/[lmdze]/trunk/dyn3d/dynetat0.f
ViewVC logotype

Contents of /trunk/dyn3d/dynetat0.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 312 - (show annotations)
Fri Dec 7 14:17:11 2018 UTC (5 years, 5 months ago) by guez
File size: 25447 byte(s)
In procedure interfsur_lim, deja_lu_sur is redundant with jour_lu_sur.

1 module dynetat0_m
2
3 use dimensions, only: iim, jjm
4
5 IMPLICIT NONE
6
7 private iim, jjm, principal_cshift, invert_zoom_x, funcd
8
9 INTEGER, protected:: day_ini
10 ! day number at the beginning of the run, based at value 1 on
11 ! January 1st of annee_ref
12
13 integer:: day_ref = 1 ! jour de l'ann\'ee de l'\'etat initial
14 ! (= 350 si 20 d\'ecembre par exemple)
15
16 integer:: annee_ref = 1998 ! Annee de l'etat initial (avec 4 chiffres)
17
18 REAL, protected:: clon ! longitude of the center of the zoom, in rad
19 real, protected:: clat ! latitude of the center of the zoom, in rad
20
21 real, protected:: grossismx, grossismy
22 ! facteurs de grossissement du zoom, selon la longitude et la latitude
23 ! = 2 si 2 fois, = 3 si 3 fois, etc.
24
25 real, protected:: dzoomx, dzoomy
26 ! extensions en longitude et latitude de la zone du zoom (fractions
27 ! de la zone totale)
28
29 real, protected:: taux, tauy
30 ! raideur de la transition de l'int\'erieur \`a l'ext\'erieur du zoom
31
32 real, protected:: rlatu(jjm + 1)
33 ! latitudes of points of the "scalar" and "u" grid, in rad
34
35 real, protected:: rlatv(jjm)
36 ! latitudes of points of the "v" grid, in rad, in decreasing order
37
38 real, protected:: rlonu(iim + 1)
39 ! longitudes of points of the "u" grid, in rad
40
41 real, protected:: rlonv(iim + 1)
42 ! longitudes of points of the "scalar" and "v" grid, in rad
43
44 real, protected:: xprimu(iim + 1), xprimv(iim + 1)
45 ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlon[uv])
46
47 REAL, protected:: xprimm025(iim + 1), xprimp025(iim + 1)
48 REAL, protected:: rlatu1(jjm), rlatu2(jjm), yprimu1(jjm), yprimu2(jjm)
49 REAL ang0, etot0, ptot0, ztot0, stot0
50 INTEGER, PARAMETER, private:: nmax = 30000
51 DOUBLE PRECISION, private:: abs_y
52
53 save
54
55 contains
56
57 SUBROUTINE dynetat0(vcov, ucov, teta, q, masse, ps, phis)
58
59 ! From dynetat0.F, version 1.2, 2004/06/22 11:45:30
60 ! Authors: P. Le Van, L. Fairhead
61 ! This procedure reads the initial state of the atmosphere.
62
63 use comconst, only: dtvr
64 use conf_gcm_m, only: raz_date
65 use dimensions, only: iim, jjm, llm, nqmx
66 use disvert_m, only: pa
67 use iniadvtrac_m, only: tname
68 use netcdf, only: NF90_NOWRITE, NF90_NOERR
69 use netcdf95, only: NF95_GET_VAR, nf95_open, nf95_inq_varid, NF95_CLOSE, &
70 NF95_Gw_VAR
71 use nr_util, only: assert
72 use temps, only: itau_dyn
73 use unit_nml_m, only: unit_nml
74
75 REAL, intent(out):: vcov(: , :, :) ! (iim + 1, jjm, llm)
76 REAL, intent(out):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm)
77 REAL, intent(out):: teta(:, :, :) ! (iim + 1, jjm + 1, llm)
78 REAL, intent(out):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx)
79 REAL, intent(out):: masse(:, :, :) ! (iim + 1, jjm + 1, llm)
80 REAL, intent(out):: ps(:, :) ! (iim + 1, jjm + 1) in Pa
81 REAL, intent(out):: phis(:, :) ! (iim + 1, jjm + 1)
82
83 ! Local variables:
84 INTEGER iq
85 REAL, allocatable:: tab_cntrl(:) ! tableau des param\`etres du run
86 INTEGER ierr, ncid, varid
87
88 namelist /dynetat0_nml/ day_ref, annee_ref
89
90 !-----------------------------------------------------------------------
91
92 print *, "Call sequence information: dynetat0"
93
94 call assert((/size(ucov, 1), size(vcov, 1), size(masse, 1), size(ps, 1), &
