--- trunk/dyn3d/fxhyp.f 2013/11/15 18:45:49 76 +++ trunk/Sources/dyn3d/fxhyp.f 2015/07/16 17:39:10 156 @@ -1,448 +1,174 @@ -! -! $Header: /home/cvsroot/LMDZ4/libf/dyn3d/fxhyp.F,v 1.2 2005/06/03 09:11:32 fairhead Exp $ -! -c -c - SUBROUTINE fxhyp ( xzoomdeg,grossism,dzooma,tau , - , rlonm025,xprimm025,rlonv,xprimv,rlonu,xprimu,rlonp025,xprimp025, - , champmin,champmax ) - -c Auteur : P. Le Van - - use dimens_m - use paramet_m - IMPLICIT NONE - -c Calcule les longitudes et derivees dans la grille du GCM pour une -c fonction f(x) a tangente hyperbolique . -c -c grossism etant le grossissement ( = 2 si 2 fois, = 3 si 3 fois,etc.) -c dzoom etant la distance totale de la zone du zoom -c tau la raideur de la transition de l'interieur a l'exterieur du zoom -c -c On doit avoir grossism x dzoom < pi ( radians ) , en longitude. -c ******************************************************************** - - - INTEGER nmax, nmax2 - PARAMETER ( nmax = 30000, nmax2 = 2*nmax ) -c - LOGICAL scal180 - PARAMETER ( scal180 = .TRUE. ) - -c scal180 = .TRUE. si on veut avoir le premier point scalaire pour -c une grille reguliere ( grossism = 1.,tau=0.,clon=0. ) a -180. degres. -c sinon scal180 = .FALSE. - - -c ...... arguments d'entree ....... -c - REAL xzoomdeg,dzooma,tau,grossism - -c ...... arguments de sortie ...... - - REAL rlonm025(iip1),xprimm025(iip1),rlonv(iip1),xprimv(iip1), - , rlonu(iip1),xprimu(iip1),rlonp025(iip1),xprimp025(iip1) - -c .... variables locales .... -c - REAL dzoom - DOUBLE PRECISION xlon(iip1),xprimm(iip1),xuv - DOUBLE PRECISION xtild(0:nmax2) - DOUBLE PRECISION fhyp(0:nmax2),ffdx,beta,Xprimt(0:nmax2) - DOUBLE PRECISION Xf(0:nmax2),xxpr(0:nmax2) - DOUBLE PRECISION xvrai(iip1),xxprim(iip1) - DOUBLE PRECISION pi,depi,epsilon,xzoom,fa,fb - DOUBLE PRECISION Xf1, Xfi , a0,a1,a2,a3,xi2 - INTEGER i,it,ik,iter,ii,idif,ii1,ii2 - DOUBLE PRECISION xi,xo1,xmoy,xlon2,fxm,Xprimin - DOUBLE PRECISION champmin,champmax,decalx - INTEGER is2 - SAVE is2 - - DOUBLE PRECISION heavyside - - pi = 2. * ASIN(1.) - depi = 2. * pi - epsilon = 1.e-3 - xzoom = xzoomdeg * pi/180. -c - decalx = .75 - IF( grossism.EQ.1..AND.scal180 ) THEN - decalx = 1. - ENDIF - - WRITE(6,*) 'FXHYP scal180,decalx', scal180,decalx -c - IF( dzooma.LT.1.) THEN - dzoom = dzooma * depi - ELSEIF( dzooma.LT. 25. ) THEN - WRITE(6,*) ' Le param. dzoomx pour fxhyp est trop petit ! L aug - ,menter et relancer ! ' - STOP 1 - ELSE - dzoom = dzooma * pi/180. - ENDIF +module fxhyp_m - WRITE(6,*) ' xzoom( rad.),grossism,tau,dzoom (radians)' - WRITE(6,24) xzoom,grossism,tau,dzoom + IMPLICIT NONE - DO i = 0, nmax2 - xtild(i) = - pi + FLOAT(i) * depi /nmax2 - ENDDO - - DO i = nmax, nmax2 - - fa = tau* ( dzoom/2. - xtild(i) ) - fb = xtild(i) * ( pi - xtild(i) ) - - IF( 200.* fb .LT. - fa ) THEN - fhyp ( i) = - 1. - ELSEIF( 200. * fb .LT. fa ) THEN - fhyp ( i) = 1. - ELSE - IF( ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF( 200.