--- trunk/dyn3d/fxhyp.f 2015/01/07 14:34:57 119 +++ trunk/Sources/dyn3d/fxhyp.f 2015/07/16 17:39:10 156 @@ -10,400 +10,165 @@ ! Author: P. Le Van, from formulas by R. Sadourny ! Calcule les longitudes et dérivées dans la grille du GCM pour - ! une fonction f(x) à dérivée tangente hyperbolique. + ! une fonction x_f(\tilde x) à dérivée tangente hyperbolique. - ! On doit avoir grossismx \times dzoomx < pi (radians) + ! Il vaut mieux avoir : grossismx \times delta < pi - USE dimens_m, ONLY: iim - use nr_util, only: pi_d, twopi_d - use serre, only: clon, grossismx, dzoomx, taux - - REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) - real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) - - ! Local: - - DOUBLE PRECISION champmin, champmax - real rlonm025(iim + 1), rlonp025(iim + 1) - INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2*nmax - - LOGICAL, PARAMETER:: scal180 = .TRUE. - ! scal180 = .TRUE. si on veut avoir le premier point scalaire pour - ! une grille reguliere (grossismx = 1., taux=0., clon=0.) a - ! -180. degres. sinon scal180 = .FALSE. - - REAL dzoom - DOUBLE PRECISION xlon(iim + 1), xprimm(iim + 1), xuv - DOUBLE PRECISION xtild(0:nmax2) - DOUBLE PRECISION fhyp(0:nmax2), ffdx, beta, Xprimt(0:nmax2) - DOUBLE PRECISION Xf(0:nmax2), xxpr(0:nmax2) - DOUBLE PRECISION xvrai(iim + 1), xxprim(iim + 1) - DOUBLE PRECISION my_eps, xzoom, fa, fb - DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2 - INTEGER i, it, ik, iter, ii, idif, ii1, ii2 - DOUBLE PRECISION xi, xo1, xmoy, xlon2, fxm, Xprimin - DOUBLE PRECISION decalx - INTEGER, save:: is2 - - !---------------------------------------------------------------------- - - my_eps = 1e-3 - xzoom = clon * pi_d / 180. - - IF (grossismx == 1. .AND. scal180) THEN - decalx = 1. - else - decalx = 0.75 - END IF - - IF (dzoomx < 1.) THEN - dzoom = dzoomx * twopi_d - ELSE IF (dzoomx < 25.) THEN - print *, "Le paramètre dzoomx pour fxhyp est trop petit. " & - // "L'augmenter et relancer." - STOP 1 - ELSE - dzoom = dzoomx * pi_d / 180. - END IF - - print *, 'dzoom (rad):', dzoom - - DO i = 0, nmax2 - xtild(i) = - pi_d + REAL(i) * twopi_d / nmax2 - END DO + ! Le premier point scalaire pour une grille regulière (grossismx = + ! 1) avec clon = 0 est à - 180 degrés. - DO i = nmax, nmax2 - fa = taux* (dzoom / 2. - xtild(i)) - fb = xtild(i) * (pi_d - xtild(i)) - - IF (200.* fb < - fa) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb < fa) THEN - fhyp(i) = 1. - ELSE - IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN - IF (200.*fb + fa < 1e-10) THEN - fhyp(i) = - 1. - ELSE IF (200.*fb - fa < 1e-10) THEN - fhyp(i) = 1. - END IF - ELSE - fhyp(i) = TANH(fa / fb) - END IF - END IF - - IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi_d) fhyp(i) = -1. - END DO - - ! Calcul de beta + USE dimens_m, ONLY: iim + use dynetat0_m, only: clon, grossismx, dzoomx, taux + use invert_zoom_x_m, only: invert_zoom_x, nmax + use nr_util, only: pi, pi_d, twopi, twopi_d, arth + use principal_cshift_m, only: principal_cshift + use tanh_cautious_m, only: tanh_cautious - ffdx = 0. + REAL, intent(out):: xprimm025(:) ! (iim + 1) - DO i = nmax + 1, nmax2 - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux* (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200.* fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN - IF (200.*fb + fa < 1e-10) THEN - fxm = - 1. - ELSE IF (200.*fb - fa < 1e-10) THEN - fxm = 1. - END IF - ELSE - fxm = TANH(fa / fb) - END IF - END IF + REAL, intent(out):: rlonv(:) ! (iim + 1) + ! longitudes of points of the "scalar" and "v" grid, in rad - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. + REAL, intent(out):: xprimv(:) ! (iim + 1) + ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlonv) - ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) - END DO + real, intent(out):: rlonu(:) ! (iim + 1) + ! longitudes of points of the "u" grid, in rad - beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) + real, intent(out):: xprimu(:) ! (iim + 1) + ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlonu) - IF (2. * beta - grossismx <= 0.) THEN - print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' - print *, 'Modifier les valeurs de grossismx, taux ou dzoomx et relancer.' - STOP 1 - END IF + real, intent(out):: xprimp025(:) ! (iim + 1) - ! calcul de Xprimt + ! Local: + real rlonm025(iim + 1), rlonp025(iim + 1), d_rlonv(iim) + REAL delta, h + DOUBLE PRECISION, dimension(0:nmax):: xtild, fhyp, G, Xf, ffdx + DOUBLE PRECISION beta + INTEGER i, is2 + DOUBLE PRECISION xmoy(nmax), fxm(nmax) - DO i = nmax, nmax2 - Xprimt(i) = beta + (grossismx - beta) * fhyp(i) - END DO + !---------------------------------------------------------------------- - DO i = nmax + 1, nmax2 - Xprimt(nmax2 - i) = Xprimt(i) - END DO + print *, "Call sequence information: fxhyp" - ! Calcul de Xf + if (grossismx == 1.) then + h = twopi / iim - Xf(0) = - pi_d + xprimm025(:iim) = h + xprimp025(:iim) = h + xprimv(:iim) = h + xprimu(:iim) = h + + rlonv(:iim) = arth(- pi + clon, h, iim) + rlonm025(:iim) = rlonv(:iim) - 0.25 * h + rlonp025(:iim) = rlonv(:iim) + 0.25 * h + rlonu(:iim) = rlonv(:iim) + 0.5 * h + else + delta = dzoomx * twopi_d + xtild = arth(0d0, pi_d / nmax, nmax + 1) + forall (i = 1:nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i)) - DO i = nmax + 1, nmax2 - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux* (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200.* fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - fxm = TANH(fa / fb) - END IF + ! Compute fhyp: + fhyp(1:nmax - 1) = tanh_cautious(taux * (delta / 2d0 & + - xtild(1:nmax - 1)), xtild(1:nmax - 1) & + * (pi_d - xtild(1:nmax - 1))) + fhyp(0) = 1d0 + fhyp(nmax) = -1d0 - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. - xxpr(i) = beta + (grossismx - beta) * fxm - END DO + fxm = tanh_cautious(taux * (delta / 2d0 - xmoy), xmoy * (pi_d - xmoy)) - DO i = nmax + 1, nmax2 - xxpr(nmax2-i + 1) = xxpr(i) - END DO + ! Compute \int_0 ^{\tilde x} F: - DO i=1, nmax2 - Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - END DO + ffdx(0) = 0d0 - ! xuv = 0. si calcul aux points scalaires - ! xuv = 0.5 si calcul aux points U + DO i = 1, nmax + ffdx(i) = ffdx(i - 1) + fxm(i) * (xtild(i) - xtild(i-1)) + END DO - loop_ik: DO ik = 1, 4 - IF (ik == 