95 size(phis, 1), size(q, 1), size(teta, 1)/) == iim + 1, "dynetat0 iim")
96 call assert((/size(ucov, 2), size(vcov, 2) + 1, size(masse, 2), &
97 size(ps, 2), size(phis, 2), size(q, 2), size(teta, 2)/) == jjm + 1, &
98 "dynetat0 jjm")
99 call assert((/size(vcov, 3), size(ucov, 3), size(teta, 3), size(q, 3), &
100 size(masse, 3)/) == llm, "dynetat0 llm")
101 call assert(size(q, 4) == nqmx, "dynetat0 q nqmx")
102
103 ! Fichier \'etat initial :
104 call nf95_open("start.nc", NF90_NOWRITE, ncid)
105
106 call nf95_inq_varid(ncid, "controle", varid)
107 call NF95_Gw_VAR(ncid, varid, tab_cntrl)
108
109 call assert(int(tab_cntrl(1)) == iim, "dynetat0 tab_cntrl iim")
110 call assert(int(tab_cntrl(2)) == jjm, "dynetat0 tab_cntrl jjm")
111 call assert(int(tab_cntrl(3)) == llm, "dynetat0 tab_cntrl llm")
112
113 IF (dtvr /= tab_cntrl(12)) THEN
114 print *, 'Warning: the time steps from day_step and "start.nc" ' // &
115 'are different.'
116 print *, 'dtvr from day_step: ', dtvr
117 print *, 'dtvr from "start.nc": ', tab_cntrl(12)
118 print *, 'Using the value from day_step.'
119 ENDIF
120
121 etot0 = tab_cntrl(13)
122 ptot0 = tab_cntrl(14)
123 ztot0 = tab_cntrl(15)
124 stot0 = tab_cntrl(16)
125 ang0 = tab_cntrl(17)
126 pa = tab_cntrl(18)
127
128 clon = tab_cntrl(20)
129 clat = tab_cntrl(21)
130 grossismx = tab_cntrl(22)
131 grossismy = tab_cntrl(23)
132 dzoomx = tab_cntrl(25)
133 dzoomy = tab_cntrl(26)
134 taux = tab_cntrl(28)
135 tauy = tab_cntrl(29)
136
137 print *, "Enter namelist 'dynetat0_nml'."
138 read(unit=*, nml=dynetat0_nml)
139 write(unit_nml, nml=dynetat0_nml)
140
141 if (raz_date) then
142 print *, 'Resetting the date, using the namelist.'
143 day_ini = day_ref
144 itau_dyn = 0
145 else
146 day_ref = tab_cntrl(4)
147 annee_ref = tab_cntrl(5)
148 itau_dyn = tab_cntrl(31)
149 day_ini = tab_cntrl(30)
150 end if
151
152 print *, "day_ini = ", day_ini
153
154 call NF95_INQ_VARID (ncid, "rlonu", varid)
155 call NF95_GET_VAR(ncid, varid, rlonu)
156
157 call NF95_INQ_VARID (ncid, "rlatu", varid)
158 call NF95_GET_VAR(ncid, varid, rlatu)
159
160 call NF95_INQ_VARID (ncid, "rlonv", varid)
161 call NF95_GET_VAR(ncid, varid, rlonv)
162
163 call NF95_INQ_VARID (ncid, "rlatv", varid)
164 call NF95_GET_VAR(ncid, varid, rlatv)
165
166 CALL nf95_inq_varid(ncid, 'xprimu', varid)
167 CALL nf95_get_var(ncid, varid, xprimu)
168
169 CALL nf95_inq_varid(ncid, 'xprimv', varid)
170 CALL nf95_get_var(ncid, varid, xprimv)
171
172 CALL nf95_inq_varid(ncid, 'xprimm025', varid)
173 CALL nf95_get_var(ncid, varid, xprimm025)
174
175 CALL nf95_inq_varid(ncid, 'xprimp025', varid)
176 CALL nf95_get_var(ncid, varid, xprimp025)
177
178 call NF95_INQ_VARID (ncid, "rlatu1", varid)
179 call NF95_GET_VAR(ncid, varid, rlatu1)
180
181 call NF95_INQ_VARID (ncid, "rlatu2", varid)
182 call NF95_GET_VAR(ncid, varid, rlatu2)
183
184 CALL nf95_inq_varid(ncid, 'yprimu1', varid)
185 CALL nf95_get_var(ncid, varid, yprimu1)
186
187 CALL nf95_inq_varid(ncid, 'yprimu2', varid)
188 CALL nf95_get_var(ncid, varid, yprimu2)
189
190 call NF95_INQ_VARID (ncid, "phis", varid)
191 call NF95_GET_VAR(ncid, varid, phis)
192
193 call NF95_INQ_VARID (ncid, "ucov", varid)
194 call NF95_GET_VAR(ncid, varid, ucov)
195
196 call NF95_INQ_VARID (ncid, "vcov", varid)
197 call NF95_GET_VAR(ncid, varid, vcov)
198
199 call NF95_INQ_VARID (ncid, "teta", varid)
200 call NF95_GET_VAR(ncid, varid, teta)
201
202 DO iq = 1, nqmx
203 call NF95_INQ_VARID(ncid, tname(iq), varid, ierr)
204 IF (ierr == NF90_NOERR) THEN
205 call NF95_GET_VAR(ncid, varid, q(:, :, :, iq))
206 ELSE
207 PRINT *, 'dynetat0: "' // tname(iq) // '" not found, ' // &
208 "setting it to zero..."