*fb + fa.LT.1.e-10 ) THEN - fhyp ( i ) = - 1. - ELSEIF( 200.*fb - fa.LT.1.e-10 ) THEN - fhyp ( i ) = 1. - ENDIF - ELSE - fhyp ( i ) = TANH ( fa/fb ) - ENDIF - ENDIF - IF ( xtild(i).EQ. 0. ) fhyp(i) = 1. - IF ( xtild(i).EQ. pi ) fhyp(i) = -1. - - ENDDO - -cc .... Calcul de beta .... - - ffdx = 0. - - DO i = nmax +1,nmax2 - - xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) - fa = tau* ( dzoom/2. - xmoy ) - fb = xmoy * ( pi - xmoy ) - - IF( 200.* fb .LT. - fa ) THEN - fxm = - 1. - ELSEIF( 200. * fb .LT. fa ) THEN - fxm = 1. - ELSE - IF( ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF( 200.*fb + fa.LT.1.e-10 ) THEN - fxm = - 1. - ELSEIF( 200.*fb - fa.LT.1.e-10 ) THEN - fxm = 1. - ENDIF - ELSE - fxm = TANH ( fa/fb ) - ENDIF - ENDIF - - IF ( xmoy.EQ. 0. ) fxm = 1. - IF ( xmoy.EQ. pi ) fxm = -1. - - ffdx = ffdx + fxm * ( xtild(i) - xtild(i-1) ) - - ENDDO - - beta = ( grossism * ffdx - pi ) / ( ffdx - pi ) - - IF( 2.*beta - grossism.LE. 0.) THEN - WRITE(6,*) ' ** Attention ! La valeur beta calculee dans la rou - ,tine fxhyp est mauvaise ! ' - WRITE(6,*)'Modifier les valeurs de grossismx ,tau ou dzoomx ', - , ' et relancer ! *** ' - STOP 1 - ENDIF -c -c ..... calcul de Xprimt ..... -c - - DO i = nmax, nmax2 - Xprimt(i) = beta + ( grossism - beta ) * fhyp(i) - ENDDO -c - DO i = nmax+1, nmax2 - Xprimt( nmax2 - i ) = Xprimt( i ) - ENDDO -c - -c ..... Calcul de Xf ........ - - Xf(0) = - pi - - DO i = nmax +1, nmax2 - - xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) - fa = tau* ( dzoom/2. - xmoy ) - fb = xmoy * ( pi - xmoy ) - - IF( 200.* fb .LT. - fa ) THEN - fxm = - 1. - ELSEIF( 200. * fb .LT. fa ) THEN - fxm = 1. +contains + + SUBROUTINE fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) + + ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32 + ! Author: P. Le Van, from formulas by R. Sadourny + + ! Calcule les longitudes et dérivées dans la grille du GCM pour + ! une fonction x_f(\tilde x) à dérivée tangente hyperbolique. + + ! Il vaut mieux avoir : grossismx \times delta < pi + + ! Le premier point scalaire pour une grille regulière (grossismx = + ! 1) avec clon = 0 est à - 180 degrés. + + USE dimens_m, ONLY: iim + use dynetat0_m, only: clon, grossismx, dzoomx, taux + use invert_zoom_x_m, only: invert_zoom_x, nmax + use nr_util, only: pi, pi_d, twopi, twopi_d, arth + use principal_cshift_m, only: principal_cshift + use tanh_cautious_m, only: tanh_cautious + + REAL, intent(out):: xprimm025(:) ! (iim + 1) + + REAL, intent(out):: rlonv(:) ! (iim + 1) + ! longitudes of points of the "scalar" and "v" grid, in rad + + REAL, intent(out):: xprimv(:) ! (iim + 1) + ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlonv) + + real, intent(out):: rlonu(:) ! (iim + 1) + ! longitudes of points of the "u" grid, in rad + + real, intent(out):: xprimu(:) ! (iim + 1) + ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlonu) + + real, intent(out):: xprimp025(:) ! (iim + 1) + + ! Local: + real rlonm025(iim + 1), rlonp025(iim + 1), d_rlonv(iim) + REAL delta, h + DOUBLE PRECISION, dimension(0:nmax):: xtild, fhyp, G, Xf, ffdx + DOUBLE PRECISION beta + INTEGER i, is2 + DOUBLE PRECISION xmoy(nmax), fxm(nmax) + + !