/[lmdze]/trunk/dyn3d/dynetat0.f
ViewVC logotype

Contents of /trunk/dyn3d/dynetat0.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 313 - (show annotations)
Mon Dec 10 15:54:30 2018 UTC (5 years, 5 months ago) by guez
File size: 22865 byte(s)
Remove module temps. Move variable itau_dyn from module temps to
module dynetat0_m, where it is defined.

Split module dynetat0_m into dynetat0_m and dynetat0_chosen_m. The
motivation is to create smaller modules. Procedures principal_cshift
and invert_zoomx had to stay in dynetat0_m because of circular
dependency. Now we will be able to move them away. Module variables
which are chosen by the user, not computed, in program ce0l go to
dynetat0_chosen_m: day_ref, annee_ref, clon, clat, grossismx,
grossismy, dzoomx, dzoomy, taux, tauy.

Move variable "pa" from module disvert_m to module
dynetat0_chosen_m. Define "pa" in dynetat0_chosen rather than etat0.

Define day_ref and annee_ref in procedure read_serre rather than
etat0.

1 module dynetat0_m
2
3 use dimensions, only: iim, jjm
4
5 IMPLICIT NONE
6
7 private iim, jjm, principal_cshift, invert_zoom_x, funcd
8
9 INTEGER, protected, save:: day_ini
10 ! day number at the beginning of the run, based at value 1 on
11 ! January 1st of annee_ref
12
13 real, protected, save:: rlatu(jjm + 1)
14 ! latitudes of points of the "scalar" and "u" grid, in rad
15
16 real, protected, save:: rlatv(jjm)
17 ! latitudes of points of the "v" grid, in rad, in decreasing order
18
19 real, protected, save:: rlonu(iim + 1)
20 ! longitudes of points of the "u" grid, in rad
21
22 real, protected, save:: rlonv(iim + 1)
23 ! longitudes of points of the "scalar" and "v" grid, in rad
24
25 real, protected, save:: xprimu(iim + 1), xprimv(iim + 1)
26 ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlon[uv])
27
28 REAL, protected, save:: xprimm025(iim + 1), xprimp025(iim + 1)
29 REAL, protected, save:: rlatu1(jjm), rlatu2(jjm), yprimu1(jjm), yprimu2(jjm)
30 REAL, save:: ang0, etot0, ptot0, ztot0, stot0
31 INTEGER, PARAMETER, private:: nmax = 30000
32 DOUBLE PRECISION, private, save:: abs_y
33 INTEGER, save:: itau_dyn
34
35 contains
36
37 SUBROUTINE dynetat0(vcov, ucov, teta, q, masse, ps, phis)
38
39 ! From dynetat0.F, version 1.2, 2004/06/22 11:45:30
40 ! Authors: P. Le Van, L. Fairhead
41 ! This procedure reads the initial state of the atmosphere.
42
43 ! Libraries:
44 use netcdf, only: NF90_NOWRITE, NF90_NOERR
45 use netcdf95, only: NF95_GET_VAR, nf95_open, nf95_inq_varid, NF95_CLOSE, &
46 NF95_Gw_VAR
47 use nr_util, only: assert
48
49 use conf_gcm_m, only: raz_date
50 use dimensions, only: iim, jjm, llm, nqmx
51 use dynetat0_chosen_m, only: day_ref
52 use iniadvtrac_m, only: tname
53
54 REAL, intent(out):: vcov(: , :, :) ! (iim + 1, jjm, llm)
55 REAL, intent(out):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm)
56 REAL, intent(out):: teta(:, :, :) ! (iim + 1, jjm + 1, llm)
57 REAL, intent(out):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx)
58 REAL, intent(out):: masse(:, :, :) ! (iim + 1, jjm + 1, llm)
59 REAL, intent(out):: ps(:, :) ! (iim + 1, jjm + 1) in Pa
