--- trunk/dyn3d/fxhyp.f 2015/01/13 14:56:15 120 +++ trunk/dyn3d/fxhyp.f 2015/01/28 16:10:02 121 @@ -12,13 +12,13 @@ ! Calcule les longitudes et dérivées dans la grille du GCM pour ! une fonction f(x) à dérivée tangente hyperbolique. - ! On doit avoir grossismx \times dzoomx < pi (radians) + ! Il vaut mieux avoir : grossismx \times dzoom < pi ! Le premier point scalaire pour une grille regulière (grossismx = ! 1., taux=0., clon=0.) est à - 180 degrés. - use coefpoly_m, only: coefpoly USE dimens_m, ONLY: iim + use fxhyp_loop_ik_m, only: fxhyp_loop_ik, nmax use nr_util, only: pi_d, twopi_d, arth use serre, only: clon, grossismx, dzoomx, taux @@ -27,49 +27,34 @@ ! Local: - DOUBLE PRECISION champmin, champmax real rlonm025(iim + 1), rlonp025(iim + 1) - INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2 * nmax REAL dzoom - DOUBLE PRECISION xlon(iim + 1), xprimm(iim + 1), xuv - DOUBLE PRECISION xtild(0:nmax2) - DOUBLE PRECISION fhyp(nmax:nmax2), ffdx, beta, Xprimt(0:nmax2) - DOUBLE PRECISION Xf(0:nmax2), xxpr(nmax2) - DOUBLE PRECISION xvrai(iim + 1), xxprim(iim + 1) - DOUBLE PRECISION my_eps, xzoom, fa, fb - DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2 - INTEGER i, it, ik, iter, ii, idif, ii1, ii2 - DOUBLE PRECISION xi, xo1, xmoy, fxm, Xprimin + DOUBLE PRECISION xlon(iim) + DOUBLE PRECISION xtild(0:2 * nmax) + DOUBLE PRECISION fhyp(nmax:2 * nmax), ffdx, beta, Xprimt(0:2 * nmax) + DOUBLE PRECISION Xf(0:2 * nmax), xxpr(2 * nmax) + DOUBLE PRECISION xzoom, fa, fb + INTEGER i + DOUBLE PRECISION xmoy, fxm DOUBLE PRECISION decalx - INTEGER is2 !---------------------------------------------------------------------- print *, "Call sequence information: fxhyp" - my_eps = 1e-3 - xzoom = clon * pi_d / 180. + xzoom = clon * pi_d / 180d0 IF (grossismx == 1.) THEN - decalx = 1. + decalx = 1d0 else - decalx = 0.75 + decalx = 0.75d0 END IF - IF (dzoomx < 1.) THEN - dzoom = dzoomx * twopi_d - ELSE IF (dzoomx < 25.) THEN - print *, "dzoomx pour fxhyp est trop petit." - STOP 1 - ELSE - dzoom = dzoomx * pi_d / 180. - END IF - - print *, 'dzoom (rad):', dzoom + dzoom = dzoomx * twopi_d + xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) - xtild = arth(- pi_d, twopi_d / nmax2, nmax2 + 1) - - DO i = nmax, nmax2 + ! Compute fhyp: + DO i = nmax, 2 * nmax fa = taux * (dzoom / 2. - xtild(i)) fb = xtild(i) * (pi_d - xtild(i)) @@ -78,7 +63,7 @@ ELSE IF (200. * fb < fa) THEN fhyp(i) = 1. ELSE - IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN IF (200. * fb + fa < 1e-10) THEN fhyp(i) = - 1. ELSE IF (200. * fb - fa < 1e-10) THEN @@ -97,7 +82,7 @@ ffdx = 0. - DO i = nmax + 1, nmax2 + DO i = nmax + 1, 2 * nmax xmoy = 0.5 * (xtild(i-1) + xtild(i)) fa = taux * (dzoom / 2. - xmoy) fb = xmoy * (pi_d - xmoy) @@ -107,7 +92,7 @@ ELSE IF (200. * fb < fa) THEN fxm = 1. ELSE - IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN IF (200. * fb + fa < 1e-10) THEN fxm = - 1. ELSE IF (200. * fb - fa < 1e-10) THEN @@ -124,7 +109,9 @@ ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) END DO + print *, "ffdx = ", ffdx beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) + print *, "beta = ", beta IF (2. * beta - grossismx <= 0.) THEN print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' @@ -133,20 +120,12 @@ END IF ! calcul de Xprimt + Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp + xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) - DO i = nmax, nmax2 - Xprimt(i) = beta + (grossismx - beta) * fhyp(i) - END DO - - DO i = nmax + 1, nmax2 - Xprimt(nmax2 - i) = Xprimt(i) - END DO - - ! Calcul de Xf - - Xf(0) = - pi_d + ! Calcul de Xf - DO i = nmax + 1, nmax2 + DO i = nmax + 1, 2 * nmax xmoy = 0.5 * (xtild(i-1) + xtild(i)) fa = taux * (dzoom / 2. - xmoy) fb = xmoy * (pi_d - xmoy) @@ -164,213 +143,41 @@ xxpr(i) = beta + (grossismx - beta) * fxm END DO - xxpr(:nmax) = xxpr(nmax2:nmax + 1:- 1) + xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) + + Xf(0) = - pi_d - DO i=1, nmax2 + DO i=1, 2 * nmax - 1 Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) END DO - is2 = 0 + Xf(2 * nmax) = pi_d - loop_ik: DO ik = 1, 4 - ! xuv = 0. si calcul aux points scalaires - ! xuv = 0.5 si calcul aux points U - - IF (ik == 1) THEN - xuv = -0.25 - ELSE IF (ik == 2) THEN - xuv = 0. - ELSE IF (ik == 3) THEN - xuv = 0.50 - ELSE IF (ik == 4) THEN - xuv = 0.25 - END IF - - xo1 = 0. - - IF (ik == 1 .and. grossismx == 1.) THEN - ii1 = 2 - ii2 = iim + 1 - else - ii1=1 - ii2=iim - END IF - - DO i = ii1, ii2 - Xfi = - pi_d + (REAL(i) + xuv - decalx) * twopi_d / REAL(iim) - - it = nmax2 - do while (xfi < xf(it) .and. it >= 1) - it = it - 1 - end do - - ! Calcul de Xf(xi) - - xi = xtild(it) - - IF (it == nmax2) THEN - it = nmax2 -1 - Xf(it + 1) = pi_d - END IF - - ! Appel de la routine qui calcule les coefficients a0, a1, - ! a2, a3 d'un polynome de degre 3 qui passe par les points - ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1)) - - CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), & - xtild(it), xtild(it + 1), a0, a1, a2, a3) - - Xf1 = Xf(it) - Xprimin = a1 + 2. * a2 * xi + 3. * a3 * xi * xi - - iter = 1 - - do - xi = xi - (Xf1 - Xfi) / Xprimin - IF (ABS(xi - xo1) <= my_eps .or. iter == 300) exit - xo1 = xi - xi2 = xi * xi - Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2. * a2 * xi + 3. * a3 * xi2 - end DO - - if (ABS(xi - xo1) > my_eps) then - ! iter == 300 - print *, 'Pas de solution.' - print *, i, xfi - STOP 1 - end if - - xxprim(i) = twopi_d / (REAL(iim) * Xprimin) - xvrai(i) = xi + xzoom - end DO - - IF (ik == 1 .and. grossismx == 1.) THEN - xvrai(1) = xvrai(iim + 1)-twopi_d - xxprim(1) = xxprim(iim + 1) - END IF - - DO i = 1, iim - xlon(i) = xvrai(i) - xprimm(i) = xxprim(i) - END DO - - DO i = 1, iim -1 - IF (xvrai(i + 1) < xvrai(i)) THEN - print *, 'rlonu(', i + 1, ') < rlonu(', i, ')' - STOP 1 - END IF - END DO - - IF (.not. (MINval(xvrai(:iim)) >= - pi_d - 0.1 & - .and. MAXval(xvrai(:iim)) <= pi_d + 0.1)) THEN - print *, & - 'Réorganisation des longitudes