/[lmdze]/trunk/dyn3d/fxhyp.f
ViewVC logotype

Diff of /trunk/dyn3d/fxhyp.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/dyn3d/fxhyp.f revision 91 by guez, Wed Mar 26 17:18:58 2014 UTC trunk/Sources/dyn3d/fxhyp.f revision 147 by guez, Wed Jun 17 14:20:14 2015 UTC
# Line 4  module fxhyp_m Line 4  module fxhyp_m
4    
5  contains  contains
6    
7    SUBROUTINE fxhyp(xzoomdeg, grossism, dzooma, tau, rlonm025, xprimm025, &    SUBROUTINE fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025)
        rlonv, xprimv, rlonu, xprimu, rlonp025, xprimp025, champmin, champmax)  
8    
9      ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32      ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32
10      ! Author: P. Le Van      ! Author: P. Le Van, from formulas by R. Sadourny
11    
12      ! Calcule les longitudes et dérivées dans la grille du GCM pour      ! Calcule les longitudes et dérivées dans la grille du GCM pour
13      ! une fonction f(x) à tangente hyperbolique.      ! une fonction f(x) à dérivée tangente hyperbolique.
14    
15      ! On doit avoir grossism \times dzoom < pi (radians), en longitude.      ! Il vaut mieux avoir : grossismx \times dzoom < pi
16    
17      USE dimens_m, ONLY: iim      ! Le premier point scalaire pour une grille regulière (grossismx =
18      USE paramet_m, ONLY: iip1      ! 1., taux = 0., clon = 0.) est à - 180 degrés.
   
     REAL, intent(in):: xzoomdeg  
   
     REAL, intent(in):: grossism  
     ! grossissement (= 2 si 2 fois, = 3 si 3 fois, etc.)  
   
     REAL, intent(in):: dzooma ! distance totale de la zone du zoom  
   
     REAL, intent(in):: tau  
     ! raideur de la transition de l'intérieur à l'extérieur du zoom  
19    
20      ! arguments de sortie      USE dimens_m, ONLY: iim
21        use dynetat0_m, only: clon, grossismx, dzoomx, taux
22      REAL, dimension(iip1):: rlonm025, xprimm025, rlonv, xprimv      use invert_zoom_x_m, only: invert_zoom_x, nmax
23      real, dimension(iip1):: rlonu, xprimu, rlonp025, xprimp025      use nr_util, only: pi, pi_d, twopi, twopi_d, arth
24        use principal_cshift_m, only: principal_cshift
25        use tanh_cautious_m, only: tanh_cautious
26    
27      DOUBLE PRECISION, intent(out):: champmin, champmax      REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1)
28        real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1)
29    
30      ! Local:      ! Local:
31        real rlonm025(iim + 1), rlonp025(iim + 1), d_rlonv(iim)
32      INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2*nmax      REAL dzoom, step
33        DOUBLE PRECISION, dimension(0:nmax):: xtild, fhyp, G, Xf, ffdx
34      LOGICAL, PARAMETER:: scal180 = .TRUE.      DOUBLE PRECISION beta
35      ! scal180 = .TRUE. si on veut avoir le premier point scalaire pour      INTEGER i, is2
36      ! une grille reguliere (grossism = 1., tau=0., clon=0.) a      DOUBLE PRECISION xmoy(nmax), fxm(nmax)
     ! -180. degres. sinon scal180 = .FALSE.  
   
     REAL dzoom  
     DOUBLE PRECISION xlon(iip1), xprimm(iip1), xuv  
     DOUBLE PRECISION xtild(0:nmax2)  
     DOUBLE PRECISION fhyp(0:nmax2), ffdx, beta, Xprimt(0:nmax2)  
     DOUBLE PRECISION Xf(0:nmax2), xxpr(0:nmax2)  
     DOUBLE PRECISION xvrai(iip1), xxprim(iip1)  
     DOUBLE PRECISION pi, depi, epsilon, xzoom, fa, fb  
     DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2  
     INTEGER i, it, ik, iter, ii, idif, ii1, ii2  
     DOUBLE PRECISION xi, xo1, xmoy, xlon2, fxm, Xprimin  
     DOUBLE PRECISION decalx  
     INTEGER is2  
     SAVE is2  
   