209 q(:, :, :, iq) = 0.
210 ENDIF
211 ENDDO
212
213 call NF95_INQ_VARID (ncid, "masse", varid)
214 call NF95_GET_VAR(ncid, varid, masse)
215
216 call NF95_INQ_VARID (ncid, "ps", varid)
217 call NF95_GET_VAR(ncid, varid, ps)
218 ! Check that there is a single value at each pole:
219 call assert(ps(1, 1) == ps(2:, 1), "dynetat0 ps north pole")
220 call assert(ps(1, jjm + 1) == ps(2:, jjm + 1), "dynetat0 ps south pole")
221
222 call NF95_CLOSE(ncid)
223
224 END SUBROUTINE dynetat0
225
226 !********************************************************************
227
228 subroutine read_serre
229
230 use unit_nml_m, only: unit_nml
231 use nr_util, only: assert, pi
232
233 REAL:: clon_deg = 0. ! longitude of the center of the zoom, in degrees
234 real:: clat_deg = 0. ! latitude of the center of the zoom, in degrees
235
236 namelist /serre_nml/ clon_deg, clat_deg, grossismx, grossismy, dzoomx, &
237 dzoomy, taux, tauy
238
239 !-------------------------------------------------
240
241 ! Default values:
242 grossismx = 1.
243 grossismy = 1.
244 dzoomx = 0.2
245 dzoomy = 0.2
246 taux = 3.
247 tauy = 3.
248
249 print *, "Enter namelist 'serre_nml'."
250 read(unit=*, nml=serre_nml)
251 write(unit_nml, nml=serre_nml)
252
253 call assert(grossismx >= 1. .and. grossismy >= 1., "read_serre grossism")
254 call assert(dzoomx > 0., dzoomx < 1., dzoomy < 1., &
255 "read_serre dzoomx dzoomy")
256 clon = clon_deg / 180. * pi
257 clat = clat_deg / 180. * pi
258
259 end subroutine read_serre
260
261 !********************************************************************
262
263 SUBROUTINE fyhyp
264
265 ! From LMDZ4/libf/dyn3d/fyhyp.F, version 1.2, 2005/06/03 09:11:32
266
267 ! Author: P. Le Van, from analysis by R. Sadourny
268
269 ! Define rlatu, rlatv, rlatu2, yprimu2, rlatu1, yprimu1, using
270 ! clat, grossismy, dzoomy, tauy.
271
272 ! Calcule les latitudes et dérivées dans la grille du GCM pour une
273 ! fonction f(y) à dérivée tangente hyperbolique.