pour les avoir entre - pi et pi' - - IF (xzoom <= 0.) THEN - IF (ik == 1) THEN - i = 1 - - do while (xvrai(i) < - pi_d .and. i < iim) - i = i + 1 - end do - - if (xvrai(i) < - pi_d) then - print *, 'Xvrai plus petit que - pi !' - STOP 1 - end if - - is2 = i - END IF - - IF (is2 /= 1) THEN - DO ii = is2, iim - xlon(ii-is2 + 1) = xvrai(ii) - xprimm(ii-is2 + 1) = xxprim(ii) - END DO - DO ii = 1, is2 -1 - xlon(ii + iim-is2 + 1) = xvrai(ii) + twopi_d - xprimm(ii + iim-is2 + 1) = xxprim(ii) - END DO - END IF - ELSE - IF (ik == 1) THEN - i = iim - - do while (xvrai(i) > pi_d .and. i > 1) - i = i - 1 - end do - - if (xvrai(i) > pi_d) then - print *, 'Xvrai plus grand que pi !' - STOP 1 - end if - - is2 = i - END IF - - idif = iim -is2 - - DO ii = 1, is2 - xlon(ii + idif) = xvrai(ii) - xprimm(ii + idif) = xxprim(ii) - END DO - - DO ii = 1, idif - xlon(ii) = xvrai(ii + is2) - twopi_d - xprimm(ii) = xxprim(ii + is2) - END DO - END IF - END IF - - xlon(iim + 1) = xlon(1) + twopi_d - xprimm(iim + 1) = xprimm(1) - - DO i = 1, iim + 1 - xvrai(i) = xlon(i) * 180. / pi_d - END DO - - IF (ik == 1) THEN - DO i = 1, iim + 1 - rlonm025(i) = xlon(i) - xprimm025(i) = xprimm(i) - END DO - ELSE IF (ik == 2) THEN - rlonv = xlon - xprimv = xprimm - ELSE IF (ik == 3) THEN - DO i = 1, iim + 1 - rlonu(i) = xlon(i) - xprimu(i) = xprimm(i) - END DO - ELSE IF (ik == 4) THEN - rlonp025 = xlon - xprimp025 = xprimm - END IF - end DO loop_ik + call fxhyp_loop_ik(1, decalx, xf, xtild, Xprimt, xzoom, rlonm025, & + xprimm025, xuv = - 0.25d0) + call fxhyp_loop_ik(2, decalx, xf, xtild, Xprimt, xzoom, rlonv, xprimv, & + xuv = 0d0) + call fxhyp_loop_ik(3, decalx, xf, xtild, Xprimt, xzoom, rlonu, xprimu, & + xuv = 0.5d0) + call fxhyp_loop_ik(4, decalx, xf, xtild, Xprimt, xzoom, rlonp025, & + xprimp025, xuv = 0.25d0) print * - DO i = 1, iim - xlon(i) = rlonv(i + 1) - rlonv(i) - END DO - champmin = 1e12 - champmax = -1e12 - DO i = 1, iim - champmin = MIN(champmin, xlon(i)) - champmax = MAX(champmax, xlon(i)) - END DO - champmin = champmin * 180. / pi_d - champmax = champmax * 180. / pi_d + forall (i = 1: iim) xlon(i) = rlonv(i + 1) - rlonv(i) + print *, "Minimum longitude step:", MINval(xlon) * 180. / pi_d, "°" + print *, "Maximum longitude step:", MAXval(xlon) * 180. / pi_d, "°" DO i = 1, iim + 1 IF (rlonp025(i) < rlonv(i)) THEN - print *, ' Attention ! rlonp025 < rlonv', i + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "< rlonv(", i, ") = ", rlonv(i) STOP 1 END IF IF (rlonv(i) < rlonm025(i)) THEN - print *, ' Attention ! rlonm025 > rlonv', i + print *, 'rlonv(', i, ') = ', rlonv(i) + print *, "< rlonm025(", i, ") = ", rlonm025(i) STOP 1 END IF @@ -381,14 +188,6 @@ END IF END DO - print *, ' Longitudes ' - print 3, champmin, champmax - -3 Format(1x, ' Au centre du zoom, la longueur de la maille est', & - ' d environ ', f0.2, ' degres ', /, & - ' alors que la maille en dehors de la zone du zoom est ', & - "d'environ ", f0.2, ' degres ') - END SUBROUTINE fxhyp end module fxhyp_m