     DOUBLE PRECISION heavyside  
37    
38      !----------------------------------------------------------------------      !----------------------------------------------------------------------
39    
40      pi = 2. * ASIN(1.)      print *, "Call sequence information: fxhyp"
     depi = 2. * pi  
     epsilon = 1.e-3  
     xzoom = xzoomdeg * pi/180.  
   
     decalx = .75  
     IF (grossism == 1. .AND. scal180) THEN  
        decalx = 1.  
     ENDIF  
   
     print *, 'FXHYP scal180, decalx', scal180, decalx  
   
     IF (dzooma.LT.1.) THEN  
        dzoom = dzooma * depi  
     ELSEIF (dzooma.LT. 25.) THEN  
        print *, "Le paramètre dzoomx pour fxhyp est trop petit. " &  
             // "L'augmenter et relancer."  
        STOP 1  
     ELSE  
        dzoom = dzooma * pi/180.  
     ENDIF  
   
     print *, ' xzoom(rad), grossism, tau, dzoom (rad):'  
     print *, xzoom, grossism, tau, dzoom  
   
     DO i = 0, nmax2  
        xtild(i) = - pi + FLOAT(i) * depi /nmax2  
     ENDDO  
   
     DO i = nmax, nmax2  
        fa = tau* (dzoom/2. - xtild(i))  
        fb = xtild(i) * (pi - xtild(i))  
   
        IF (200.* fb .LT. - fa) THEN  
           fhyp (i) = - 1.  
        ELSEIF (200. * fb .LT. fa) THEN  
           fhyp (i) = 1.  
        ELSE  
           IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN  
              IF (200.*fb + fa.LT.1.e-10) THEN  
                 fhyp (i) = - 1.  
              ELSEIF (200.*fb - fa.LT.1.e-10) THEN  
                 fhyp (i) = 1.  
              ENDIF  
           ELSE  
              fhyp (i) = TANH (fa/fb)  
           ENDIF  
        ENDIF  
   
        IF (xtild(i) == 0.) fhyp(i) = 1.  
        IF (xtild(i) == pi) fhyp(i) = -1.  
     ENDDO  
   
     ! Calcul de beta  
   
     ffdx = 0.  
   
     DO i = nmax + 1, nmax2  
        xmoy = 0.5 * (xtild(i-1) + xtild(i))  
        fa = tau* (dzoom/2. - xmoy)  
        fb = xmoy * (pi - xmoy)  
   
        IF (200.* fb .LT. - fa) THEN  
           fxm = - 1.  
        ELSEIF (200. * fb .LT. fa) THEN  
           fxm = 1.  
        ELSE  
           IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN  
              IF (200.*fb + fa.LT.1.e-10) THEN  
                 fxm = - 1.  
              ELSEIF (200.*fb - fa.LT.1.e-10) THEN  
                 fxm = 1.  
              ENDIF  
           ELSE  
              fxm = TANH (fa/fb)  
           ENDIF  
        ENDIF  
   
        IF (xmoy == 0.) fxm = 1.  
        IF (xmoy == pi) fxm = -1.  
   
        ffdx = ffdx + fxm * (xtild(i) - xtild(i-1))  
     ENDDO  
   
     beta = (grossism * ffdx - pi) / (ffdx - pi)  
   
     IF (2.*beta - grossism <= 0.) THEN  
        print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.'  
        print *, 'Modifier les valeurs de grossismx, tau ou dzoomx et relancer.'  
        STOP 1  
     ENDIF  
   
     ! calcul de Xprimt  
   
     DO i = nmax, nmax2  
        Xprimt(i) = beta + (grossism - beta) * fhyp(i)  
     ENDDO  
   
     DO i = nmax + 1, nmax2  
        Xprimt(nmax2 - i) = Xprimt(i)  
     ENDDO  
   
     ! Calcul de Xf  
   
     Xf(0) = - pi  
   
     DO i = nmax + 1, nmax2  
        xmoy = 0.5 * (xtild(i-1) + xtild(i))  
        fa = tau* (dzoom/2. - xmoy)  
        fb = xmoy * (pi - xmoy)  
   