274
275 ! Il vaut mieux avoir : grossismy * dzoom < pi / 2
276
277 use coefpoly_m, only: coefpoly, a0, a1, a2, a3
278 USE dimensions, only: jjm
279 use heavyside_m, only: heavyside
280
281 ! Local:
282
283 INTEGER, PARAMETER:: nmax=30000, nmax2=2*nmax
284 REAL dzoom ! distance totale de la zone du zoom (en radians)
285 DOUBLE PRECISION ylat(jjm + 1), yprim(jjm + 1)
286 DOUBLE PRECISION yuv
287 DOUBLE PRECISION, save:: yt(0:nmax2)
288 DOUBLE PRECISION fhyp(0:nmax2), beta
289 DOUBLE PRECISION, save:: ytprim(0:nmax2)
290 DOUBLE PRECISION fxm(0:nmax2)
291 DOUBLE PRECISION, save:: yf(0:nmax2)
292 DOUBLE PRECISION yypr(0:nmax2)
293 DOUBLE PRECISION yvrai(jjm + 1), yprimm(jjm + 1), ylatt(jjm + 1)
294 DOUBLE PRECISION pi, pis2, epsilon, pisjm
295 DOUBLE PRECISION yo1, yi, ylon2, ymoy, yprimin
296 DOUBLE PRECISION yfi, yf1, ffdy
297 DOUBLE PRECISION ypn
298 DOUBLE PRECISION, save::deply, y00
299
300 INTEGER i, j, it, ik, iter, jlat, jjpn
301 INTEGER, save:: jpn
302 DOUBLE PRECISION yi2, heavyy0, heavyy0m
303 DOUBLE PRECISION fa(0:nmax2), fb(0:nmax2)
304 REAL y0min, y0max
305
306 !-------------------------------------------------------------------
307
308 print *, "Call sequence information: fyhyp"
309
310 pi = 2.*asin(1.)
311 pis2 = pi/2.
312 pisjm = pi/real(jjm)
313 epsilon = 1e-3
314 dzoom = dzoomy*pi
315
316 DO i = 0, nmax2
317 yt(i) = -pis2 + real(i)*pi/nmax2
318 END DO
319
320 heavyy0m = heavyside(-clat)
321 heavyy0 = heavyside(clat)
322 y0min = 2.*clat*heavyy0m - pis2
323 y0max = 2.*clat*heavyy0 + pis2
324
325 fa = 999.999
326 fb = 999.999
327
328 DO i = 0, nmax2
329 IF (yt(i)<clat) THEN
330 fa(i) = tauy*(yt(i)-clat + dzoom/2.)
331 fb(i) = (yt(i)-2.*clat*heavyy0m + pis2)*(clat-yt(i))
332 ELSE IF (yt(i)>clat) THEN
333 fa(i) = tauy*(clat-yt(i) + dzoom/2.)
334 fb(i) = (2.*clat*heavyy0-yt(i) + pis2)*(yt(i)-clat)
335 END IF
336
337 IF (200.*fb(i)<-fa(i)) THEN
338 fhyp(i) = -1.
339 ELSE IF (200.*fb(i)<fa(i)) THEN
340 fhyp(i) = 1.
341 ELSE
342 fhyp(i) = tanh(fa(i)/fb(i))
343 END IF
344
345 IF (yt(i)==clat) fhyp(i) = 1.
346 IF (yt(i)==y0min .OR. yt(i)==y0max) fhyp(i) = -1.
347 END DO
348
349 ! Calcul de beta
350
351 ffdy = 0.
352
353 DO i = 1, nmax2
354 ymoy = 0.5*(yt(i-1) + yt(i))
355 IF (ymoy<clat) THEN
356 fa(i) = tauy*(ymoy-clat + dzoom/2.)
357 fb(i) = (ymoy-2.*clat*heavyy0m + pis2)*(clat-ymoy)
358 ELSE IF (ymoy>clat) THEN
359 fa(i) = tauy*(clat-ymoy + dzoom/2.)
360 fb(i) = (2.*clat*heavyy0-ymoy + pis2)*(ymoy-clat)
361 END IF
362
363 IF (200.*fb(i)<-fa(i)) THEN
364 fxm(i) = -1.
365 ELSE IF (200.*fb(i)<fa(i)) THEN
366 fxm(i) = 1.
367 ELSE
368 fxm(i) = tanh(fa(i)/fb(i))
369 END IF
370 IF (ymoy==clat) fxm(i) = 1.
371 IF (ymoy==y0min .OR. yt(i)==y0max) fxm(i) = -1.
372 ffdy = ffdy + fxm(i)*(yt(i)-yt(i-1))
373 END DO
374
375 beta = (grossismy*ffdy-pi)/(ffdy-pi)
376
377 IF (2. * beta - grossismy <= 0.) THEN
378 print *, 'Attention ! La valeur beta calculee dans la routine fyhyp ' &
379 // 'est mauvaise. Modifier les valeurs de grossismy, tauy ou ' &
380 // 'dzoomy et relancer.'
