--- trunk/libf/dyn3d/fxhyp.f 2008/02/27 13:16:39 3 +++ trunk/dyn3d/fxhyp.f 2015/01/07 14:34:57 119 @@ -1,448 +1,409 @@ -! -! $Header: /home/cvsroot/LMDZ4/libf/dyn3d/fxhyp.F,v 1.2 2005/06/03 09:11:32 fairhead Exp $ -! -c -c - SUBROUTINE fxhyp ( xzoomdeg,grossism,dzooma,tau , - , rlonm025,xprimm025,rlonv,xprimv,rlonu,xprimu,rlonp025,xprimp025, - , champmin,champmax ) - -c Auteur : P. Le Van - - use dimens_m - use paramet_m - IMPLICIT NONE - -c Calcule les longitudes et derivees dans la grille du GCM pour une -c fonction f(x) a tangente hyperbolique . -c -c grossism etant le grossissement ( = 2 si 2 fois, = 3 si 3 fois,etc.) -c dzoom etant la distance totale de la zone du zoom -c tau la raideur de la transition de l'interieur a l'exterieur du zoom -c -c On doit avoir grossism x dzoom < pi ( radians ) , en longitude. -c ******************************************************************** - - - INTEGER nmax, nmax2 - PARAMETER ( nmax = 30000, nmax2 = 2*nmax ) -c - LOGICAL scal180 - PARAMETER ( scal180 = .TRUE. ) - -c scal180 = .TRUE. si on veut avoir le premier point scalaire pour -c une grille reguliere ( grossism = 1.,tau=0.,clon=0. ) a -180. degres. -c sinon scal180 = .FALSE. - - -c ...... arguments d'entree ....... -c - REAL xzoomdeg,dzooma,tau,grossism - -c ...... arguments de sortie ...... - - REAL rlonm025(iip1),xprimm025(iip1),rlonv(iip1),xprimv(iip1), - , rlonu(iip1),xprimu(iip1),rlonp025(iip1),xprimp025(iip1) - -c .... variables locales .... -c - REAL dzoom - REAL*8 xlon(iip1),xprimm(iip1),xuv - REAL*8 xtild(0:nmax2) - REAL*8 fhyp(0:nmax2),ffdx,beta,Xprimt(0:nmax2) - REAL*8 Xf(0:nmax2),xxpr(0:nmax2) - REAL*8 xvrai(iip1),xxprim(iip1) - REAL*8 pi,depi,epsilon,xzoom,fa,fb - REAL*8 Xf1, Xfi , a0,a1,a2,a3,xi2 - INTEGER i,it,ik,iter,ii,idif,ii1,ii2 - REAL*8 xi,xo1,xmoy,xlon2,fxm,Xprimin - REAL*8 champmin,champmax,decalx - INTEGER is2 - SAVE is2 - - REAL*8 heavyside - - pi = 2. * ASIN(1.) - depi = 2. * pi - epsilon = 1.e-3 - xzoom = xzoomdeg * pi/180. -c - decalx = .75 - IF( grossism.EQ.1..AND.scal180 ) THEN - decalx = 1. - ENDIF - - WRITE(6,*) 'FXHYP scal180,decalx', scal180,decalx -c - IF( dzooma.LT.1.) THEN - dzoom = dzooma * depi - ELSEIF( dzooma.LT. 25. ) THEN - WRITE(6,*) ' Le param. dzoomx pour fxhyp est trop petit ! L aug - ,menter et relancer ! ' - STOP 1 - ELSE - dzoom = dzooma * pi/180. - ENDIF +module fxhyp_m + + IMPLICIT NONE + +contains - WRITE(6,*) ' xzoom( rad.),grossism,tau,dzoom (radians)' - WRITE(6,24) xzoom,grossism,tau,dzoom + SUBROUTINE fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) - DO i = 0, nmax2 - xtild(i) = - pi + FLOAT(i) * depi /nmax2 - ENDDO - - DO i = nmax, nmax2 - - fa = tau* ( dzoom/2. - xtild(i) ) - fb = xtild(i) * ( pi - xtild(i) ) - - IF( 200.* fb .LT. - fa ) THEN - fhyp ( i) = - 1. - ELSEIF( 200. * fb .LT. fa ) THEN - fhyp ( i) = 1. - ELSE - IF( ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF( 200.*fb + fa.LT.1.e-10 ) THEN - fhyp ( i ) = - 1. - ELSEIF( 200.