        IF (200.* fb .LT. - fa) THEN  
           fxm = - 1.  
        ELSEIF (200. * fb .LT. fa) THEN  
           fxm = 1.  
        ELSE  
           fxm = TANH (fa/fb)  
        ENDIF  
41    
42         IF (xmoy == 0.) fxm = 1.      test_grossismx: if (grossismx == 1.) then
43         IF (xmoy == pi) fxm = -1.         step = twopi / iim
        xxpr(i) = beta + (grossism - beta) * fxm  
     ENDDO  
   
     DO i = nmax + 1, nmax2  
        xxpr(nmax2-i + 1) = xxpr(i)  
     ENDDO  
   
     DO i=1, nmax2  
        Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1))  
     ENDDO  
   
     ! xuv = 0. si calcul aux pts scalaires  
     ! xuv = 0.5 si calcul aux pts U  
   
     print *  
   
     DO ik = 1, 4  
        IF (ik == 1) THEN  
           xuv = -0.25  
        ELSE IF (ik == 2) THEN  
           xuv = 0.  
        ELSE IF (ik == 3) THEN  
           xuv = 0.50  
        ELSE IF (ik == 4) THEN  
           xuv = 0.25  
        ENDIF  
   
        xo1 = 0.  
   
        ii1=1  
        ii2=iim  
        IF (ik == 1.and.grossism == 1.) THEN  
           ii1 = 2  
           ii2 = iim + 1  
        ENDIF  
   
        DO i = ii1, ii2  
           xlon2 = - pi + (FLOAT(i) + xuv - decalx) * depi / FLOAT(iim)  
           Xfi = xlon2  
   
           it = nmax2  
           do while (xfi < xf(it) .and. it >= 1)  
              it = it - 1  
           end do  
44    
45            ! Calcul de Xf(xi)         xprimm025(:iim) = step
46           xprimp025(:iim) = step
47           xprimv(:iim) = step
48           xprimu(:iim) = step
49    
50           rlonv(:iim) = arth(- pi + clon, step, iim)
51           rlonm025(:iim) = rlonv(:iim) - 0.25 * step
52           rlonp025(:iim) = rlonv(:iim) + 0.25 * step
53           rlonu(:iim) = rlonv(:iim) + 0.5 * step
54        else test_grossismx
55           dzoom = dzoomx * twopi_d
56           xtild = arth(0d0, pi_d / nmax, nmax + 1)
57           forall (i = 1:nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i))
58    
59           ! Compute fhyp:
60           fhyp(1:nmax - 1) = tanh_cautious(taux * (dzoom / 2d0 &
61                - xtild(1:nmax - 1)), xtild(1:nmax - 1) &
62                * (pi_d - xtild(1:nmax - 1)))
63           fhyp(0) = 1d0
64           fhyp(nmax) = -1d0
65    
66           fxm = tanh_cautious(taux * (dzoom / 2d0 - xmoy), xmoy * (pi_d - xmoy))
67    
68           ! Compute \int_0 ^{\tilde x} F:
69    
70           ffdx(0) = 0d0
71    
72           DO i = 1, nmax
73              ffdx(i) = ffdx(i - 1) + fxm(i) * (xtild(i) - xtild(i-1))
74           END DO
75    
76           print *, "ffdx(nmax) = ", ffdx(nmax)
77           beta = (pi_d - grossismx * ffdx(nmax)) / (pi_d - ffdx(nmax))
78           print *, "beta = ", beta
79    
80           IF (2d0 * beta - grossismx <= 0d0) THEN
81              print *, 'Bad choice of grossismx, taux, dzoomx.'
82              print *, 'Decrease dzoomx or grossismx.'
83              STOP 1
84           END IF
85    
86           G = beta + (grossismx - beta) * fhyp
87    
88           Xf(:nmax - 1) = beta * xtild(:nmax - 1) + (grossismx - beta) &
89                * ffdx(:nmax - 1)
90           Xf(nmax) = pi_d
91    
92           call invert_zoom_x(xf, xtild, G, rlonm025(:iim), xprimm025(:iim), &
93                xuv = - 0.25d0)
94           call invert_zoom_x(xf, xtild, G, rlonv(:iim), xprimv(:iim), xuv = 0d0)
95           call invert_zoom_x(xf, xtild, G, rlonu(:iim), xprimu(:iim), xuv = 0.5d0)
96           call invert_zoom_x(xf, xtild, G, rlonp025(:iim), xprimp025(:iim), &
97                xuv = 0.25d0)
98        end if test_grossismx
99    
100        is2 = 0
101    
102        IF (MINval(rlonm025(:iim)) < - pi - 0.1 &
103             .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN
104           IF (clon <= 0.) THEN
105              is2 = 1
106    
107            xi = xtild(it)            do while (rlonm025(is2) < - pi .and. is2 < iim)
108                 is2 = is2 + 1
109              end do
110    
111            IF (it == nmax2) THEN            if (rlonm025(is2) < - pi) then
112               it = nmax2 -1               print *, 'Rlonm025 plus petit que - pi !'
              Xf(it + 1) = pi  
           ENDIF  
   