60 REAL, intent(out):: phis(:, :) ! (iim + 1, jjm + 1)
61
62 ! Local variables:
63 INTEGER iq
64 REAL, allocatable:: tab_cntrl(:) ! tableau des param\`etres du run
65 INTEGER ierr, ncid, varid
66
67 !-----------------------------------------------------------------------
68
69 print *, "Call sequence information: dynetat0"
70
71 call assert((/size(ucov, 1), size(vcov, 1), size(masse, 1), size(ps, 1), &
72 size(phis, 1), size(q, 1), size(teta, 1)/) == iim + 1, "dynetat0 iim")
73 call assert((/size(ucov, 2), size(vcov, 2) + 1, size(masse, 2), &
74 size(ps, 2), size(phis, 2), size(q, 2), size(teta, 2)/) == jjm + 1, &
75 "dynetat0 jjm")
76 call assert((/size(vcov, 3), size(ucov, 3), size(teta, 3), size(q, 3), &
77 size(masse, 3)/) == llm, "dynetat0 llm")
78 call assert(size(q, 4) == nqmx, "dynetat0 q nqmx")
79
80 ! Fichier \'etat initial :
81 call nf95_open("start.nc", NF90_NOWRITE, ncid)
82
83 call nf95_inq_varid(ncid, "controle", varid)
84 call NF95_Gw_VAR(ncid, varid, tab_cntrl)
85
86 etot0 = tab_cntrl(13)
87 ptot0 = tab_cntrl(14)
88 ztot0 = tab_cntrl(15)
89 stot0 = tab_cntrl(16)
90 ang0 = tab_cntrl(17)
91
92 if (raz_date) then
93 print *, 'Resetting the date.'
94 day_ini = day_ref
95 itau_dyn = 0
96 else
97 itau_dyn = tab_cntrl(31)
98 day_ini = tab_cntrl(30)
99 end if
100
101 print *, "day_ini = ", day_ini
102
103 call NF95_INQ_VARID (ncid, "rlonu", varid)
104 call NF95_GET_VAR(ncid, varid, rlonu)
105
106 call NF95_INQ_VARID (ncid, "rlatu", varid)
107 call NF95_GET_VAR(ncid, varid, rlatu)
108
109 call NF95_INQ_VARID (ncid, "rlonv", varid)
110 call NF95_GET_VAR(ncid, varid, rlonv)
111
112 call NF95_INQ_VARID (ncid, "rlatv", varid)
113 call NF95_GET_VAR(ncid, varid, rlatv)
114
115 CALL nf95_inq_varid(ncid, 'xprimu', varid)
116 CALL nf95_get_var(ncid, varid, xprimu)
117
118 CALL nf95_inq_varid(ncid, 'xprimv', varid)
119 CALL nf95_get_var(ncid, varid, xprimv)
120
121 CALL nf95_inq_varid(ncid, 'xprimm025', varid)
122 CALL nf95_get_var(ncid, varid, xprimm025)
123
124 CALL nf95_inq_varid(ncid, 'xprimp025', varid)
125 CALL nf95_get_var(ncid, varid, xprimp025)
126
127 call NF95_INQ_VARID (ncid, "rlatu1", varid)
128 call NF95_GET_VAR(ncid, varid, rlatu1)
129
130 call NF95_INQ_VARID (ncid, "rlatu2", varid)
131 call NF95_GET_VAR(ncid, varid, rlatu2)
132
133 CALL nf95_inq_varid(ncid, 'yprimu1', varid)
134 CALL nf95_get_var(ncid, varid, yprimu1)
135
136 CALL nf95_inq_varid(ncid, 'yprimu2', varid)
137 CALL nf95_get_var(ncid, varid, yprimu2)
138
139 call NF95_INQ_VARID (ncid, "phis", varid)
140 call NF95_GET_VAR(ncid, varid, phis)
141
142 call NF95_INQ_VARID (ncid, "ucov", varid)
143 call NF95_GET_VAR(ncid, varid, ucov)
144
145 call NF95_INQ_VARID (ncid, "vcov", varid)
146 call NF95_GET_VAR(ncid, varid, vcov)
147
148 call NF95_INQ_VARID (ncid, "teta", varid)
149 call NF95_GET_VAR(ncid, varid, teta)
150
151 DO iq = 1, nqmx
152 call NF95_INQ_VARID(ncid, tname(iq), varid, ierr)
153 IF (ierr == NF90_NOERR) THEN
154 call NF95_GET_VAR(ncid, varid, q(:, :, :, iq))
155 ELSE
156 PRINT *, 'dynetat0: "' // tname(iq) // '" not found, ' // &
157 "setting it to zero..."
