(1.+RDAY/RSIYEA)
82      REPSM=0.409093      ROMEGA = 2.*PI/RSIDAY
   
     RSIYEA=365.25*RDAY*2.*RPI/6.283076  
     RSIDAY=RDAY/(1.+RDAY/RSIYEA)  
     ROMEGA=2.*RPI/RSIDAY  
83    
84      print *, 'Astronomical constants '      print *, 'Astronomical constants '
85      print '(''          day = '',E13.7,'' s'')', RDAY      print '('' day = '', E13.7, '' s'')', RDAY
86      print '('' half g. axis = '',E13.7,'' m'')', REA      print '('' half g. axis = '', E13.7, '' m'')', REA
87      print '('' mean anomaly = '',E13.7,'' -'')', REPSM      print '('' mean anomaly = '', E13.7, '' -'')', REPSM
88      print '('' sideral year = '',E13.7,'' s'')', RSIYEA      print '('' sideral year = '', E13.7, '' s'')', RSIYEA
89      print '(''  sideral day = '',E13.7,'' s'')', RSIDAY      print '('' sideral day = '', E13.7, '' s'')', RSIDAY
90      print '(''        omega = '',E13.7,'' s-1'')', ROMEGA      print '('' omega = '', E13.7, '' s-1'')', ROMEGA
91    
92      ! 3.    DEFINE GEOIDE.      ! 3. DEFINE GEOIDE.
93    
94      RG=9.80665      print *, ' Geoide '
95      RA=6371229.      print '('' Gravity = '', E13.7, '' m s-2'')', RG
96      R1SA=SNGL(1.D0/DBLE(RA))      print '('' Earth radius = '', E13.7, '' m'')', RA
97      print *, '        Geoide      '  
98      print '(''      Gravity = '',E13.7,'' m s-2'')', RG      ! 4. DEFINE RADIATION CONSTANTS.
99      print '('' Earth radius = '',E13.7,'' m'')', RA  
100      print '('' Inverse E.R. = '',E13.7,'' m'')', R1SA      print *, ' Radiation '
101        print '('' Stefan-Bol. = '', E13.7, '' W m-2 K-4'')', RSIGMA
102      ! 4.    DEFINE RADIATION CONSTANTS.  
103        ! 5. DEFINE THERMODYNAMIC CONSTANTS, GAS PHASE.
104      rsigma = 2.*rpi**5 * (rkbol/rhpla)**3 * rkbol/rclum/rclum/15.  
105      print *, '       Radiation    '      RCVD = RCPD-RD
106      print '('' Stefan-Bol.  = '',E13.7,'' W m-2 K-4'')',   RSIGMA      RCPV = 4. * RV
107        RCVV = RCPV-RV
108      ! 5.    DEFINE THERMODYNAMIC CONSTANTS, GAS PHASE.      RETV = RV / RD - 1.
109        print *, 'Thermodynamics, gas'
110      R=RNAVO*RKBOL      print '('' Ozone mass = '', e13.7)', RMO3
111      RMD=28.9644      print *, "rd = ", RD, "J K-1 kg-1"
112      RMO3=47.9942      print *, "rv = ", RV, "J K-1 kg-1"
113      RMV=18.0153      print '('' Cpd = '', e13.7)', RCPD
114      RD=1000.*R/RMD      print '('' Cvd = '', e13.7)', RCVD
115      RV=1000.*R/RMV      print '('' Cpv = '', e13.7)', RCPV
116      RCPD=3.5*RD      print '('' Cvv = '', e13.7)', RCVV
117      RCVD=RCPD-RD      print '('' Rd/Cpd = '', e13.7)', RKAPPA
118      RCPV=4. *RV      print '('' Rv / Rd - 1 = '', e13.7)', RETV
119      RCVV=RCPV-RV  
120      RKAPPA=RD/RCPD      ! 6. DEFINE THERMODYNAMIC CONSTANTS, LIQUID PHASE.
121      RETV=RV/RD-1.  
122      print *, 'Thermodynamic, gas  '      RCW = RCPV
123      print '('' Perfect gas  = '',e13.7)',  R      print *, 'Thermodynamic, liquid '
124      print '('' Dry air mass = '',e13.7)',  RMD      print '('' Cw = '', E13.7)', RCW
     print '('' Ozone   mass = '',e13.7)',  RMO3  
     print '('' Vapour  mass = '',e13.7)',  RMV  
     print '('' Dry air cst. = '',e13.7)',  RD  
     print '('' Vapour  cst. = '',e13.7)',  RV  
     print '(''         Cpd  = '',e13.7)',  RCPD  
     print '(''         Cvd  = '',e13.7)',  RCVD  
     print '(''         Cpv  = '',e13.7)',  RCPV  
     print '(''         Cvv  = '',e13.7)',  RCVV  
     print '(''      Rd/Cpd  = '',e13.7)',  RKAPPA  
     print '(''     Rv/Rd-1  = '',e13.7)',  RETV  
   
     ! 6.    DEFINE THERMODYNAMIC CONSTANTS, LIQUID PHASE.  
   