           ! Appel de la routine qui calcule les coefficients a0, a1,  
           ! a2, a3 d'un polynome de degre 3 qui passe par les points  
           ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1))  
   
           CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), &  
                xtild(it), xtild(it + 1), a0, a1, a2, a3)  
   
           Xf1 = Xf(it)  
           Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi  
   
           iter = 1  
   
           do  
              xi = xi - (Xf1 - Xfi)/ Xprimin  
              IF (ABS(xi - xo1) <= epsilon .or. iter == 300) exit  
              xo1 = xi  
              xi2 = xi * xi  
              Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi  
              Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2  
           end DO  
   
           if (ABS(xi - xo1) > epsilon) then  
              ! iter == 300  
              print *, 'Pas de solution.'  
              print *, i, xlon2  
113               STOP 1               STOP 1
114            end if            end if
115           ELSE
116              is2 = iim
117    
118              do while (rlonm025(is2) > pi .and. is2 > 1)
119                 is2 = is2 - 1
120              end do
121    
122            xxprim(i) = depi/ (FLOAT(iim) * Xprimin)            if (rlonm025(is2) > pi) then
123            xvrai(i) = xi + xzoom               print *, 'Rlonm025 plus grand que pi !'
        end DO  
   
        IF (ik == 1.and.grossism == 1.) THEN  
           xvrai(1) = xvrai(iip1)-depi  
           xxprim(1) = xxprim(iip1)  
        ENDIF  
        DO i = 1, iim  
           xlon(i) = xvrai(i)  
           xprimm(i) = xxprim(i)  
        ENDDO  
        DO i = 1, iim -1  
           IF (xvrai(i + 1).LT. xvrai(i)) THEN  
              print *, 'Problème avec rlonu(', i + 1, &  
                   ') plus petit que rlonu(', i, ')'  
124               STOP 1               STOP 1
125            ENDIF            end if
126         ENDDO         END IF
127        END IF
        ! Reorganisation des longitudes pour les avoir entre - pi et pi  
128    
129         champmin = 1.e12      call principal_cshift(is2, rlonm025, xprimm025)
130         champmax = -1.e12      call principal_cshift(is2, rlonv, xprimv)
131         DO i = 1, iim      call principal_cshift(is2, rlonu, xprimu)
132            champmin = MIN(champmin, xvrai(i))      call principal_cshift(is2, rlonp025, xprimp025)
133            champmax = MAX(champmax, xvrai(i))  
134         ENDDO      forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i)
135        print *, "Minimum longitude step:", MINval(d_rlonv) * 180. / pi, "degrees"
136         IF (.not. (champmin >= -pi-0.10.and.champmax <= pi + 0.10)) THEN      print *, "Maximum longitude step:", MAXval(d_rlonv) * 180. / pi, "degrees"
137            print *, 'Reorganisation des longitudes pour avoir entre - pi', &  
138                 ' et pi '      ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu:
139        DO i = 1, iim + 1
140            IF (xzoom <= 0.) THEN         IF (rlonp025(i) < rlonv(i)) THEN
141               IF (ik == 1) THEN            print *, 'rlonp025(', i, ') = ', rlonp025(i)
142                  i = 1            print *, "< rlonv(", i, ") = ", rlonv(i)
143              STOP 1
144                  do while (xvrai(i) < - pi .and. i < iim)         END IF
145                     i = i + 1  
146                  end do         IF (rlonv(i) < rlonm025(i)) THEN
147              print *, 'rlonv(', i, ') = ', rlonv(i)
148                  if (xvrai(i) < - pi) then            print *, "< rlonm025(", i, ") = ", rlonm025(i)
149                     print *, ' PBS. 1 ! Xvrai plus petit que - pi ! '            STOP 1
150                     STOP 1         END IF
151                  end if  
152           IF (rlonp025(i) > rlonu(i)) THEN
153                  is2 = i            print *, 'rlonp025(', i, ') = ', rlonp025(i)
154               ENDIF            print *, "> rlonu(", i, ") = ", rlonu(i)
155              STOP 1
156               IF (is2.NE. 1) THEN         END IF
157                  DO ii = is2, iim      END DO
                    xlon (ii-is2 + 1) = xvrai(ii)  
                    xprimm(ii-is2 + 1) = xxprim(ii)  
                 ENDDO  
                 DO ii = 1, is2 -1  
                    xlon (ii + iim-is2 + 1) = xvrai(ii) + depi  
                    xprimm(ii + iim-is2 + 1) = xxprim(ii)  
                 ENDDO  
              ENDIF  
           ELSE  
              IF (ik == 1) THEN  
                 i = iim  
   