381 STOP 1
382 END IF
383
384 ! calcul de Ytprim
385
386 DO i = 0, nmax2
387 ytprim(i) = beta + (grossismy-beta)*fhyp(i)
388 END DO
389
390 ! Calcul de Yf
391
392 yf(0) = -pis2
393 DO i = 1, nmax2
394 yypr(i) = beta + (grossismy-beta)*fxm(i)
395 END DO
396
397 DO i = 1, nmax2
398 yf(i) = yf(i-1) + yypr(i)*(yt(i)-yt(i-1))
399 END DO
400
401 ! yuv = 0. si calcul des latitudes aux pts. U
402 ! yuv = 0.5 si calcul des latitudes aux pts. V
403
404 loop_ik: DO ik = 1, 4
405 IF (ik==1) THEN
406 yuv = 0.
407 jlat = jjm + 1
408 ELSE IF (ik==2) THEN
409 yuv = 0.5
410 jlat = jjm
411 ELSE IF (ik==3) THEN
412 yuv = 0.25
413 jlat = jjm
414 ELSE IF (ik==4) THEN
415 yuv = 0.75
416 jlat = jjm
417 END IF
418
419 yo1 = 0.
420 DO j = 1, jlat
421 yo1 = 0.
422 ylon2 = -pis2 + pisjm*(real(j) + yuv-1.)
423 yfi = ylon2
424
425 it = nmax2
426 DO while (it >= 1 .and. yfi < yf(it))
427 it = it - 1
428 END DO
429
430 yi = yt(it)
431 IF (it==nmax2) THEN
432 it = nmax2 - 1
433 yf(it + 1) = pis2
434 END IF
435
436 ! Interpolation entre yi(it) et yi(it + 1) pour avoir Y(yi)
437 ! et Y'(yi)
438
439 CALL coefpoly(yf(it), yf(it + 1), ytprim(it), ytprim(it + 1), &
440 yt(it), yt(it + 1))
441
442 yf1 = yf(it)
443 yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi
444
445 iter = 1
446 DO
447 yi = yi - (yf1-yfi)/yprimin
448 IF (abs(yi-yo1)<=epsilon .or. iter == 300) exit
449 yo1 = yi
450 yi2 = yi*yi
451 yf1 = a0 + a1*yi + a2*yi2 + a3*yi2*yi
452 yprimin = a1 + 2.*a2*yi + 3.*a3*yi2
453 END DO
454 if (abs(yi-yo1) > epsilon) then
455 print *, 'Pas de solution.', j, ylon2
456 STOP 1
457 end if
458
459 yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi
460 yprim(j) = pi/(jjm*yprimin)
461 yvrai(j) = yi
462 END DO
463
464 DO j = 1, jlat - 1
465 IF (yvrai(j + 1)<yvrai(j)) THEN
466 print *, 'Problème avec rlat(', j + 1, ') plus petit que rlat(', &
467 j, ')'
468 STOP 1
469 END IF
470 END DO
471
472 print *, 'Reorganisation des latitudes pour avoir entre - pi/2 et pi/2'
473
474 IF (ik==1) THEN
475 ypn = pis2
476 DO j = jjm + 1, 1, -1
477 IF (yvrai(j)<=ypn) exit
478 END DO
479
480 jpn = j
481 y00 = yvrai(jpn)
482 deply = pis2 - y00
483 END IF
484
485 DO j = 1, jjm + 1 - jpn
486 ylatt(j) = -pis2 - y00 + yvrai(jpn + j-1)
487 yprimm(j) = yprim(jpn + j-1)
488 END DO
489
490 jjpn = jpn
491 IF (jlat==jjm) jjpn = jpn - 1
492
493 DO j = 1, jjpn
494 ylatt(j + jjm + 1-jpn) = yvrai(j) + deply
495 yprimm(j + jjm + 1-jpn) = yprim(j)
496 END DO
497
498 ! Fin de la reorganisation
499
500 DO j = 1, jlat
501 ylat(j) = ylatt(jlat + 1-j)
502 yprim(j) = yprimm(jlat + 1-j)
503 END DO
504
505 DO j = 1, jlat
506 yvrai(j) = ylat(j)*180./pi
507 END DO
508
509 IF (ik==1) THEN
510 DO j = 1, jjm + 1
511 rlatu(j) = ylat(j)
512 END DO
513 ELSE IF (ik==2) THEN
514 DO j = 1, jjm
515 rlatv(j) = ylat(j)
516 END DO
517 ELSE IF (ik==3) THEN
518 DO j = 1, jjm
519 rlatu2(j) = ylat(j)
520 yprimu2(j) = yprim(j)
521 END DO
522 ELSE IF (ik==4) THEN
523 DO j = 1, jjm
524 rlatu1(j) = ylat(j)
525 yprimu1(j) = yprim(j)
526 END DO
527 END IF
528 END DO loop_ik
529
530 DO j = 1, jjm
531 ylat(j) = rlatu(j) - rlatu(j + 1)
532 END DO
533
534 DO j = 1, jjm
535 IF (rlatu1(j) <= rlatu2(j)) THEN
536 print *, 'Attention ! rlatu1 < rlatu2 ', rlatu1(j), rlatu2(j), j
537 STOP 13
538 ENDIF
539
540 IF (rlatu2(j) <= rlatu(j+1)) THEN
541 print *, 'Attention ! rlatu2 < rlatup1 ', rlatu2(j), rlatu(j+1), j
