/[lmdze]/trunk/Sources/phylmd/yamada4.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/yamada4.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 229 - (show annotations)
Mon Nov 6 17:20:45 2017 UTC (6 years, 6 months ago) by guez
File size: 10049 byte(s)
Use iflag_pbl from module conf_phys in yamada4 instead of getting it
as argument.

In clvent, simplifications using the fact that zx_alf2 = 0 and zx_alf1
= 1 (discarding the possibility to change this).

In physiq, no need for temporary variables z[uv]strph: compute actual
arguments of aaam_bud directly.

1 module yamada4_m
2
3 IMPLICIT NONE
4
5 private
6 public yamada4
7 real, parameter:: kap = 0.4
8
9 contains
10
11 SUBROUTINE yamada4(dt, g, zlev, zlay, u, v, teta, cd, q2, km, kn, kq, ustar)
12
13 ! From LMDZ4/libf/phylmd/yamada4.F, version 1.1 2004/06/22 11:45:36
14
15 USE conf_phys_m, ONLY: iflag_pbl
16 USE dimphy, ONLY: klev
17 use nr_util, only: assert, assert_eq
18
19 REAL, intent(in):: dt ! pas de temps
20 real, intent(in):: g
21
22 REAL zlev(:, :) ! (knon, klev + 1)
23 ! altitude \`a chaque niveau (interface inf\'erieure de la couche de
24 ! m\^eme indice)
25
26 REAL, intent(in):: zlay(:, :) ! (knon, klev) altitude au centre de
27 ! chaque couche
28
29 REAL, intent(in):: u(:, :), v(:, :) ! (knon, klev)
30 ! vitesse au centre de chaque couche (en entr\'ee : la valeur au
31 ! d\'ebut du pas de temps)
32
33 REAL, intent(in):: teta(:, :) ! (knon, klev)
34 ! temp\'erature potentielle au centre de chaque couche (en entr\'ee :
35 ! la valeur au d\'ebut du pas de temps)
36
37 REAL, intent(in):: cd(:) ! (knon) cdrag, valeur au d\'ebut du pas de temps
38
39 REAL, intent(inout):: q2(:, :) ! (knon, klev + 1)
40 ! $q^2$ au bas de chaque couche
41 ! En entr\'ee : la valeur au d\'ebut du pas de temps ; en sortie : la
42 ! valeur \`a la fin du pas de temps.
43
44 REAL km(:, :) ! (knon, klev + 1)
45 ! diffusivit\'e turbulente de quantit\'e de mouvement (au bas de
46 ! chaque couche) (en sortie : la valeur \`a la fin du pas de temps)
47
48 REAL kn(:, :) ! (knon, klev + 1)
49 ! diffusivit\'e turbulente des scalaires (au bas de chaque couche)
50 ! (en sortie : la valeur \`a la fin du pas de temps)
51
52 REAL kq(:, :) ! (knon, klev + 1)
53 real, intent(in):: ustar(:) ! (knon)
54
55 ! Local:
56 integer knon
57 real kmin, qmin
58 real pblhmin(size(cd)), coriol(size(cd)) ! (knon)
59 real qpre
60 REAL unsdz(size(zlay, 1), size(zlay, 2)) ! (knon, klev)
61 REAL unsdzdec(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
62 real delta(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
63 real aa(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
64 real aa1
65 logical:: first = .true.