                 do while (xvrai(i) > pi .and. i > 1)  
                    i = i - 1  
                 end do  
   
                 if (xvrai(i) > pi) then  
                    print *, ' PBS. 2 ! Xvrai plus grand que pi ! '  
                    STOP 1  
                 end if  
   
                 is2 = i  
              ENDIF  
              idif = iim -is2  
              DO ii = 1, is2  
                 xlon (ii + idif) = xvrai(ii)  
                 xprimm(ii + idif) = xxprim(ii)  
              ENDDO  
              DO ii = 1, idif  
                 xlon (ii) = xvrai (ii + is2) - depi  
                 xprimm(ii) = xxprim(ii + is2)  
              ENDDO  
           ENDIF  
        ENDIF  
   
        ! Fin de la reorganisation  
   
        xlon (iip1) = xlon(1) + depi  
        xprimm(iip1) = xprimm (1)  
   
        DO i = 1, iim + 1  
           xvrai(i) = xlon(i)*180./pi  
        ENDDO  
   
        IF (ik == 1) THEN  
           DO i = 1, iim + 1  
              rlonm025(i) = xlon(i)  
              xprimm025(i) = xprimm(i)  
           ENDDO  
        ELSE IF (ik == 2) THEN  
           DO i = 1, iim + 1  
              rlonv(i) = xlon(i)  
              xprimv(i) = xprimm(i)  
           ENDDO  
        ELSE IF (ik == 3) THEN  
           DO i = 1, iim + 1  
              rlonu(i) = xlon(i)  
              xprimu(i) = xprimm(i)  
           ENDDO  
        ELSE IF (ik == 4) THEN  
           DO i = 1, iim + 1  
              rlonp025(i) = xlon(i)  
              xprimp025(i) = xprimm(i)  
           ENDDO  
        ENDIF  
     end DO  
   
     print *  
   
     DO i = 1, iim  
        xlon(i) = rlonv(i + 1) - rlonv(i)  
     ENDDO  
     champmin = 1.e12  
     champmax = -1.e12  
     DO i = 1, iim  
        champmin = MIN(champmin, xlon(i))  
        champmax = MAX(champmax, xlon(i))  
     ENDDO  
     champmin = champmin * 180./pi  
     champmax = champmax * 180./pi  
158    
159    END SUBROUTINE fxhyp    END SUBROUTINE fxhyp
160    

Legend:
Removed from v.91  
changed lines
  Added in v.147

  ViewVC Help
Powered by ViewVC 1.1.21