--- trunk/libf/dyn3d/bilan_dyn.f90 2012/01/30 12:54:02 57 +++ trunk/dyn3d/bilan_dyn.f 2018/02/05 10:39:38 254 @@ -9,26 +9,28 @@ ! From LMDZ4/libf/dyn3d/bilan_dyn.F, version 1.5 2005/03/16 10:12:17 - ! Sous-programme consacré à des diagnostics dynamiques de base. - ! De façon générale, les moyennes des scalaires Q sont pondérées - ! par la masse. Les flux de masse sont, eux, simplement moyennés. + ! Sous-programme consacr\'e \`a des diagnostics dynamiques de + ! base. De fa\c{}con g\'en\'erale, les moyennes des scalaires Q + ! sont pond\'er\'ees par la masse. Les flux de masse sont, eux, + ! simplement moyenn\'es. USE comconst, ONLY: cpp USE comgeom, ONLY: constang_2d, cu_2d, cv_2d + use covcont_m, only: covcont USE dimens_m, ONLY: iim, jjm, llm + use enercin_m, only: enercin USE histwrite_m, ONLY: histwrite use init_dynzon_m, only: ncum, fileid, znom, ntr, nq, nom + use massbar_m, only: massbar USE paramet_m, ONLY: iip1, jjp1 - ! Arguments: - real, intent(in):: ps(iip1, jjp1) real, intent(in):: masse(iip1, jjp1, llm), pk(iip1, jjp1, llm) real, intent(in):: flux_u(iip1, jjp1, llm) real, intent(in):: flux_v(iip1, jjm, llm) real, intent(in):: teta(iip1, jjp1, llm) real, intent(in):: phi(iip1, jjp1, llm) - real, intent(in):: ucov(iip1, jjp1, llm) + real, intent(in):: ucov(:, :, :) ! (iip1, jjp1, llm) real, intent(in):: vcov(iip1, jjm, llm) real, intent(in):: trac(:, :, :) ! (iim + 1, jjm + 1, llm) @@ -36,20 +38,18 @@ integer:: icum = 0 integer:: itau = 0 - real zqy, zfactv(jjm, llm) - - real ww + real qy, factv(jjm, llm) - ! Variables dynamiques intermédiaires + ! Variables dynamiques interm\'ediaires REAL vcont(iip1, jjm, llm), ucont(iip1, jjp1, llm) REAL ang(iip1, jjp1, llm), unat(iip1, jjp1, llm) REAL massebx(iip1, jjp1, llm), masseby(iip1, jjm, llm) - REAL w(iip1, jjp1, llm), ecin(iip1, jjp1, llm), convm(iip1, jjp1, llm) + REAL ecin(iip1, jjp1, llm) - ! Champ contenant les scalaires advectés + ! Champ contenant les scalaires advect\'es real Q(iip1, jjp1, llm, nQ) - ! Champs cumulés + ! Champs cumul\'es real, save:: ps_cum(iip1, jjp1) real, save:: masse_cum(iip1, jjp1, llm) real, save:: flux_u_cum(iip1, jjp1, llm) @@ -57,32 +57,31 @@ real, save:: Q_cum(iip1, jjp1, llm, nQ) real, save:: flux_uQ_cum(iip1, jjp1, llm, nQ) real, save:: flux_vQ_cum(iip1, jjm, llm, nQ) - real dQ(iip1, jjp1, llm, nQ) ! champs de tansport en moyenne zonale integer itr integer, parameter:: iave = 1, itot = 2, immc = 3, itrs = 4, istn = 5 - real zvQ(jjm, llm, ntr, nQ), zvQtmp(jjm, llm) - real zavQ(jjm, 2: ntr, nQ), psiQ(jjm, llm + 1, nQ) + real vq(jjm, llm, ntr, nQ), vqtmp(jjm, llm) + real avq(jjm, 2: ntr, nQ), psiQ(jjm, llm + 1, nQ) real zmasse(jjm, llm) - real zv(jjm, llm), psi(jjm, llm + 1) + real v(jjm, llm), psi(jjm, llm + 1) integer i, j, l, iQ !