---------------------------------------------------------------------- + + print *, "Call sequence information: fxhyp" + + if (grossismx == 1.) then + h = twopi / iim + + xprimm025(:iim) = h + xprimp025(:iim) = h + xprimv(:iim) = h + xprimu(:iim) = h + + rlonv(:iim) = arth(- pi + clon, h, iim) + rlonm025(:iim) = rlonv(:iim) - 0.25 * h + rlonp025(:iim) = rlonv(:iim) + 0.25 * h + rlonu(:iim) = rlonv(:iim) + 0.5 * h + else + delta = dzoomx * twopi_d + xtild = arth(0d0, pi_d / nmax, nmax + 1) + forall (i = 1:nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i)) + + ! Compute fhyp: + fhyp(1:nmax - 1) = tanh_cautious(taux * (delta / 2d0 & + - xtild(1:nmax - 1)), xtild(1:nmax - 1) & + * (pi_d - xtild(1:nmax - 1))) + fhyp(0) = 1d0 + fhyp(nmax) = -1d0 + + fxm = tanh_cautious(taux * (delta / 2d0 - xmoy), xmoy * (pi_d - xmoy)) + + ! Compute \int_0 ^{\tilde x} F: + + ffdx(0) = 0d0 + + DO i = 1, nmax + ffdx(i) = ffdx(i - 1) + fxm(i) * (xtild(i) - xtild(i-1)) + END DO + + print *, "ffdx(nmax) = ", ffdx(nmax) + beta = (pi_d - grossismx * ffdx(nmax)) / (pi_d - ffdx(nmax)) + print *, "beta = ", beta + + IF (2d0 * beta - grossismx <= 0d0) THEN + print *, 'Bad choice of grossismx, taux, dzoomx.' + print *, 'Decrease dzoomx or grossismx.' + STOP 1 + END IF + + G = beta + (grossismx - beta) * fhyp + + Xf(:nmax - 1) = beta * xtild(:nmax - 1) + (grossismx - beta) & + * ffdx(:nmax - 1) + Xf(nmax) = pi_d + + call invert_zoom_x(xf, xtild, G, rlonm025(:iim), xprimm025(:iim), & + xuv = - 0.25d0) + call invert_zoom_x(xf, xtild, G, rlonv(:iim), xprimv(:iim), xuv = 0d0) + call invert_zoom_x(xf, xtild, G, rlonu(:iim), xprimu(:iim), xuv = 0.5d0) + call invert_zoom_x(xf, xtild, G, rlonp025(:iim), xprimp025(:iim), & + xuv = 0.25d0) + end if + + is2 = 0 + + IF (MINval(rlonm025(:iim)) < - pi - 0.1 & + .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN + IF (clon <= 0.) THEN + is2 = 1 + + do while (rlonm025(is2) < - pi .and. is2 < iim) + is2 = is2 + 1 + end do + + if (rlonm025(is2) < - pi) then + print *, 'Rlonm025 plus petit que - pi !' + STOP 1 + end if ELSE - fxm = TANH ( fa/fb ) - ENDIF + is2 = iim + + do while (rlonm025(is2) > pi .and. is2 > 1) + is2 = is2 - 1 + end do + + if (rlonm025(is2) > pi) then + print *, 'Rlonm025 plus grand que pi !' + STOP 1 + end if + END IF + END IF + + call principal_cshift(is2, rlonm025, xprimm025) + call principal_cshift(is2, rlonv, xprimv) + call principal_cshift(is2, rlonu, xprimu) + call principal_cshift(is2, rlonp025, xprimp025) + + forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i) + print *, "Minimum longitude step:", MINval(d_rlonv) * 180. / pi, "degrees" + print *, "Maximum