158 q(:, :, :, iq) = 0.
159 ENDIF
160 ENDDO
161
162 call NF95_INQ_VARID (ncid, "masse", varid)
163 call NF95_GET_VAR(ncid, varid, masse)
164
165 call NF95_INQ_VARID (ncid, "ps", varid)
166 call NF95_GET_VAR(ncid, varid, ps)
167 ! Check that there is a single value at each pole:
168 call assert(ps(1, 1) == ps(2:, 1), "dynetat0 ps north pole")
169 call assert(ps(1, jjm + 1) == ps(2:, jjm + 1), "dynetat0 ps south pole")
170
171 call NF95_CLOSE(ncid)
172
173 END SUBROUTINE dynetat0
174
175 !********************************************************************
176
177 SUBROUTINE fyhyp
178
179 ! From LMDZ4/libf/dyn3d/fyhyp.F, version 1.2, 2005/06/03 09:11:32
180
181 ! Author: P. Le Van, from analysis by R. Sadourny
182
183 ! Define rlatu, rlatv, rlatu2, yprimu2, rlatu1, yprimu1.
184
185 ! Calcule les latitudes et dérivées dans la grille du GCM pour une
186 ! fonction f(y) à dérivée tangente hyperbolique.
187
188 ! Il vaut mieux avoir : grossismy * dzoom < pi / 2
189
190 use coefpoly_m, only: coefpoly, a0, a1, a2, a3
191 USE dimensions, only: jjm
192 use dynetat0_chosen_m, only: clat, grossismy, dzoomy, tauy
193 use heavyside_m, only: heavyside
194
195 ! Local:
196
197 INTEGER, PARAMETER:: nmax=30000, nmax2=2*nmax
198 REAL dzoom ! distance totale de la zone du zoom (en radians)
199 DOUBLE PRECISION ylat(jjm + 1), yprim(jjm + 1)
200 DOUBLE PRECISION yuv
201 DOUBLE PRECISION, save:: yt(0:nmax2)
202 DOUBLE PRECISION fhyp(0:nmax2), beta
203 DOUBLE PRECISION, save:: ytprim(0:nmax2)
204 DOUBLE PRECISION fxm(0:nmax2)
205 DOUBLE PRECISION, save:: yf(0:nmax2)
206 DOUBLE PRECISION yypr(0:nmax2)
207 DOUBLE PRECISION yvrai(jjm + 1), yprimm(jjm + 1), ylatt(jjm + 1)
208 DOUBLE PRECISION pi, pis2, epsilon, pisjm
209 DOUBLE PRECISION yo1, yi, ylon2, ymoy, yprimin
210 DOUBLE PRECISION yfi, yf1, ffdy
211 DOUBLE PRECISION ypn
212 DOUBLE PRECISION, save::deply, y00
213
214 INTEGER i, j, it, ik, iter, jlat, jjpn
215 INTEGER, save:: jpn
216 DOUBLE PRECISION yi2, heavyy0, heavyy0m
217 DOUBLE PRECISION fa(0:nmax2), fb(0:nmax2)
218 REAL y0min, y0max
219
220 !-------------------------------------------------------------------
221
222 print *, "Call sequence information: fyhyp"
223
224 pi = 2.*asin(1.)
225 pis2 = pi/2.
226 pisjm = pi/real(jjm)
227 epsilon = 1e-3
228 dzoom = dzoomy*pi
229
230 DO i = 0, nmax2
231 yt(i) = -pis2 + real(i)*pi/nmax2
232 END DO
233
234 heavyy0m = heavyside(-clat)
235 heavyy0 = heavyside(clat)
236 y0min = 2.*clat*heavyy0m - pis2
237 y0max = 2.*clat*heavyy0 + pis2
238
239 fa = 999.999
240 fb = 999.999
241
242 DO i = 0, nmax2
243 IF (yt(i)<clat) THEN
244 fa(i) = tauy*(yt(i)-clat + dzoom/2.)