----------------------------------------------------------------- ! Calcul des champs dynamiques - ! Énergie cinétique + ! \'Energie cin\'etique ucont = 0 CALL covcont(llm, ucov, vcov, ucont, vcont) CALL enercin(vcov, ucov, vcont, ucont, ecin) - ! moment cinétique - do l = 1, llm + ! moment cin\'etique + forall (l = 1: llm) ang(:, :, l) = ucov(:, :, l) + constang_2d - unat(:, :, l) = ucont(:, :, l)*cu_2d - enddo + unat(:, :, l) = ucont(:, :, l) * cu_2d + end forall Q(:, :, :, 1) = teta * pk / cpp Q(:, :, :, 2) = phi @@ -112,11 +111,8 @@ masse_cum = masse_cum + masse flux_u_cum = flux_u_cum + flux_u flux_v_cum = flux_v_cum + flux_v - do iQ = 1, nQ - Q_cum(:, :, :, iQ) = Q_cum(:, :, :, iQ) + Q(:, :, :, iQ)*masse - enddo - - ! FLUX ET TENDANCES + forall (iQ = 1: nQ) Q_cum(:, :, :, iQ) = Q_cum(:, :, :, iQ) & + + Q(:, :, :, iQ) * masse ! Flux longitudinal forall (iQ = 1: nQ, i = 1: iim) flux_uQ_cum(i, :, :, iQ) & @@ -124,139 +120,106 @@ + flux_u(i, :, :) * 0.5 * (Q(i, :, :, iQ) + Q(i + 1, :, :, iQ)) flux_uQ_cum(iip1, :, :, :) = flux_uQ_cum(1, :, :, :) - ! Flux méridien + ! Flux m\'eridien forall (iQ = 1: nQ, j = 1: jjm) flux_vQ_cum(:, j, :, iQ) & = flux_vQ_cum(:, j, :, iQ) & + flux_v(:, j, :) * 0.5 * (Q(:, j, :, iQ) + Q(:, j + 1, :, iQ)) - ! tendances - - ! convergence horizontale - call convflu(flux_uQ_cum, flux_vQ_cum, llm*nQ, dQ) - - ! calcul de la vitesse verticale - call convmas(flux_u_cum, flux_v_cum, convm) - CALL vitvert(convm, w) - - do iQ = 1, nQ - do l = 1, llm-1 - do j = 1, jjp1 - do i = 1, iip1 - ww = -0.5*w(i, j, l + 1)*(Q(i, j, l, iQ) + Q(i, j, l + 1, iQ)) - dQ(i, j, l, iQ) = dQ(i, j, l, iQ)-ww - dQ(i, j, l + 1, iQ) = dQ(i, j, l + 1, iQ) + ww - enddo - enddo - enddo - enddo - - ! PAS DE TEMPS D'ECRITURE - writing_step: if (icum == ncum) then ! Normalisation - do iQ = 1, nQ - Q_cum(:, :, :, iQ) = Q_cum(:, :, :, iQ)/masse_cum - enddo + forall (iQ = 1: nQ) Q_cum(:, :, :, iQ) = Q_cum(:, :, :, iQ) / masse_cum ps_cum = ps_cum / ncum masse_cum = masse_cum / ncum flux_u_cum = flux_u_cum / ncum flux_v_cum = flux_v_cum / ncum flux_uQ_cum = flux_uQ_cum / ncum flux_vQ_cum = flux_vQ_cum / ncum - dQ = dQ / ncum - - ! A retravailler eventuellement - ! division de dQ par la masse pour revenir aux bonnes grandeurs - do iQ = 1, nQ - dQ(:, :, :, iQ) = dQ(:, :, :, iQ)/masse_cum - enddo - ! Transport méridien + ! Transport m\'eridien - ! cumul zonal des masses des mailles + ! Cumul zonal des masses des mailles - zv = 0. + v = 0. zmasse = 0. call massbar(masse_cum, massebx, masseby) do l = 1, llm do j = 1, jjm do i = 1, iim zmasse(j, l) = zmasse(j, l) + masseby(i, j, l) - zv(j, l) = zv(j, l) + flux_v_cum(i, j, l) + v(j, l) = v(j, l) + flux_v_cum(i, j, l) enddo - zfactv(j, l) = cv_2d(1, j)/zmasse(j, l) + factv(j, l) = cv_2d(1, j) / zmasse(j, l) enddo enddo ! Transport dans le plan latitude-altitude - zvQ = 0. + vq = 0. psiQ = 0. do iQ = 1, nQ - zvQtmp = 0. + vqtmp = 0. do l = 1, llm do j = 1, jjm - ! Calcul des moyennes zonales du transort total et de zvQtmp + ! Calcul des moyennes zonales du transport total et de vqtmp do i = 1, iim - zvQ(j, l, itot, iQ) = zvQ(j, l, itot, iQ) & + vq(j, l, itot, iQ) = vq(j, l, itot, iQ) & + flux_vQ_cum(i, j, l, iQ) - zqy = 0.5 * (Q_cum(i, j, l, iQ) * masse_cum(i, j, l) & + qy = 0.5 * (Q_cum(i, j, l, iQ) * masse_cum(i, j, l) & + Q_cum(i, j + 1, l, iQ) * masse_cum(i, j + 1, l)) - zvQtmp(j, l) = zvQtmp(j, l) + flux_v_cum(i, j, l) * zqy & + vqtmp(j, l) = vqtmp(j, l) + flux_v_cum(i, j, l) * qy & / (0.5 * (masse_cum(i, j, l) + masse_cum(i, j + 1, l))) - zvQ(j, l, iave, iQ) = zvQ(j, l, iave, iQ) + zqy + vq(j, l, iave, iQ) = vq(j, l, iave, iQ) + qy enddo ! Decomposition - zvQ(j, l, iave, iQ) = zvQ(j, l, iave, iQ)/zmasse(j, l) - zvQ(j, l, itot, iQ) = zvQ(j, l, itot, iQ)*zfactv(j, l) - zvQtmp(j, l) = zvQtmp(j, l)*zfactv(j, l) - zvQ(j, l, immc, iQ) = zv(j, l)*zvQ(j, l, iave, iQ)*zfactv(j, l) - zvQ(j, l, itrs, iQ) = zvQ(j, l, itot, iQ)-zvQtmp(j, l) - zvQ(j, l, istn, iQ) = zvQtmp(j, l)-zvQ(j, l, immc, iQ) + vq(j, l, iave, iQ) = vq(j, l, iave, iQ) / zmasse(j, l) + vq(j, l, itot, iQ) = vq(j, l, itot, iQ) * factv(j, l) + vqtmp(j, l) = vqtmp(j, l) * factv(j, l) + vq(j, l, immc, iQ) = v(j, l) * vq(j, l, iave, iQ) * factv(j, l) + vq(j, l, itrs, iQ) = vq(j, l, itot, iQ) - vqtmp(j, l) + vq(j, l, istn, iQ) = vqtmp(j, l) - vq(j, l, immc, iQ) enddo enddo - ! fonction de courant meridienne pour la quantite Q + ! Fonction de courant m\'eridienne pour la quantit\'e Q do l = llm, 1, -1 do j = 1, jjm - psiQ(j, l, iQ) = psiQ(j, l + 1, iQ) + zvQ(j, l, itot, iQ) + psiQ(j, l, iQ) = psiQ(j, l + 1, iQ) + vq(j, l, itot, iQ) enddo enddo enddo - ! fonction de courant pour la circulation meridienne moyenne + ! Fonction de courant pour la circulation m\'eridienne moyenne psi = 0. do l = llm, 1, -1 do j = 1, jjm - psi(j, l) = psi(j, l + 1) + zv(j, l) - zv(j, l) = zv(j, l)*zfactv(j, l) + psi(j, l) = psi(j, l + 1) + v(j, l) + v(j, l) = v(j, l) * factv(j, l) enddo enddo - ! sorties proprement dites + ! Sorties proprement dites do iQ = 1, nQ do itr = 1, ntr - call histwrite(fileid, znom(itr, iQ), itau, zvQ(:, :, itr, iQ)) + call histwrite(fileid, znom(itr, iQ), itau, vq(:, :, itr, iQ)) enddo - call histwrite(fileid, 'psi'//nom(iQ), itau, psiQ(:, :llm, iQ)) + call histwrite(fileid, 'psi' // nom(iQ), itau, psiQ(:, :llm, iQ)) enddo call histwrite(fileid, 'masse', itau, zmasse) - call histwrite(fileid, 'v', itau, zv) - psi = psi*1.e-9 + call histwrite(fileid, 'v', itau, v) + psi = psi * 1e-9 call histwrite(fileid, 'psi', itau, psi(:, :llm)) - ! Intégrale verticale + ! Int\'egrale verticale - forall (iQ = 1: nQ, itr = 2: ntr) zavQ(:, itr, iQ) & - = sum(zvQ(:, :, itr, iQ) * zmasse, dim=2) / cv_2d(1, :) + forall (iQ = 1: nQ, itr = 2: ntr) avq(:, itr, iQ) & + = sum(vq(:, :, itr, iQ) * zmasse, dim=2) / cv_2d(1, :) do iQ = 1, nQ do itr = 2, ntr - call histwrite(fileid, 'a'//znom(itr, iQ), itau, zavQ(:, itr, iQ)) + call histwrite(fileid, 'a' // znom(itr, iQ), itau, avq(:, itr, iQ)) enddo enddo - ! On doit pouvoir tracer systematiquement la fonction de courant. icum = 0 endif writing_step