longitude step:", MAXval(d_rlonv) * 180. / pi, "degrees" + + ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu: + DO i = 1, iim + 1 + IF (rlonp025(i) < rlonv(i)) THEN + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "< rlonv(", i, ") = ", rlonv(i) + STOP 1 + END IF + + IF (rlonv(i) < rlonm025(i)) THEN + print *, 'rlonv(', i, ') = ', rlonv(i) + print *, "< rlonm025(", i, ") = ", rlonm025(i) + STOP 1 + END IF + + IF (rlonp025(i) > rlonu(i)) THEN + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "> rlonu(", i, ") = ", rlonu(i) + STOP 1 + END IF + END DO - IF ( xmoy.EQ. 0. ) fxm = 1. - IF ( xmoy.EQ. pi ) fxm = -1. - xxpr(i) = beta + ( grossism - beta ) * fxm - - ENDDO - - DO i = nmax+1, nmax2 - xxpr(nmax2-i+1) = xxpr(i) - ENDDO - - DO i=1,nmax2 - Xf(i) = Xf(i-1) + xxpr(i) * ( xtild(i) - xtild(i-1) ) - ENDDO - - -c ***************************************************************** -c - -c ..... xuv = 0. si calcul aux pts scalaires ........ -c ..... xuv = 0.5 si calcul aux pts U ........ -c - WRITE(6,18) -c - DO 5000 ik = 1, 4 - - IF( ik.EQ.1 ) THEN - xuv = -0.25 - ELSE IF ( ik.EQ.2 ) THEN - xuv = 0. - ELSE IF ( ik.EQ.3 ) THEN - xuv = 0.50 - ELSE IF ( ik.EQ.4 ) THEN - xuv = 0.25 - ENDIF - - xo1 = 0. - - ii1=1 - ii2=iim - IF(ik.EQ.1.and.grossism.EQ.1.) THEN - ii1 = 2 - ii2 = iim+1 - ENDIF - DO 1500 i = ii1, ii2 - - xlon2 = - pi + (FLOAT(i) + xuv - decalx) * depi / FLOAT(iim) - - Xfi = xlon2 -c - DO 250 it = nmax2,0,-1 - IF( Xfi.GE.Xf(it)) GO TO 350 -250 CONTINUE - - it = 0 - -350 CONTINUE - -c ...... Calcul de Xf(xi) ...... -c - xi = xtild(it) - - IF(it.EQ.nmax2) THEN - it = nmax2 -1 - Xf(it+1) = pi - ENDIF -c ..................................................................... -c -c Appel de la routine qui calcule les coefficients a0,a1,a2,a3 d'un -c polynome de degre 3 qui passe par les points (Xf(it),xtild(it) ) -c et (Xf(it+1),xtild(it+1) ) - - CALL coefpoly ( Xf(it),Xf(it+1),Xprimt(it),Xprimt(it+1), - , xtild(it),xtild(it+1), a0, a1, a2, a3 ) - - Xf1 = Xf(it) - Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi - - DO 500 iter = 1,300 - xi = xi - ( Xf1 - Xfi )/ Xprimin - - IF( ABS(xi-xo1).LE.epsilon) GO TO 550 - xo1 = xi - xi2 = xi * xi - Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 -500 CONTINUE - WRITE(6,*) ' Pas de solution ***** ',i,xlon2,iter - STOP 6 -550 CONTINUE - - xxprim(i) = depi/ ( FLOAT(iim) * Xprimin ) - xvrai(i) = xi + xzoom - -1500 CONTINUE - - - IF(ik.EQ.1.and.grossism.EQ.1.) THEN - xvrai(1) = xvrai(iip1)-depi - xxprim(1) = xxprim(iip1) - ENDIF - DO i = 1 , iim - xlon(i) = xvrai(i) - xprimm(i) = xxprim(i) - ENDDO - DO i = 1, iim -1 - IF( xvrai(i+1). LT. xvrai(i) ) THEN - WRITE(6,*) ' PBS. avec rlonu(',i+1,') plus petit que rlonu(',i, - , ')' - STOP 7 - ENDIF - ENDDO -c -c ... Reorganisation des longitudes pour les avoir entre - pi et pi .. -c ........................................................................ - - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN( champmin,xvrai(i) ) - champmax = MAX( champmax,xvrai(i) ) - ENDDO - - IF(champmin .GE.-pi-0.10.and.champmax.LE.pi+0.10 ) THEN - GO TO 1600 - ELSE - WRITE(6,*) 'Reorganisation des longitudes pour avoir entre - pi', - , ' et pi ' -c - IF( xzoom.LE.0.) THEN - IF( ik.EQ. 1 ) THEN - DO i = 1, iim - IF( xvrai(i).GE. - pi ) GO TO 80 - ENDDO - WRITE(6,*) ' PBS. 1 ! Xvrai plus petit que - pi ! ' - STOP 8 - 80 CONTINUE - is2 = i - ENDIF - - IF( is2.NE. 1 ) THEN - DO ii = is2 , iim - xlon (ii-is2+1) = xvrai(ii) - xprimm(ii-is2+1) = xxprim(ii) - ENDDO - DO ii = 1 , is2 -1 - xlon (ii+iim-is2+1) = xvrai(ii) + depi - xprimm(ii+iim-is2+1) = xxprim(ii) - ENDDO - ENDIF - ELSE - IF( ik.EQ.1 ) THEN - DO i = iim,1,-1 - IF( xvrai(i).LE. pi ) GO TO 90 - ENDDO - WRITE(6,*) ' PBS. 2 ! Xvrai plus grand que pi ! ' - STOP 9 - 90 CONTINUE - is2 = i - ENDIF - idif = iim -is2 - DO ii = 1, is2 - xlon (ii+idif) = xvrai(ii) - xprimm(ii+idif) = xxprim(ii) - ENDDO - DO ii = 1, idif - xlon (ii) = xvrai (ii+is2) - depi - xprimm(ii) = xxprim(ii+is2) - ENDDO - ENDIF - ENDIF -c -c ......... Fin de la reorganisation ............................ - - 1600 CONTINUE - - - xlon ( iip1) = xlon(1) + depi - xprimm( iip1 ) = xprimm (1 ) - - DO i = 1, iim+1 - xvrai(i) = xlon(i)*180./pi - ENDDO - - IF( ik.EQ.1 ) THEN -c WRITE(6,*) ' XLON aux pts. V-0.25 apres ( en deg. ) ' -c WRITE(6,18) -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM k ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim +1 - rlonm025(i) = xlon( i ) - xprimm025(i) = xprimm(i) - ENDDO - ELSE IF( ik.EQ.2 ) THEN -c WRITE(6,18) -c WRITE(6,*) ' XLON aux pts. V apres ( en deg. ) ' -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM k ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim + 1 - rlonv(i) = xlon( i ) - xprimv(i) = xprimm(i) - ENDDO - - ELSE IF( ik.EQ.3) THEN -c WRITE(6,18) -c WRITE(6,*) ' XLON aux pts. U apres ( en deg. ) ' -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM ik ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim + 1 - rlonu(i) = xlon( i ) - xprimu(i) = xprimm(i) - ENDDO - - ELSE IF( ik.EQ.4 ) THEN -c WRITE(6,18) -c WRITE(6,*) ' XLON aux pts. V+0.25 apres ( en deg. ) ' -c WRITE(6,68) xvrai -c WRITE(6,*) ' XPRIM ik ',ik -c WRITE(6,566) xprimm - - DO i = 1,iim + 1 - rlonp025(i) = xlon( i ) - xprimp025(i) = xprimm(i) - ENDDO - - ENDIF - -5000 CONTINUE -c - WRITE(6,18) -c -c ........... fin de la boucle do 5000 ............ - - DO i = 1, iim - xlon(i) = rlonv(i+1) - rlonv(i) - ENDDO - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN( champmin, xlon(i) ) - champmax = MAX( champmax, xlon(i) ) - ENDDO - champmin = champmin * 180./pi - champmax = champmax * 180./pi - -18 FORMAT(/) -24 FORMAT(2x,'Parametres xzoom,gross,tau ,dzoom pour fxhyp ',4f8.3) -68 FORMAT(1x,7f9.2) -566 FORMAT(1x,7f9.4) + END SUBROUTINE fxhyp - RETURN - END +end module fxhyp_m