1) THEN - xuv = -0.25 - ELSE IF (ik == 2) THEN - xuv = 0. - ELSE IF (ik == 3) THEN - xuv = 0.50 - ELSE IF (ik == 4) THEN - xuv = 0.25 + print *, "ffdx(nmax) = ", ffdx(nmax) + beta = (pi_d - grossismx * ffdx(nmax)) / (pi_d - ffdx(nmax)) + print *, "beta = ", beta + + IF (2d0 * beta - grossismx <= 0d0) THEN + print *, 'Bad choice of grossismx, taux, dzoomx.' + print *, 'Decrease dzoomx or grossismx.' + STOP 1 END IF - xo1 = 0. + G = beta + (grossismx - beta) * fhyp - ii1=1 - ii2=iim - IF (ik == 1.and.grossismx == 1.) THEN - ii1 = 2 - ii2 = iim + 1 - END IF + Xf(:nmax - 1) = beta * xtild(:nmax - 1) + (grossismx - beta) & + * ffdx(:nmax - 1) + Xf(nmax) = pi_d + + call invert_zoom_x(xf, xtild, G, rlonm025(:iim), xprimm025(:iim), & + xuv = - 0.25d0) + call invert_zoom_x(xf, xtild, G, rlonv(:iim), xprimv(:iim), xuv = 0d0) + call invert_zoom_x(xf, xtild, G, rlonu(:iim), xprimu(:iim), xuv = 0.5d0) + call invert_zoom_x(xf, xtild, G, rlonp025(:iim), xprimp025(:iim), & + xuv = 0.25d0) + end if + + is2 = 0 + + IF (MINval(rlonm025(:iim)) < - pi - 0.1 & + .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN + IF (clon <= 0.) THEN + is2 = 1 - DO i = ii1, ii2 - xlon2 = - pi_d + (REAL(i) + xuv - decalx) * twopi_d / REAL(iim) - Xfi = xlon2 - - it = nmax2 - do while (xfi < xf(it) .and. it >= 1) - it = it - 1 + do while (rlonm025(is2) < - pi .and. is2 < iim) + is2 = is2 + 1 end do - ! Calcul de Xf(xi) - - xi = xtild(it) - - IF (it == nmax2) THEN - it = nmax2 -1 - Xf(it + 1) = pi_d - END IF - - ! Appel de la routine qui calcule les coefficients a0, a1, - ! a2, a3 d'un polynome de degre 3 qui passe par les points - ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1)) - - CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), & - xtild(it), xtild(it + 1), a0, a1, a2, a3) - - Xf1 = Xf(it) - Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi - - iter = 1 - - do - xi = xi - (Xf1 - Xfi) / Xprimin - IF (ABS(xi - xo1) <= my_eps .or. iter == 300) exit - xo1 = xi - xi2 = xi * xi - Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 - end DO - - if (ABS(xi - xo1) > my_eps) then - ! iter == 300 - print *, 'Pas de solution.' - print *, i, xlon2 + if (rlonm025(is2) < - pi) then + print *, 'Rlonm025 plus petit que - pi !' STOP 1 end if + ELSE + is2 = iim - xxprim(i) = twopi_d / (REAL(iim) * Xprimin) - xvrai(i) = xi + xzoom - end DO - - IF (ik == 1 .and. grossismx == 1.) THEN - xvrai(1) = xvrai(iim + 1)-twopi_d - xxprim(1) = xxprim(iim + 1) - END IF - - DO i = 1, iim - xlon(i) = xvrai(i) - xprimm(i) = xxprim(i) - END DO + do while (rlonm025(is2) > pi .and. is2 > 1) + is2 = is2 - 1 + end do - DO i = 1, iim -1 - IF (xvrai(i + 1) < xvrai(i)) THEN - print *, 'Problème avec rlonu(', i + 1, & - ') plus petit que rlonu(', i, ')' + if (rlonm025(is2) > pi) then + print *, 'Rlonm025 plus grand que pi !' STOP 1 - END IF - END DO - - ! Réorganisation des longitudes pour les avoir entre - pi et pi - - champmin = 1e12 - champmax = -1e12 - DO i = 1, iim - champmin = MIN(champmin, xvrai(i)) - champmax = MAX(champmax, xvrai(i)) - END DO - - IF (.not. (champmin >= -pi_d - 0.1 .and. champmax <= pi_d + 0.1)) THEN - print *, 'Reorganisation