542 STOP 14
543 ENDIF
544
545 IF (rlatu(j) <= rlatu1(j)) THEN
546 print *, ' Attention ! rlatu < rlatu1 ', rlatu(j), rlatu1(j), j
547 STOP 15
548 ENDIF
549
550 IF (rlatv(j) <= rlatu2(j)) THEN
551 print *, ' Attention ! rlatv < rlatu2 ', rlatv(j), rlatu2(j), j
552 STOP 16
553 ENDIF
554
555 IF (rlatv(j) >= rlatu1(j)) THEN
556 print *, ' Attention ! rlatv > rlatu1 ', rlatv(j), rlatu1(j), j
557 STOP 17
558 ENDIF
559
560 IF (rlatv(j) >= rlatu(j)) THEN
561 print *, ' Attention ! rlatv > rlatu ', rlatv(j), rlatu(j), j
562 STOP 18
563 ENDIF
564 ENDDO
565
566 print *, 'Latitudes'
567 print 3, minval(ylat(:jjm)) *180d0/pi, maxval(ylat(:jjm))*180d0/pi
568
569 3 Format(1x, ' Au centre du zoom, la longueur de la maille est', &
570 ' d environ ', f0.2, ' degres ', /, &
571 ' alors que la maille en dehors de la zone du zoom est ', &
572 "d'environ ", f0.2, ' degres ')
573
574 rlatu(1) = pi / 2.
575 rlatu(jjm + 1) = -rlatu(1)
576
577 END SUBROUTINE fyhyp
578
579 !********************************************************************
580
581 SUBROUTINE fxhyp
582
583 ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32
584 ! Author: P. Le Van, from formulas by R. Sadourny
585
586 ! Compute xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025,
587 ! using clon, grossismx, dzoomx, taux.
588
589 ! Calcule les longitudes et dérivées dans la grille du GCM pour
590 ! une fonction $x_f(\tilde x)$ à dérivée tangente hyperbolique.
591
592 ! Il vaut mieux avoir : grossismx $\times$ delta < pi
593
594 ! Le premier point scalaire pour une grille regulière (grossismx =
595 ! 1) avec clon = 0 est à - 180 degrés.
596
597 use nr_util, only: pi, pi_d, twopi, twopi_d, arth, assert, rad_to_deg
598
599 USE dimensions, ONLY: iim
600 use tanh_cautious_m, only: tanh_cautious
601
602 ! Local:
603 real rlonm025(iim + 1), rlonp025(iim + 1), d_rlonv(iim)
604 REAL delta, h
605 DOUBLE PRECISION, dimension(0:nmax):: xtild, fhyp, G, Xf, ffdx
606 DOUBLE PRECISION beta
607 INTEGER i, is2
608 DOUBLE PRECISION xmoy(nmax), fxm(nmax)
609
610 !----------------------------------------------------------------------
611
612 print *, "Call sequence information: fxhyp"
613
614 if (grossismx == 1.) then
615 h = twopi / iim
616
617 xprimm025(:iim) = h
618 xprimp025(:iim) = h
619 xprimv(:iim) = h
620 xprimu(:iim) = h
621
622 rlonv(:iim) = arth(- pi + clon, h, iim)
623 rlonm025(:iim) = rlonv(:iim) - 0.25 * h
624 rlonp025(:iim) = rlonv(:iim) + 0.25 * h
625 rlonu(:iim) = rlonv(:iim) + 0.5 * h
626 else
627 delta = dzoomx * twopi_d
628 xtild = arth(0d0, pi_d / nmax, nmax + 1)
629 forall (i = 1:nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i))
630
631 ! Compute fhyp:
632 fhyp(1:nmax - 1) = tanh_cautious(taux * (delta / 2d0 &
633 - xtild(1:nmax - 1)), xtild(1:nmax - 1) &
634 * (pi_d - xtild(1:nmax - 1)))
635 fhyp(0) = 1d0
636 fhyp(nmax) = -1d0
637
638 fxm = tanh_cautious(taux * (delta / 2d0 - xmoy), xmoy * (pi_d - xmoy))
639
640 ! Compute \int_0 ^{\tilde x} F:
641
642 ffdx(0) = 0d0
643
644 DO i = 1, nmax
645 ffdx(i) = ffdx(i - 1) + fxm(i) * (xtild(i) - xtild(i-1))
646 END DO
647
648 print *, "ffdx(nmax) = ", ffdx(nmax)
649 beta = (pi_d - grossismx * ffdx(nmax)) / (pi_d - ffdx(nmax))
650 print *, "beta = ", beta
651
652 IF (2d0 * beta - grossismx <= 0d0) THEN
653 print *, 'Bad choice of grossismx, taux, dzoomx.'