245 fb(i) = (yt(i)-2.*clat*heavyy0m + pis2)*(clat-yt(i))
246 ELSE IF (yt(i)>clat) THEN
247 fa(i) = tauy*(clat-yt(i) + dzoom/2.)
248 fb(i) = (2.*clat*heavyy0-yt(i) + pis2)*(yt(i)-clat)
249 END IF
250
251 IF (200.*fb(i)<-fa(i)) THEN
252 fhyp(i) = -1.
253 ELSE IF (200.*fb(i)<fa(i)) THEN
254 fhyp(i) = 1.
255 ELSE
256 fhyp(i) = tanh(fa(i)/fb(i))
257 END IF
258
259 IF (yt(i)==clat) fhyp(i) = 1.
260 IF (yt(i)==y0min .OR. yt(i)==y0max) fhyp(i) = -1.
261 END DO
262
263 ! Calcul de beta
264
265 ffdy = 0.
266
267 DO i = 1, nmax2
268 ymoy = 0.5*(yt(i-1) + yt(i))
269 IF (ymoy<clat) THEN
270 fa(i) = tauy*(ymoy-clat + dzoom/2.)
271 fb(i) = (ymoy-2.*clat*heavyy0m + pis2)*(clat-ymoy)
272 ELSE IF (ymoy>clat) THEN
273 fa(i) = tauy*(clat-ymoy + dzoom/2.)
274 fb(i) = (2.*clat*heavyy0-ymoy + pis2)*(ymoy-clat)
275 END IF
276
277 IF (200.*fb(i)<-fa(i)) THEN
278 fxm(i) = -1.
279 ELSE IF (200.*fb(i)<fa(i)) THEN
280 fxm(i) = 1.
281 ELSE
282 fxm(i) = tanh(fa(i)/fb(i))
283 END IF
284 IF (ymoy==clat) fxm(i) = 1.
285 IF (ymoy==y0min .OR. yt(i)==y0max) fxm(i) = -1.
286 ffdy = ffdy + fxm(i)*(yt(i)-yt(i-1))
287 END DO
288
289 beta = (grossismy*ffdy-pi)/(ffdy-pi)
290
291 IF (2. * beta - grossismy <= 0.) THEN
292 print *, 'Attention ! La valeur beta calculee dans la routine fyhyp ' &
293 // 'est mauvaise. Modifier les valeurs de grossismy, tauy ou ' &
294 // 'dzoomy et relancer.'
295 STOP 1
296 END IF
297
298 ! calcul de Ytprim
299
300 DO i = 0, nmax2
301 ytprim(i) = beta + (grossismy-beta)*fhyp(i)
302 END DO
303
304 ! Calcul de Yf
305
306 yf(0) = -pis2
307 DO i = 1, nmax2
308 yypr(i) = beta + (grossismy-beta)*fxm(i)
309 END DO
310
311 DO i = 1, nmax2
312 yf(i) = yf(i-1) + yypr(i)*(yt(i)-yt(i-1))
313 END DO
314
315 ! yuv = 0. si calcul des latitudes aux pts. U
316 ! yuv = 0.5 si calcul des latitudes aux pts. V
317
318 loop_ik: DO ik = 1, 4
319 IF (ik==1) THEN
320 yuv = 0.
321 jlat = jjm + 1
322 ELSE IF (ik==2) THEN
323 yuv = 0.5
324 jlat = jjm
325 ELSE IF (ik==3) THEN
326 yuv = 0.25
327 jlat = jjm
328 ELSE IF (ik==4) THEN
329 yuv = 0.75
330 jlat = jjm
331 END IF
332
333 yo1 = 0.
334 DO j = 1, jlat
335 yo1 = 0.
336 ylon2 = -pis2 + pisjm*(real(j) + yuv-1.)