des longitudes pour avoir entre - pi', & - ' et pi ' - - IF (xzoom <= 0.) THEN - IF (ik == 1) THEN - i = 1 - - do while (xvrai(i) < - pi_d .and. i < iim) - i = i + 1 - end do - - if (xvrai(i) < - pi_d) then - print *, 'Xvrai plus petit que - pi !' - STOP 1 - end if - - is2 = i - END IF - - IF (is2.NE. 1) THEN - DO ii = is2, iim - xlon(ii-is2 + 1) = xvrai(ii) - xprimm(ii-is2 + 1) = xxprim(ii) - END DO - DO ii = 1, is2 -1 - xlon(ii + iim-is2 + 1) = xvrai(ii) + twopi_d - xprimm(ii + iim-is2 + 1) = xxprim(ii) - END DO - END IF - ELSE - IF (ik == 1) THEN - i = iim - - do while (xvrai(i) > pi_d .and. i > 1) - i = i - 1 - end do - - if (xvrai(i) > pi_d) then - print *, 'Xvrai plus grand que pi !' - STOP 1 - end if - - is2 = i - END IF - - idif = iim -is2 - - DO ii = 1, is2 - xlon(ii + idif) = xvrai(ii) - xprimm(ii + idif) = xxprim(ii) - END DO - - DO ii = 1, idif - xlon(ii) = xvrai(ii + is2) - twopi_d - xprimm(ii) = xxprim(ii + is2) - END DO - END IF - END IF - - ! Fin de la reorganisation - - xlon(iim + 1) = xlon(1) + twopi_d - xprimm(iim + 1) = xprimm(1) - - DO i = 1, iim + 1 - xvrai(i) = xlon(i)*180. / pi_d - END DO - - IF (ik == 1) THEN - DO i = 1, iim + 1 - rlonm025(i) = xlon(i) - xprimm025(i) = xprimm(i) - END DO - ELSE IF (ik == 2) THEN - rlonv = xlon - xprimv = xprimm - ELSE IF (ik == 3) THEN - DO i = 1, iim + 1 - rlonu(i) = xlon(i) - xprimu(i) = xprimm(i) - END DO - ELSE IF (ik == 4) THEN - DO i = 1, iim + 1 - rlonp025(i) = xlon(i) - xprimp025(i) = xprimm(i) - END DO + end if END IF - end DO loop_ik - - print * + END IF - DO i = 1, iim - xlon(i) = rlonv(i + 1) - rlonv(i) - END DO - champmin = 1e12 - champmax = -1e12 - DO i = 1, iim - champmin = MIN(champmin, xlon(i)) - champmax = MAX(champmax, xlon(i)) - END DO - champmin = champmin * 180. / pi_d - champmax = champmax * 180. / pi_d + call principal_cshift(is2, rlonm025, xprimm025) + call principal_cshift(is2, rlonv, xprimv) + call principal_cshift(is2, rlonu, xprimu) + call principal_cshift(is2, rlonp025, xprimp025) + + forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i) + print *, "Minimum longitude step:", MINval(d_rlonv) * 180. / pi, "degrees" + print *, "Maximum longitude step:", MAXval(d_rlonv) * 180. / pi, "degrees" + ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu: DO i = 1, iim + 1 IF (rlonp025(i) < rlonv(i)) THEN - print *, ' Attention ! rlonp025 < rlonv', i + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "< rlonv(", i, ") = ", rlonv(i) STOP 1 END IF IF (rlonv(i) < rlonm025(i)) THEN - print *, ' Attention ! rlonm025 > rlonv', i + print *, 'rlonv(', i, ') = ', rlonv(i) + print *, "< rlonm025(", i, ") = ", rlonm025(i) STOP 1 END IF IF (rlonp025(i) > rlonu(i)) THEN - print *, ' Attention ! rlonp025 > rlonu', i + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "> rlonu(", i, ") = ", rlonu(i) STOP 1 END IF END DO - print *, ' Longitudes ' - print 3, champmin, champmax - -3 Format(1x, ' Au centre du zoom, la longueur de la maille est', & - ' d environ ', f0.2, ' degres ', /, & - ' alors que la maille en dehors de la zone du zoom est ', & - "d'environ", f0.2, ' degres ') - END SUBROUTINE fxhyp end module fxhyp_m