66 integer:: ipas = 0
67 integer ig, k
68 real ri
69 real, dimension(size(zlev, 1), size(zlev, 2)):: rif, sm ! (knon, klev + 1)
70 real alpha(size(zlay, 1), size(zlay, 2)) ! (knon, klev)
71
72 real, dimension(size(zlev, 1), size(zlev, 2)):: m2, dz, n2
73 ! (knon, klev + 1)
74
75 real zq
76 real dtetadz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
77 real l(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
78 real l0(size(cd)) ! (knon)
79 real sq(size(cd)), sqz(size(cd)) ! (knon)
80 real zz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
81 integer iter
82 real:: ric = 0.195, rifc = 0.191, b1 = 16.6
83
84 !-----------------------------------------------------------------------
85
86 call assert(any(iflag_pbl == [6, 8, 9]), "yamada4 iflag_pbl")
87 knon = assert_eq([size(zlev, 1), size(zlay, 1), size(u, 1), size(v, 1), &
88 size(teta, 1), size(cd), size(q2, 1), size(km, 1), size(kn, 1), &
89 size(kq, 1)], "yamada4 knon")
90 call assert(klev == [size(zlev, 2) - 1, size(zlay, 2), size(u, 2), &
91 size(v, 2), size(teta, 2), size(q2, 2) - 1, size(km, 2) - 1, &
92 size(kn, 2) - 1, size(kq, 2) - 1], "yamada4 klev")
93
94 ipas = ipas + 1
95
96 ! les increments verticaux
97 DO ig = 1, knon
98 ! alerte: zlev n'est pas declare a klev + 1
99 zlev(ig, klev + 1) = zlay(ig, klev) + (zlay(ig, klev) - zlev(ig, klev))
100 ENDDO
101
102 DO k = 1, klev
103 DO ig = 1, knon
104 unsdz(ig, k) = 1.E+0/(zlev(ig, k + 1)-zlev(ig, k))
105 ENDDO
106 ENDDO
107
108 DO ig = 1, knon
109 unsdzdec(ig, 1) = 1.E+0/(zlay(ig, 1)-zlev(ig, 1))
110 ENDDO
111
112 DO k = 2, klev
113 DO ig = 1, knon
114 unsdzdec(ig, k) = 1.E+0/(zlay(ig, k)-zlay(ig, k-1))
115 ENDDO
116 ENDDO
117
118 DO ig = 1, knon
119 unsdzdec(ig, klev + 1) = 1.E+0/(zlev(ig, klev + 1)-zlay(ig, klev))
120 ENDDO
121
122 do k = 2, klev
123 do ig = 1, knon
124 dz(ig, k) = zlay(ig, k)-zlay(ig, k-1)
125 m2(ig, k) = ((u(ig, k)-u(ig, k-1))**2 + (v(ig, k)-v(ig, k-1))**2) &
126 /(dz(ig, k)*dz(ig, k))
127 dtetadz(ig, k) = (teta(ig, k)-teta(ig, k-1))/dz(ig, k)
128 n2(ig, k) = g*2.*dtetadz(ig, k)/(teta(ig, k-1) + teta(ig, k))
129 ri = n2(ig, k)/max(m2(ig, k), 1.e-10)
130 if (ri.lt.ric) then
131 rif(ig, k) = frif(ri)
132 else
133 rif(ig, k) = rifc
134 endif
135 if (rif(ig, k).lt.0.16) then
136 alpha(ig, k) = falpha(rif(ig, k))
137 sm(ig, k) = fsm(rif(ig, k))
138 else
139 alpha(ig, k) = 1.12
140 sm(ig, k) = 0.085
141 endif
142 zz(ig, k) = b1*m2(ig, k)*(1.-rif(ig, k))*sm(ig, k)
143 enddo
144 enddo
145
146 ! Au premier appel, on d\'etermine l et q2 de fa\ccon it\'erative.
147 ! It\'eration pour d\'eterminer la longueur de m\'elange
148
149 if (first .or. iflag_pbl == 6) then
150 do ig = 1, knon
151 l0(ig) = 10.
152 enddo
153 do k = 2, klev-1
154 do ig = 1, knon
155 l(ig, k) = l0(ig) * kap * zlev(ig, k) &
156 / (kap * zlev(ig, k) + l0(ig))
157 enddo
158 enddo
159
160 do iter = 1, 10
161 do ig = 1, knon
162 sq(ig) = 1e-10
163 sqz(ig) = 1e-10
164 enddo
165 do k = 2, klev-1
166 do ig = 1, knon
167 q2(ig, k) = l(ig, k)**2 * zz(ig, k)
168 l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k))
169 zq = sqrt(q2(ig, k))
170 sqz(ig) = sqz(ig) + zq * zlev(ig, k) &
171 * (zlay(ig, k) - zlay(ig, k-1))
172 sq(ig) = sq(ig) + zq * (zlay(ig, k) - zlay(ig, k-1))
173 enddo
174 enddo
175 do ig = 1, knon
176 l0(ig) = 0.2 * sqz(ig) / sq(ig)
177 enddo
178 enddo
179 endif
180
181 ! Calcul de la longueur de melange.