*fb - fa.LT.1.e-10 ) THEN - fhyp ( i ) = 1. - ENDIF - ELSE - fhyp ( i ) = TANH ( fa/fb ) - ENDIF - ENDIF - IF ( xtild(i).EQ. 0. ) fhyp(i) = 1. - IF ( xtild(i).EQ. pi ) fhyp(i) = -1. - - ENDDO - -cc .... Calcul de beta .... - - ffdx = 0. - - DO i = nmax +1,nmax2 - - xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) - fa = tau* ( dzoom/2. - xmoy ) - fb = xmoy * ( pi - xmoy ) - - IF( 200.* fb .LT. - fa ) THEN - fxm = - 1. - ELSEIF( 200. * fb .LT. fa ) THEN - fxm = 1. + ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32 + ! Author: P. Le Van, from formulas by R. Sadourny + + ! Calcule les longitudes et dérivées dans la grille du GCM pour + ! une fonction f(x) à dérivée tangente hyperbolique. + + ! On doit avoir grossismx \times dzoomx < pi (radians) + + USE dimens_m, ONLY: iim + use nr_util, only: pi_d, twopi_d + use serre, only: clon, grossismx, dzoomx, taux + + REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) + real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) + + ! Local: + + DOUBLE PRECISION champmin, champmax + real rlonm025(iim + 1), rlonp025(iim + 1) + INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2*nmax + + LOGICAL, PARAMETER:: scal180 = .TRUE. + ! scal180 = .TRUE. si on veut avoir le premier point scalaire pour + ! une grille reguliere (grossismx = 1., taux=0., clon=0.) a + ! -180. degres. sinon scal180 = .FALSE. + + REAL dzoom + DOUBLE PRECISION xlon(iim + 1), xprimm(iim + 1), xuv + DOUBLE PRECISION xtild(0:nmax2) + DOUBLE PRECISION fhyp(0:nmax2), ffdx, beta, Xprimt(0:nmax2) + DOUBLE PRECISION Xf(0:nmax2), xxpr(0:nmax2) + DOUBLE PRECISION xvrai(iim + 1), xxprim(iim + 1) + DOUBLE PRECISION my_eps, xzoom, fa, fb + DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2 + INTEGER i, it, ik, iter, ii, idif, ii1, ii2 + DOUBLE PRECISION xi, xo1, xmoy, xlon2, fxm, Xprimin + DOUBLE PRECISION decalx + INTEGER, save:: is2 + + !---------------------------------------------------------------------- + + my_eps = 1e-3 + xzoom = clon * pi_d / 180. + + IF (grossismx == 1. .AND. scal180) THEN + decalx = 1. + else + decalx = 0.75 + END IF + + IF (dzoomx < 1.) THEN + dzoom = dzoomx * twopi_d + ELSE IF (dzoomx < 25.) THEN + print *, "Le paramètre dzoomx pour fxhyp est trop petit. " & + // "L'augmenter et relancer." + STOP 1 + ELSE + dzoom = dzoomx * pi_d / 180. + END IF + + print *, 'dzoom (rad):', dzoom + + DO i = 0, nmax2 + xtild(i) = - pi_d + REAL(i) * twopi_d / nmax2 + END DO + + DO i = nmax, nmax2 + fa = taux* (dzoom / 2. - xtild(i)) + fb = xtild(i) * (pi_d - xtild(i)) + + IF (200.* fb < - fa) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb < fa) THEN + fhyp(i) = 1. ELSE - IF( ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF( 200.*fb + fa.LT.1.e-10 ) THEN - fxm = - 1. - ELSEIF( 200.*fb - fa.LT.1.e-10 ) THEN - fxm = 1. - ENDIF - ELSE - fxm = TANH ( fa/fb ) - ENDIF - ENDIF - - IF ( xmoy.EQ. 0. ) fxm = 1. - IF ( xmoy.EQ. pi ) fxm = -1. - - ffdx = ffdx + fxm * ( xtild(i) - xtild(i-1) ) - - ENDDO - - beta = ( grossism * ffdx - pi ) / ( ffdx - pi ) - - IF( 2.