     RCW=RCPV  
     print *, 'Thermodynamic, liquid  '  
     print '(''         Cw   = '',E13.7)',  RCW  
125    
126      ! 7.    DEFINE THERMODYNAMIC CONSTANTS, SOLID PHASE.      ! 7. DEFINE THERMODYNAMIC CONSTANTS, SOLID PHASE.
127    
128      RCS=RCPV      RCS = RCPV
129      print *, 'thermodynamic, solid'      print *, 'thermodynamic, solid'
130      print '(''         Cs   = '',E13.7)',  RCS      print '('' Cs = '', E13.7)', RCS
131    
132      ! 8.    DEFINE THERMODYNAMIC CONSTANTS, TRANSITION OF PHASE.      ! 8. DEFINE THERMODYNAMIC CONSTANTS, TRANSITION OF PHASE.
133    
134      RTT=273.16      RLMLT = RLSTT-RLVTT
135      RLVTT=2.5008E+6      print *, 'Thermodynamic, transition of phase:'
136      RLSTT=2.8345E+6      print '('' Fusion point = '', E13.7)', RTT
137      RLMLT=RLSTT-RLVTT      print '('' RLvTt = '', E13.7)', RLVTT
138      RATM=100000.      print '('' RLsTt = '', E13.7)', RLSTT
139      print *, 'Thermodynamic, trans.  '      print '('' RLMlt = '', E13.7)', RLMLT
140      print '('' Fusion point  = '',E13.7)',  RTT      print '('' Normal pressure = '', E13.7)', RATM
141      print '(''        RLvTt  = '',E13.7)',  RLVTT  
142      print '(''        RLsTt  = '',E13.7)',  RLSTT      ! 9. SATURATED VAPOUR PRESSURE.
143      print '(''        RLMlt  = '',E13.7)',  RLMLT  
144      print '('' Normal press. = '',E13.7)',  RATM      RGAMW = (RCW-RCPV)/RV
145        RBETW = RLVTT/RV+RGAMW*RTT
146      ! 9.    SATURATED VAPOUR PRESSURE.      RALPW = LOG(RESTT)+RBETW/RTT+RGAMW*LOG(RTT)
147        RGAMS = (RCS-RCPV)/RV
148      RESTT=611.14      RBETS = RLSTT/RV+RGAMS*RTT
149      RGAMW=(RCW-RCPV)/RV      RALPS = LOG(RESTT)+RBETS/RTT+RGAMS*LOG(RTT)
150      RBETW=RLVTT/RV+RGAMW*RTT      RGAMD = RGAMS-RGAMW
151      RALPW=LOG(RESTT)+RBETW/RTT+RGAMW*LOG(RTT)      RBETD = RBETS-RBETW
152      RGAMS=(RCS-RCPV)/RV      RALPD = RALPS-RALPW
     RBETS=RLSTT/RV+RGAMS*RTT  
     RALPS=LOG(RESTT)+RBETS/RTT+RGAMS*LOG(RTT)  
     RGAMD=RGAMS-RGAMW  
     RBETD=RBETS-RBETW  
     RALPD=RALPS-RALPW  
   
     ! calculer les constantes pour les fonctions thermodynamiques  
   
     RVTMP2=RCPV/RCPD-1.  
     RHOH2O=RATM/100.  
     R2ES=RESTT*RD/RV  
     R3LES=17.269  
     R3IES=21.875  
     R4LES=35.86  
     R4IES=7.66  
     R5LES=R3LES*(RTT-R4LES)  
     R5IES=R3IES*(RTT-R4IES)  
153    
154    END SUBROUTINE suphec    END SUBROUTINE suphec
155    

Legend:
Removed from v.37  
changed lines
  Added in v.169

  ViewVC Help
Powered by ViewVC 1.1.21