654 print *, 'Decrease dzoomx or grossismx.'
655 STOP 1
656 END IF
657
658 G = beta + (grossismx - beta) * fhyp
659
660 Xf(:nmax - 1) = beta * xtild(:nmax - 1) + (grossismx - beta) &
661 * ffdx(:nmax - 1)
662 Xf(nmax) = pi_d
663
664 call invert_zoom_x(beta, xf, xtild, G, rlonm025(:iim), xprimm025(:iim), &
665 xuv = - 0.25d0)
666 call invert_zoom_x(beta, xf, xtild, G, rlonv(:iim), xprimv(:iim), &
667 xuv = 0d0)
668 call invert_zoom_x(beta, xf, xtild, G, rlonu(:iim), xprimu(:iim), &
669 xuv = 0.5d0)
670 call invert_zoom_x(beta, xf, xtild, G, rlonp025(:iim), xprimp025(:iim), &
671 xuv = 0.25d0)
672 end if
673
674 is2 = 0
675
676 IF (MINval(rlonm025(:iim)) < - pi - 0.1 &
677 .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN
678 IF (clon <= 0.) THEN
679 is2 = 1
680
681 do while (rlonm025(is2) < - pi .and. is2 < iim)
682 is2 = is2 + 1
683 end do
684
685 call assert(rlonm025(is2) >= - pi, &
686 "fxhyp -- rlonm025 should be >= - pi")
687 ELSE
688 is2 = iim
689
690 do while (rlonm025(is2) > pi .and. is2 > 1)
691 is2 = is2 - 1
692 end do
693
694 if (rlonm025(is2) > pi) then
695 print *, 'Rlonm025 plus grand que pi !'
696 STOP 1
697 end if
698 END IF
699 END IF
700
701 call principal_cshift(is2, rlonm025, xprimm025)
702 call principal_cshift(is2, rlonv, xprimv)
703 call principal_cshift(is2, rlonu, xprimu)
704 call principal_cshift(is2, rlonp025, xprimp025)
705
706 forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i)
707 print *, "Minimum longitude step:", MINval(d_rlonv) * rad_to_deg, "degrees"
708 print *, "Maximum longitude step:", MAXval(d_rlonv) * rad_to_deg, "degrees"
709
710 ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu:
711 DO i = 1, iim + 1
712 IF (rlonp025(i) < rlonv(i)) THEN
713 print *, 'rlonp025(', i, ') = ', rlonp025(i)
714 print *, "< rlonv(", i, ") = ", rlonv(i)
715 STOP 1
716 END IF
717
718 IF (rlonv(i) < rlonm025(i)) THEN
719 print *, 'rlonv(', i, ') = ', rlonv(i)
720 print *, "< rlonm025(", i, ") = ", rlonm025(i)
721 STOP 1
722 END IF
723
724 IF (rlonp025(i) > rlonu(i)) THEN
725 print *, 'rlonp025(', i, ') = ', rlonp025(i)
726 print *, "> rlonu(", i, ") = ", rlonu(i)
727 STOP 1
728 END IF
729 END DO
730
731 END SUBROUTINE fxhyp
732
733 !********************************************************************
734
735 subroutine principal_cshift(is2, xlon, xprimm)
736
737 ! Add or subtract 2 pi so that xlon is near [-pi, pi], then cshift
738 ! so that xlon is in ascending order. Make the same cshift on
739 ! xprimm. Use clon. In this module to avoid circular dependency.