182
183 ! Mise a jour de l0
184 do ig = 1, knon
185 sq(ig) = 1.e-10
186 sqz(ig) = 1.e-10
187 enddo
188 do k = 2, klev-1
189 do ig = 1, knon
190 zq = sqrt(q2(ig, k))
191 sqz(ig) = sqz(ig) + zq*zlev(ig, k)*(zlay(ig, k)-zlay(ig, k-1))
192 sq(ig) = sq(ig) + zq*(zlay(ig, k)-zlay(ig, k-1))
193 enddo
194 enddo
195 do ig = 1, knon
196 l0(ig) = 0.2*sqz(ig)/sq(ig)
197 enddo
198 ! calcul de l(z)
199 do k = 2, klev
200 do ig = 1, knon
201 l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k))
202 if (first) then
203 q2(ig, k) = l(ig, k)**2 * zz(ig, k)
204 endif
205 enddo
206 enddo
207
208 if (iflag_pbl == 6) then
209 ! Yamada 2.0
210 do k = 2, klev
211 do ig = 1, knon
212 q2(ig, k) = l(ig, k)**2 * zz(ig, k)
213 enddo
214 enddo
215 else if (iflag_pbl >= 8) then
216 ! Yamada 2.5 a la Didi
217
218 ! Calcul de l, km, au pas precedent
219 do k = 2, klev
220 do ig = 1, knon
221 delta(ig, k) = q2(ig, k)/(l(ig, k)**2*sm(ig, k))
222 if (delta(ig, k).lt.1.e-20) then
223 delta(ig, k) = 1.e-20
224 endif
225 km(ig, k) = l(ig, k)*sqrt(q2(ig, k))*sm(ig, k)
226 aa1 = (m2(ig, k)*(1.-rif(ig, k))-delta(ig, k)/b1)
227 aa(ig, k) = aa1*dt/(delta(ig, k)*l(ig, k))
228 qpre = sqrt(q2(ig, k))
229 if (iflag_pbl == 8) then
230 if (aa(ig, k).gt.0.) then
231 q2(ig, k) = (qpre + aa(ig, k)*qpre*qpre)**2
232 else
233 q2(ig, k) = (qpre/(1.-aa(ig, k)*qpre))**2
234 endif
235 else
236 ! iflag_pbl = 9
237 if (aa(ig, k)*qpre.gt.0.9) then
238 q2(ig, k) = (qpre*10.)**2
239 else
240 q2(ig, k) = (qpre/(1.-aa(ig, k)*qpre))**2
241 endif
242 endif
243 q2(ig, k) = min(max(q2(ig, k), 1.e-10), 1.e4)
244 enddo
245 enddo
246 endif
247
248 ! Calcul des coefficients de m\'elange
249 do k = 2, klev
250 do ig = 1, knon
251 zq = sqrt(q2(ig, k))
252 km(ig, k) = l(ig, k)*zq*sm(ig, k)
253 kn(ig, k) = km(ig, k)*alpha(ig, k)
254 kq(ig, k) = l(ig, k)*zq*0.2
255 enddo
256 enddo
257
258 ! Traitement des cas noctrunes avec l'introduction d'une longueur
259 ! minilale.
260
261 ! Traitement particulier pour les cas tres stables.
262 ! D'apres Holtslag Boville.
263
264 do ig = 1, knon
265 coriol(ig) = 1.e-4
266 pblhmin(ig) = 0.07*ustar(ig)/max(abs(coriol(ig)), 2.546e-5)
267 enddo
268
269 do k = 2, klev
270 do ig = 1, knon
271 if (teta(ig, 2).gt.teta(ig, 1)) then
272 qmin = ustar(ig)*(max(1.-zlev(ig, k)/pblhmin(ig), 0.))**2
273 kmin = kap*zlev(ig, k)*qmin
274 else
275 kmin = -1. ! kmin n'est utilise que pour les SL stables.
276 endif
277 if (kn(ig, k).lt.kmin.or.km(ig, k).lt.kmin) then
278 kn(ig, k) = kmin
279 km(ig, k) = kmin
280 kq(ig, k) = kmin
281 ! la longueur de melange est suposee etre l = kap z
282 ! K = l q Sm d'ou q2 = (K/l Sm)**2
283 q2(ig, k) = (qmin/sm(ig, k))**2
284 endif
285 enddo
286 enddo
287
288 first = .false.
289
290 end SUBROUTINE yamada4
291
292 !*******************************************************************
293
294 real function frif(ri)
295
296 real, intent(in):: ri
297
298 frif = 0.6588*(ri + 0.1776-sqrt(ri*ri-0.3221*ri + 0.03156))
299
300 end function frif
301
302 !*******************************************************************
303
304 real function falpha(ri)
305
306 real, intent(in):: ri
307
308 falpha = 1.318*(0.2231-ri)/(0.2341-ri)
309
310 end function falpha
311
312 !*******************************************************************
313
314 real function fsm(ri)
315
316 real, intent(in):: ri
317
318 fsm = 1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri))
319
320 end function fsm
321
322 !*******************************************************************
323
324 real function fl(zzz, zl0, zq2, zn2)
325
326 real, intent(in):: zzz, zl0, zq2, zn2
327
328 fl = max(min(zl0 * kap * zzz / (kap * zzz + zl0), &
329 0.5 * sqrt(zq2) / sqrt(max(zn2, 1e-10))), 1.)
330
331 end function fl
332
333 end module yamada4_m

  ViewVC Help
Powered by ViewVC 1.1.21