337 yfi = ylon2
338
339 it = nmax2
340 DO while (it >= 1 .and. yfi < yf(it))
341 it = it - 1
342 END DO
343
344 yi = yt(it)
345 IF (it==nmax2) THEN
346 it = nmax2 - 1
347 yf(it + 1) = pis2
348 END IF
349
350 ! Interpolation entre yi(it) et yi(it + 1) pour avoir Y(yi)
351 ! et Y'(yi)
352
353 CALL coefpoly(yf(it), yf(it + 1), ytprim(it), ytprim(it + 1), &
354 yt(it), yt(it + 1))
355
356 yf1 = yf(it)
357 yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi
358
359 iter = 1
360 DO
361 yi = yi - (yf1-yfi)/yprimin
362 IF (abs(yi-yo1)<=epsilon .or. iter == 300) exit
363 yo1 = yi
364 yi2 = yi*yi
365 yf1 = a0 + a1*yi + a2*yi2 + a3*yi2*yi
366 yprimin = a1 + 2.*a2*yi + 3.*a3*yi2
367 END DO
368 if (abs(yi-yo1) > epsilon) then
369 print *, 'Pas de solution.', j, ylon2
370 STOP 1
371 end if
372
373 yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi
374 yprim(j) = pi/(jjm*yprimin)
375 yvrai(j) = yi
376 END DO
377
378 DO j = 1, jlat - 1
379 IF (yvrai(j + 1)<yvrai(j)) THEN
380 print *, 'Problème avec rlat(', j + 1, ') plus petit que rlat(', &
381 j, ')'
382 STOP 1
383 END IF
384 END DO
385
386 print *, 'Reorganisation des latitudes pour avoir entre - pi/2 et pi/2'
387
388 IF (ik==1) THEN
389 ypn = pis2
390 DO j = jjm + 1, 1, -1
391 IF (yvrai(j)<=ypn) exit
392 END DO
393
394 jpn = j
395 y00 = yvrai(jpn)
396 deply = pis2 - y00
397 END IF
398
399 DO j = 1, jjm + 1 - jpn
400 ylatt(j) = -pis2 - y00 + yvrai(jpn + j-1)
401 yprimm(j) = yprim(jpn + j-1)
402 END DO
403
404 jjpn = jpn
405 IF (jlat==jjm) jjpn = jpn - 1
406
407 DO j = 1, jjpn
408 ylatt(j + jjm + 1-jpn) = yvrai(j) + deply
409 yprimm(j + jjm + 1-jpn) = yprim(j)
410 END DO
411
412 ! Fin de la reorganisation
413
414 DO j = 1, jlat
415 ylat(j) = ylatt(jlat + 1-j)
416 yprim(j) = yprimm(jlat + 1-j)
417 END DO
418
419 DO j = 1, jlat
420 yvrai(j) = ylat(j)*180./pi
421 END DO
422
423 IF (ik==1) THEN
424 DO j = 1, jjm + 1
425 rlatu(j) = ylat(j)
426 END DO
427 ELSE IF (ik==2) THEN
428 DO j = 1, jjm
429 rlatv(j) = ylat(j)
430 END DO
431 ELSE IF (ik==3) THEN
432 DO j = 1, jjm
433 rlatu2(j) = ylat(j)
434 yprimu2(j) = yprim(j)
435 END DO
436 ELSE IF (ik==4) THEN
437 DO j = 1, jjm
438 rlatu1(j) = ylat(j)
439 yprimu1(j) = yprim(j)
440 END DO
441 END IF
442 END DO loop_ik
443
444 DO j = 1, jjm
445 ylat(j) = rlatu(j) - rlatu(j + 1)
446 END DO
447
448 DO j = 1, jjm
449 IF (rlatu1(j) <= rlatu2(j)) THEN
450 print *, 'Attention ! rlatu1 < rlatu2 ', rlatu1(j), rlatu2(j), j
451 STOP 13
452 ENDIF
453
454 IF (rlatu2(j) <= rlatu(j+1)) THEN
455 print *, 'Attention ! rlatu2 < rlatup1 ', rlatu2(j), rlatu(j+1), j
456 STOP 14
457 ENDIF
458
459 IF (rlatu(j) <= rlatu1(j)) THEN
460 print *, ' Attention ! rlatu < rlatu1 ', rlatu(j), rlatu1(j), j
461 STOP 15
462 ENDIF
463
464 IF (rlatv(j) <= rlatu2(j)) THEN
465 print *, ' Attention ! rlatv < rlatu2 ', rlatv(j), rlatu2(j), j
466 STOP 16
467 ENDIF
468
469 IF (rlatv(j) >= rlatu1(j)) THEN
470 print *, ' Attention ! rlatv > rlatu1 ', rlatv(j), rlatu1(j), j
471 STOP 17
472 ENDIF
473
474 IF (rlatv(j) >= rlatu(j)) THEN
475 print *, ' Attention ! rlatv > rlatu ', rlatv(j), rlatu(j), j
476 STOP 18
477 ENDIF
478 ENDDO
479
480 print *, 'Latitudes'
481 print 3, minval(ylat(:jjm)) *180d0/pi, maxval(ylat(:jjm))*180d0/pi
482
483 3 Format(1x, ' Au centre du zoom, la longueur de la maille est', &
484 ' d environ ', f0.2, ' degres ', /, &
485 ' alors que la maille en dehors de la zone du zoom est ', &
486 "d'environ ", f0.2, ' degres ')
487
488 rlatu(1) = pi / 2.