740
741 use nr_util, only: twopi
742
743 USE dimensions, ONLY: iim
744
745 integer, intent(in):: is2
746 real, intent(inout):: xlon(:), xprimm(:) ! (iim + 1)
747
748 !-----------------------------------------------------
749
750 if (is2 /= 0) then
751 IF (clon <= 0.) THEN
752 IF (is2 /= 1) THEN
753 xlon(:is2 - 1) = xlon(:is2 - 1) + twopi
754 xlon(:iim) = cshift(xlon(:iim), shift = is2 - 1)
755 xprimm(:iim) = cshift(xprimm(:iim), shift = is2 - 1)
756 END IF
757 else
758 xlon(is2 + 1:iim) = xlon(is2 + 1:iim) - twopi
759 xlon(:iim) = cshift(xlon(:iim), shift = is2)
760 xprimm(:iim) = cshift(xprimm(:iim), shift = is2)
761 end IF
762 end if
763
764 xlon(iim + 1) = xlon(1) + twopi
765 xprimm(iim + 1) = xprimm(1)
766
767 end subroutine principal_cshift
768
769 !**********************************************************************
770
771 subroutine invert_zoom_x(beta, xf, xtild, G, xlon, xprim, xuv)
772
773 ! Using clon and grossismx. In this module to avoid circular dependency.
774
775 use coefpoly_m, only: coefpoly, a1, a2, a3
776 USE dimensions, ONLY: iim
777 use nr_util, only: pi_d, twopi_d
778 use numer_rec_95, only: hunt, rtsafe
779
780 DOUBLE PRECISION, intent(in):: beta, Xf(0:), xtild(0:), G(0:) ! (0:nmax)
781
782 real, intent(out):: xlon(:), xprim(:) ! (iim)
783
784 DOUBLE PRECISION, intent(in):: xuv
785 ! between - 0.25 and 0.5
786 ! 0. si calcul aux points scalaires
787 ! 0.5 si calcul aux points U
788
789 ! Local:
790 DOUBLE PRECISION Y
791 DOUBLE PRECISION h ! step of the uniform grid
792 integer i, it
793
794 DOUBLE PRECISION xvrai(iim), Gvrai(iim)
795 ! intermediary variables because xlon and xprim are single precision
796
797 !------------------------------------------------------------------
798
799 print *, "Call sequence information: invert_zoom_x"
800 it = 0 ! initial guess
801 h = twopi_d / iim
802
803 DO i = 1, iim
804 Y = - pi_d + (i + xuv - 0.75d0) * h
805 ! - pi <= y < pi
806 abs_y = abs(y)
807
808 ! Distinguish boundaries in order to avoid roundoff error.
809 ! funcd should be exactly equal to 0 at xtild(it) or xtild(it +
810 ! 1) and could be very small with the wrong sign so rtsafe
811 ! would fail.
812 if (abs_y == 0d0) then
813 xvrai(i) = 0d0
814 gvrai(i) = grossismx
815 else if (abs_y == pi_d) then
816 xvrai(i) = pi_d
817 gvrai(i) = 2d0 * beta - grossismx
818 else
819 call hunt(xf, abs_y, it, my_lbound = 0)
820 ! {0 <= it <= nmax - 1}
821
822 ! Calcul de xvrai(i) et Gvrai(i)
823 CALL coefpoly(Xf(it), Xf(it + 1), G(it), G(it + 1), xtild(it), &
824 xtild(it + 1))
825 xvrai(i) = rtsafe(funcd, xtild(it), xtild(it + 1), xacc = 1d-6)
826 Gvrai(i) = a1 + xvrai(i) * (2d0 * a2 + xvrai(i) * 3d0 * a3)
827 end if
828
829 if (y < 0d0) xvrai(i) = - xvrai(i)
830 end DO
831
832 DO i = 1, iim -1
833 IF (xvrai(i + 1) < xvrai(i)) THEN
834 print *, 'xvrai(', i + 1, ') < xvrai(', i, ')'
835 STOP 1
836 END IF
837 END DO
838
839 xlon = xvrai + clon
840 xprim = h / Gvrai
841
842 end subroutine invert_zoom_x
843
844 !**********************************************************************
845
846 SUBROUTINE funcd(x, fval, fderiv)
847
848 use coefpoly_m, only: a0, a1, a2, a3
849
850 DOUBLE PRECISION, INTENT(IN):: x
851 DOUBLE PRECISION, INTENT(OUT):: fval, fderiv
852
853 fval = a0 + x * (a1 + x * (a2 + x * a3)) - abs_y
854 fderiv = a1 + x * (2d0 * a2 + x * 3d0 * a3)
855
856 END SUBROUTINE funcd
857
858 end module dynetat0_m

  ViewVC Help
Powered by ViewVC 1.1.21