*beta - grossism.LE. 0.) THEN - WRITE(6,*) ' ** Attention ! La valeur beta calculee dans la rou - ,tine fxhyp est mauvaise ! ' - WRITE(6,*)'Modifier les valeurs de grossismx ,tau ou dzoomx ', - , ' et relancer ! *** ' - STOP 1 - ENDIF -c -c ..... calcul de Xprimt ..... -c - - DO i = nmax, nmax2 - Xprimt(i) = beta + ( grossism - beta ) * fhyp(i) - ENDDO -c - DO i = nmax+1, nmax2 - Xprimt( nmax2 - i ) = Xprimt( i ) - ENDDO -c - -c ..... Calcul de Xf ........ - - Xf(0) = - pi - - DO i = nmax +1, nmax2 - - xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) - fa = tau* ( dzoom/2. - xmoy ) - fb = xmoy * ( pi - xmoy ) - - IF( 200.* fb .LT. - fa ) THEN - fxm = - 1. - ELSEIF( 200. * fb .LT. fa ) THEN - fxm = 1. + IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (200.*fb + fa < 1e-10) THEN + fhyp(i) = - 1. + ELSE IF (200.*fb - fa < 1e-10) THEN + fhyp(i) = 1. + END IF + ELSE + fhyp(i) = TANH(fa / fb) + END IF + END IF + + IF (xtild(i) == 0.) fhyp(i) = 1. + IF (xtild(i) == pi_d) fhyp(i) = -1. + END DO + + ! Calcul de beta + + ffdx = 0. + + DO i = nmax + 1, nmax2 + xmoy = 0.5 * (xtild(i-1) + xtild(i)) + fa = taux* (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) + + IF (200.* fb < - fa) THEN + fxm = - 1. + ELSE IF (200. * fb < fa) THEN + fxm = 1. ELSE - fxm = TANH ( fa/fb ) - ENDIF + IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (200.*fb + fa < 1e-10) THEN + fxm = - 1. + ELSE IF (200.*fb - fa < 1e-10) THEN + fxm = 1. + END IF + ELSE + fxm = TANH(fa / fb) + END IF + END IF + + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. + + ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) + END DO + + beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) + + IF (2. * beta - grossismx <= 0.) THEN + print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' + print *, 'Modifier les valeurs de grossismx, taux ou dzoomx et relancer.' + STOP 1 + END IF + + ! calcul de Xprimt + + DO i = nmax, nmax2 + Xprimt(i) = beta + (grossismx - beta) * fhyp(i) + END DO + + DO i = nmax + 1, nmax2 + Xprimt(nmax2 - i) = Xprimt(i) + END DO + + ! Calcul de Xf + + Xf(0) = - pi_d + + DO i = nmax + 1, nmax2 + xmoy = 0.5 * (xtild(i-1) + xtild(i)) + fa = taux* (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) + + IF (200.* fb < - fa) THEN + fxm = - 1. + ELSE IF (200. * fb < fa) THEN + fxm = 1. + ELSE + fxm = TANH(fa / fb) + END IF + + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. + xxpr(i) = beta + (grossismx - beta) * fxm + END DO + + DO i = nmax + 1, nmax2 + xxpr(nmax2-i + 1) = xxpr(i) + END DO + + DO i=1, nmax2 + Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) + END DO + + ! xuv = 0. si calcul aux points scalaires + ! xuv = 0.5 si calcul aux points U + + loop_ik: DO ik = 1, 4 + IF (ik == 1) THEN + xuv = -0.25 + ELSE IF (ik == 2) THEN + xuv = 0. + ELSE IF (ik == 3) THEN + xuv = 0.50 + ELSE IF (ik == 4) THEN + xuv = 0.25 + END IF + + xo1 = 0. + + ii1=1 + ii2=iim + IF (ik == 1.and.grossismx == 1.) THEN + ii1 = 2 + ii2 = iim + 1 + END IF + + DO i = ii1, ii2 + xlon2 = - pi_d + (REAL(i) + xuv - decalx) * twopi_d / REAL(iim) + Xfi = xlon2 + + it = nmax2 + do while (xfi < xf(it) .and. it >= 1) + it = it - 1 + end do + + ! Calcul de Xf(xi) + + xi = xtild(it) + + IF (it == nmax2) THEN + it = nmax2 -1 + Xf(it + 1) = pi_d + END IF + + ! Appel de la routine qui calcule les coefficients a0, a1, + ! a2, a3 d'un polynome de degre 3 qui passe par les points + ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1)) + + CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), & + xtild(it), xtild(it + 1), a0, a1, a2, a3) + + Xf1 = Xf(it) + Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi + + iter = 1 + + do + xi = xi - (Xf1 - Xfi) / Xprimin + IF (ABS(xi - xo1) <= my_eps .or. iter == 300) exit + xo1 = xi + xi2 = xi * xi + Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi + Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 + end DO + + if (ABS(xi - xo1) > my_eps) then + ! iter == 300 + print *, 'Pas de solution.' + print *, i, xlon2 + STOP 1 + end if + + xxprim(i) = twopi_d / (REAL(iim) * Xprimin) + xvrai(i) = xi + xzoom + end DO + + IF (ik == 1 .and. grossismx == 1.) THEN + xvrai(1) = xvrai(iim + 1)-twopi_d + xxprim(1) = xxprim(iim + 1) + END IF + + DO i = 1, iim + xlon(i) = xvrai(i) + xprimm(i) = xxprim(i) + END DO - IF ( xmoy.EQ. 0. ) fxm = 1. - IF ( xmoy.EQ. pi ) fxm = -1. - xxpr(i) = beta + ( grossism - beta ) * fxm - - ENDDO - - DO i = nmax+1, nmax2 - xxpr(nmax2-i+1) = xxpr(i) - ENDDO - - DO i=1,nmax2 - Xf(i) = Xf(i-1) + xxpr(i) * ( xtild(i) - xtild(i-1) ) - ENDDO - - -c ***************************************************************** -c - -c ..... xuv = 0. si calcul aux pts scalaires ........ -c ..... xuv = 0.5 si calcul aux pts U ........ -c - WRITE(6,18) -c - DO 5000 ik = 1, 4 - - IF( ik.EQ.1 ) THEN - xuv = -0.25 - ELSE IF ( ik.EQ.2 ) THEN - xuv = 0. - ELSE IF ( ik.EQ.3 ) THEN - xuv = 0.50 - ELSE IF ( ik.EQ.4 ) THEN - xuv = 0.25 - ENDIF - - xo1 = 0. - - ii1=1 - ii2=iim - IF(ik.EQ.1.and.grossism.EQ.1.) THEN - ii1 = 2 - ii2 = iim+1 - ENDIF - DO 1500 i = ii1, ii2 - - xlon2 = - pi + (FLOAT(i) + xuv - decalx) * depi / FLOAT(iim) - - Xfi = xlon2 -c - DO 250 it = nmax2,0,-1 - IF( Xfi.GE.Xf(it)) GO TO 350 -250 CONTINUE - - it = 0 - -350 CONTINUE - -c ...... Calcul de Xf(xi) ...... -c - xi = xtild(it) - - IF(it.EQ.nmax2) THEN - it = nmax2 -1 - Xf(it+1) = pi - ENDIF -c ..................................................................... -c -c Appel de la routine qui calcule les coefficients a0,a1,a2,a3 d'un -c polynome de degre 3 qui passe par les points (Xf(it),xtild(it) ) -c et (Xf(it+1),xtild(it+1) ) - - CALL coefpoly ( Xf(it),Xf(it+1),Xprimt(it),Xprimt(it+1), - , xtild(it),xtild(it+1), a0, a1, a2, a3 ) - - Xf1 = Xf(it) - Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi - - DO 500 iter = 1,300 - xi = xi - ( Xf1 - Xfi )/ Xprimin - - IF( ABS(xi-xo1).LE.epsilon) GO TO 550 - xo1 = xi - xi2 = xi * xi - Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 -500 CONTINUE - WRITE(6,*) ' Pas de solution ***** ',i,xlon2,iter - STOP 6 -550 CONTINUE - - xxprim(i) = depi/ ( FLOAT(iim) * Xprimin ) - xvrai(i) = xi + xzoom - -1500 CONTINUE - - - IF(ik.EQ.1.and.grossism.EQ.1.) THEN - xvrai(1) = xvrai(iip1)-depi - xxprim(1) = xxprim(iip1) - ENDIF - DO i = 1 , iim - xlon(i) = xvrai(i) - xprimm(i) = xxprim(i) - ENDDO DO i = 1, iim -1 - IF( xvrai(i+1). LT. xvrai(i) ) THEN - WRITE(6,*) ' PBS. avec rlonu(',i+1,') plus petit que rlonu(',i, - , ')' - STOP 7 - ENDIF - ENDDO -c -c ... Reorganisation des longitudes pour les avoir entre - pi et pi .. -c ........................................................................ + IF (xvrai(i + 1) < xvrai(i)) THEN + print *, 'Problème avec rlonu(', i + 1, & + ') plus petit que rlonu(', i, ')' + STOP 1 + END IF + END DO - champmin = 1.e12 - champmax = -1.e12 + ! Réorganisation des longitudes pour les avoir entre - pi et pi + + champmin = 1e12 + champmax = -1e12 DO i = 1, iim - champmin = MIN( champmin,xvrai(i) ) - champmax = MAX( champmax,xvrai(i) ) - ENDDO - - IF(champmin .GE.-pi-0.10.and.champmax.LE.pi+0.10 ) THEN - GO TO 1600 - ELSE - WRITE(6,*) 'Reorganisation des longitudes pour avoir entre - pi', - , ' et pi ' -c - IF( xzoom.LE.0.) THEN - IF( ik.EQ. 1 ) THEN - DO i = 1, iim - IF( xvrai(i).GE. - pi ) GO TO 80 - ENDDO - WRITE(6,*) ' PBS. 1 ! Xvrai plus petit que - pi ! ' - STOP 8 - 80 CONTINUE - is2 = i - ENDIF - - IF( is2.NE. 1 ) THEN - DO ii = is2 , iim - xlon (ii-is2+1) = xvrai(ii) - xprimm(ii-is2+1) = xxprim(ii) - ENDDO - DO ii = 1 , is2 -1 - xlon (ii+iim-is2+1) = xvrai(ii) + depi - xprimm(ii+iim-is2+1) = xxprim(ii) - ENDDO - ENDIF - ELSE - IF( ik.EQ.1 ) THEN - DO i = iim,1,-1 - IF( xvrai(i).LE. pi ) GO TO 90 - ENDDO - WRITE(6,*) ' PBS. 2 ! Xvrai plus grand que pi ! ' - STOP 9 - 90 CONTINUE - is2 = i - ENDIF - idif = iim -is2 - DO ii = 1, is2 - xlon (ii+idif) = xvrai(ii) - xprimm(ii+idif) = xxprim(ii) - ENDDO - DO ii = 1, idif - xlon (ii) = xvrai (ii+is2) - depi - xprimm(ii) = xxprim(ii+is2) - ENDDO - ENDIF - ENDIF -c -c ......... Fin de la reorganisation ............................ - - 1600 CONTINUE - - - xlon ( iip1) = xlon(1) + depi - xprimm( iip1 ) = xprimm (1 ) - - DO i = 1, iim+1 - xvrai(i) = xlon(i)*180./pi - ENDDO - - IF( ik.EQ.1 ) THEN -c WRITE(6,*) ' XLON aux pts. V-0.25 apres ( en deg. ) ' -c WRITE(6,18) -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM k ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim +1 - rlonm025(i) = xlon( i ) - xprimm025(i) = xprimm(i) - ENDDO - ELSE IF( ik.EQ.2 ) THEN -c WRITE(6,18) -c WRITE(6,*) ' XLON aux pts. V apres ( en deg. ) ' -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM k ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim + 1 - rlonv(i) = xlon( i ) - xprimv(i) = xprimm(i) - ENDDO - - ELSE IF( ik.EQ.3) THEN -c WRITE(6,18) -c WRITE(6,*) ' XLON aux pts. U apres ( en deg. ) ' -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM ik ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim + 1 - rlonu(i) = xlon( i ) - xprimu(i) = xprimm(i) - ENDDO - - ELSE IF( ik.EQ.4 ) THEN -c WRITE(6,18) -c WRITE(6,*) ' XLON aux pts. V+0.25 apres ( en deg. ) ' -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM ik ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim + 1 - rlonp025(i) = xlon( i ) - xprimp025(i) = xprimm(i) - ENDDO - - ENDIF - -5000 CONTINUE -c - WRITE(6,18) -c -c ........... fin de la boucle do 5000 ............ - - DO i = 1, iim - xlon(i) = rlonv(i+1) - rlonv(i) - ENDDO - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN( champmin, xlon(i) ) - champmax = MAX( champmax, xlon(i) ) - ENDDO - champmin = champmin * 180./pi - champmax = champmax * 180./pi - -18 FORMAT(/) -24 FORMAT(2x,'Parametres xzoom,gross,tau ,dzoom pour fxhyp ',4f8.3) -68 FORMAT(1x,7f9.2) -566 FORMAT(1x,7f9.4) + champmin = MIN(champmin, xvrai(i)) + champmax = MAX(champmax, xvrai(i)) + END DO + + IF (.not. (champmin >= -pi_d - 0.1 .and. champmax <= pi_d + 0.1)) THEN + print *, 'Reorganisation des longitudes pour avoir entre - pi', & + ' et pi ' + + IF (xzoom <= 0.) THEN + IF (ik == 1) THEN + i = 1 + + do while (xvrai(i) < - pi_d .and. i < iim) + i = i + 1 + end do + + if (xvrai(i) < - pi_d) then + print *, 'Xvrai plus petit que - pi !' + STOP 1 + end if + + is2 = i + END IF + + IF (is2.NE. 1) THEN + DO ii = is2, iim + xlon(ii-is2 + 1) = xvrai(ii) + xprimm(ii-is2 + 1) = xxprim(ii) + END DO + DO ii = 1, is2 -1 + xlon(ii + iim-is2 + 1) = xvrai(ii) + twopi_d + xprimm(ii + iim-is2 + 1) = xxprim(ii) + END DO + END IF + ELSE + IF (ik == 1) THEN + i = iim + + do while (xvrai(i) > pi_d .and. i > 1) + i = i - 1 + end do + + if (xvrai(i) > pi_d) then + print *, 'Xvrai plus grand que pi !' + STOP 1 + end if + + is2 = i + END IF + + idif = iim -is2 + + DO ii = 1, is2 + xlon(ii + idif) = xvrai(ii) + xprimm(ii + idif) = xxprim(ii) + END DO + + DO ii = 1, idif + xlon(ii) = xvrai(ii + is2) - twopi_d + xprimm(ii) = xxprim(ii + is2) + END DO + END IF + END IF + + ! Fin de la reorganisation + + xlon(iim + 1) = xlon(1) + twopi_d + xprimm(iim + 1) = xprimm(1) + + DO i = 1, iim + 1 + xvrai(i) = xlon(i)*180. / pi_d + END DO + + IF (ik == 1) THEN + DO i = 1, iim + 1 + rlonm025(i) = xlon(i) + xprimm025(i) = xprimm(i) + END DO + ELSE IF (ik == 2) THEN + rlonv = xlon + xprimv = xprimm + ELSE IF (ik == 3) THEN + DO i = 1, iim + 1 + rlonu(i) = xlon(i) + xprimu(i) = xprimm(i) + END DO + ELSE IF (ik == 4) THEN + DO i = 1, iim + 1 + rlonp025(i) = xlon(i) + xprimp025(i) = xprimm(i) + END DO + END IF + end DO loop_ik + + print * + + DO i = 1, iim + xlon(i) = rlonv(i + 1) - rlonv(i) + END DO + champmin = 1e12 + champmax = -1e12 + DO i = 1, iim + champmin = MIN(champmin, xlon(i)) + champmax = MAX(champmax, xlon(i)) + END DO + champmin = champmin * 180. / pi_d + champmax = champmax * 180. / pi_d + + DO i = 1, iim + 1 + IF (rlonp025(i) < rlonv(i)) THEN + print *, ' Attention ! rlonp025 < rlonv', i + STOP 1 + END IF + + IF (rlonv(i) < rlonm025(i)) THEN + print *, ' Attention ! rlonm025 > rlonv', i + STOP 1 + END IF + + IF (rlonp025(i) > rlonu(i)) THEN + print *, ' Attention ! rlonp025 > rlonu', i + STOP 1 + END IF + END DO + + print *, ' Longitudes ' + print 3, champmin, champmax + +3 Format(1x, ' Au centre du zoom, la longueur de la maille est', & + ' d environ ', f0.2, ' degres ', /, & + ' alors que la maille en dehors de la zone du zoom est ', & + "d'environ", f0.2, ' degres ') + + END SUBROUTINE fxhyp - RETURN - END +end module fxhyp_m