489 rlatu(jjm + 1) = -rlatu(1)
490
491 END SUBROUTINE fyhyp
492
493 !********************************************************************
494
495 SUBROUTINE fxhyp
496
497 ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32
498 ! Author: P. Le Van, from formulas by R. Sadourny
499
500 ! Compute xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025.
501
502 ! Calcule les longitudes et dérivées dans la grille du GCM pour
503 ! une fonction $x_f(\tilde x)$ à dérivée tangente hyperbolique.
504
505 ! Il vaut mieux avoir : grossismx $\times$ delta < pi
506
507 ! Le premier point scalaire pour une grille regulière (grossismx =
508 ! 1) avec clon = 0 est à - 180 degrés.
509
510 use nr_util, only: pi, pi_d, twopi, twopi_d, arth, assert, rad_to_deg
511
512 USE dimensions, ONLY: iim
513 use dynetat0_chosen_m, only: clon, grossismx, dzoomx, taux
514 use tanh_cautious_m, only: tanh_cautious
515
516 ! Local:
517 real rlonm025(iim + 1), rlonp025(iim + 1), d_rlonv(iim)
518 REAL delta, h
519 DOUBLE PRECISION, dimension(0:nmax):: xtild, fhyp, G, Xf, ffdx
520 DOUBLE PRECISION beta
521 INTEGER i, is2
522 DOUBLE PRECISION xmoy(nmax), fxm(nmax)
523
524 !----------------------------------------------------------------------
525
526 print *, "Call sequence information: fxhyp"
527
528 if (grossismx == 1.) then
529 h = twopi / iim
530
531 xprimm025(:iim) = h
532 xprimp025(:iim) = h
533 xprimv(:iim) = h
534 xprimu(:iim) = h
535
536 rlonv(:iim) = arth(- pi + clon, h, iim)
537 rlonm025(:iim) = rlonv(:iim) - 0.25 * h
538 rlonp025(:iim) = rlonv(:iim) + 0.25 * h
539 rlonu(:iim) = rlonv(:iim) + 0.5 * h
540 else
541 delta = dzoomx * twopi_d
542 xtild = arth(0d0, pi_d / nmax, nmax + 1)
543 forall (i = 1:nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i))
544
545 ! Compute fhyp:
546 fhyp(1:nmax - 1) = tanh_cautious(taux * (delta / 2d0 &
547 - xtild(1:nmax - 1)), xtild(1:nmax - 1) &
548 * (pi_d - xtild(1:nmax - 1)))
549 fhyp(0) = 1d0
550 fhyp(nmax) = -1d0
551
552 fxm = tanh_cautious(taux * (delta / 2d0 - xmoy), xmoy * (pi_d - xmoy))
553
554 ! Compute \int_0 ^{\tilde x} F:
555
556 ffdx(0) = 0d0
557
558 DO i = 1, nmax
559 ffdx(i) = ffdx(i - 1) + fxm(i) * (xtild(i) - xtild(i-1))
560 END DO
561
562 print *, "ffdx(nmax) = ", ffdx(nmax)
563 beta = (pi_d - grossismx * ffdx(nmax)) / (pi_d - ffdx(nmax))
564 print *, "beta = ", beta
565
566 IF (2d0 * beta - grossismx <= 0d0) THEN
567 print *, 'Bad choice of grossismx, taux, dzoomx.'
568 print *, 'Decrease dzoomx or grossismx.'
569 STOP 1
570 END IF
571
572 G = beta + (grossismx - beta) * fhyp
573
574 Xf(:nmax - 1) = beta * xtild(:nmax - 1) + (grossismx - beta) &
575 * ffdx(:nmax - 1)
576 Xf(nmax) = pi_d
577
578 call invert_zoom_x(beta, xf, xtild, G, rlonm025(:iim), xprimm025(:iim), &
579 xuv = - 0.25d0)
580 call invert_zoom_x(beta, xf, xtild, G, rlonv(:iim), xprimv(:iim), &
581 xuv = 0d0)
582 call invert_zoom_x(beta, xf, xtild, G, rlonu(:iim), xprimu(:iim), &
583 xuv = 0.5d0)
584 call invert_zoom_x(beta, xf, xtild, G, rlonp025(:iim), xprimp025(:iim), &
585 xuv = 0.25d0)
586 end if
587
588 is2 = 0
589
590 IF (MINval(rlonm025(:iim)) < - pi - 0.1 &
591 .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN
592 IF (clon <= 0.) THEN
593 is2 = 1
594
595 do while (rlonm025(is2) < - pi .and. is2 < iim)
596 is2 = is2 + 1
597 end do
598
599 call assert(rlonm025(is2) >= - pi, &
600 "fxhyp -- rlonm025 should be >= - pi")
601 ELSE
602 is2 = iim
603
604 do while (rlonm025(is2) > pi .and. is2 > 1)
605 is2 = is2 - 1
606 end do
607
608 if (rlonm025(is2) > pi) then
609 print *, 'Rlonm025 plus grand que pi !'
610 STOP 1
611 end if
612 END IF
613 END IF
614
615 call principal_cshift(is2, rlonm025, xprimm025)
616 call principal_cshift(is2, rlonv, xprimv)
617 call principal_cshift(is2, rlonu, xprimu)
618 call principal_cshift(is2, rlonp025, xprimp025)
619
620 forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i)
621 print *, "Minimum longitude step:", MINval(d_rlonv) * rad_to_deg, "degrees"
622 print *, "Maximum longitude step:", MAXval(d_rlonv) * rad_to_deg, "degrees"
623
624 ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu:
625 DO i = 1, iim + 1
626 IF (rlonp025(i) < rlonv(i)) THEN
627 print *, 'rlonp025(', i, ') = ', rlonp025(i)
628 print *, "< rlonv(", i, ") = ", rlonv(i)
629 STOP 1
630 END IF
631
632 IF (rlonv(i) < rlonm025(i)) THEN
633 print *, 'rlonv(', i, ') = ', rlonv(i)
634 print *, "< rlonm025(", i, ") = ", rlonm025(i)
635 STOP 1
636 END IF
637
638 IF (rlonp025(i) > rlonu(i)) THEN
639 print *, 'rlonp025(', i, ') = ', rlonp025(i)
640 print *, "> rlonu(", i, ") = ", rlonu(i)
641 STOP 1
642 END IF
643 END DO
644
645 END SUBROUTINE fxhyp
646
647 !********************************************************************
648
649 subroutine principal_cshift(is2, xlon, xprimm)
650
651 ! Add or subtract 2 pi so that xlon is near [-pi, pi], then cshift
652 ! so that xlon is in ascending order. Make the same cshift on
653 ! xprimm. In this module to avoid circular dependency.
654
655 use nr_util, only: twopi
656
657 use dynetat0_chosen_m, only: clon
658 USE dimensions, ONLY: iim
659
660 integer, intent(in):: is2
661 real, intent(inout):: xlon(:), xprimm(:) ! (iim + 1)
662
663 !-----------------------------------------------------
664
665 if (is2 /= 0) then
666 IF (clon <= 0.) THEN
667 IF (is2 /= 1) THEN
668 xlon(:is2 - 1) = xlon(:is2 - 1) + twopi
669 xlon(:iim) = cshift(xlon(:iim), shift = is2 - 1)
670 xprimm(:iim) = cshift(xprimm(:iim), shift = is2 - 1)
671 END IF
672 else
673 xlon(is2 + 1:iim) = xlon(is2 + 1:iim) - twopi
674 xlon(:iim) = cshift(xlon(:iim), shift = is2)
675 xprimm(:iim) = cshift(xprimm(:iim), shift = is2)
676 end IF
677 end if
678
679 xlon(iim + 1) = xlon(1) + twopi
680 xprimm(iim + 1) = xprimm(1)
681
682 end subroutine principal_cshift
683
684 !**********************************************************************
685
686 subroutine invert_zoom_x(beta, xf, xtild, G, xlon, xprim, xuv)
687
688 ! In this module to avoid circular dependency.
689
690 use coefpoly_m, only: coefpoly, a1, a2, a3
691 use dynetat0_chosen_m, only: clon, grossismx
692 USE dimensions, ONLY: iim
693 use nr_util, only: pi_d, twopi_d
694 use numer_rec_95, only: hunt, rtsafe
695
696 DOUBLE PRECISION, intent(in):: beta, Xf(0:), xtild(0:), G(0:) ! (0:nmax)
697
698 real, intent(out):: xlon(:), xprim(:) ! (iim)
699
700 DOUBLE PRECISION, intent(in):: xuv
701 ! between - 0.25 and 0.5
702 ! 0. si calcul aux points scalaires
703 ! 0.5 si calcul aux points U
704
705 ! Local:
706 DOUBLE PRECISION Y
707 DOUBLE PRECISION h ! step of the uniform grid
708 integer i, it
709
710 DOUBLE PRECISION xvrai(iim), Gvrai(iim)
711 ! intermediary variables because xlon and xprim are single precision
712
713 !------------------------------------------------------------------
714
715 print *, "Call sequence information: invert_zoom_x"
716 it = 0 ! initial guess
717 h = twopi_d / iim
718
719 DO i = 1, iim
720 Y = - pi_d + (i + xuv - 0.75d0) * h
721 ! - pi <= y < pi
722 abs_y = abs(y)
723
724 ! Distinguish boundaries in order to avoid roundoff error.
725 ! funcd should be exactly equal to 0 at xtild(it) or xtild(it +
726 ! 1) and could be very small with the wrong sign so rtsafe
727 ! would fail.
728 if (abs_y == 0d0) then
729 xvrai(i) = 0d0
730 gvrai(i) = grossismx
731 else if (abs_y == pi_d) then
732 xvrai(i) = pi_d
733 gvrai(i) = 2d0 * beta - grossismx
734 else
735 call hunt(xf, abs_y, it, my_lbound = 0)
736 ! {0 <= it <= nmax - 1}
737
738 ! Calcul de xvrai(i) et Gvrai(i)
739 CALL coefpoly(Xf(it), Xf(it + 1), G(it), G(it + 1), xtild(it), &
740 xtild(it + 1))
741 xvrai(i) = rtsafe(funcd, xtild(it), xtild(it + 1), xacc = 1d-6)
742 Gvrai(i) = a1 + xvrai(i) * (2d0 * a2 + xvrai(i) * 3d0 * a3)
743 end if
744
745 if (y < 0d0) xvrai(i) = - xvrai(i)
746 end DO
747
748 DO i = 1, iim -1
749 IF (xvrai(i + 1) < xvrai(i)) THEN
750 print *, 'xvrai(', i + 1, ') < xvrai(', i, ')'
751 STOP 1
752 END IF
753 END DO
754
755 xlon = xvrai + clon
756 xprim = h / Gvrai
757
758 end subroutine invert_zoom_x
759
760 !**********************************************************************
761
762 SUBROUTINE funcd(x, fval, fderiv)
763
764 use coefpoly_m, only: a0, a1, a2, a3
765
766 DOUBLE PRECISION, INTENT(IN):: x
767 DOUBLE PRECISION, INTENT(OUT):: fval, fderiv
768
769 fval = a0 + x * (a1 + x * (a2 + x * a3)) - abs_y
770 fderiv = a1 + x * (2d0 * a2 + x * 3d0 * a3)
771
772 END SUBROUTINE funcd
773
774 end module dynetat0_m

  ViewVC Help
Powered by ViewVC 1.1.21