/[lmdze]/trunk/dyn3d/leapfrog.f90
ViewVC logotype

Diff of /trunk/dyn3d/leapfrog.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/dyn3d/leapfrog.f90 revision 30 by guez, Thu Apr 1 09:07:28 2010 UTC trunk/Sources/dyn3d/leapfrog.f revision 138 by guez, Fri May 22 23:13:19 2015 UTC
# Line 4  module leapfrog_m Line 4  module leapfrog_m
4    
5  contains  contains
6    
7    SUBROUTINE leapfrog(ucov, vcov, teta, ps, masse, phis, q, time_0)    SUBROUTINE leapfrog(ucov, vcov, teta, ps, masse, phis, q)
8    
9      ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34      ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 revision 616
10      ! Authors: P. Le Van, L. Fairhead, F. Hourdin      ! Authors: P. Le Van, L. Fairhead, F. Hourdin
     ! schema matsuno + leapfrog  
11    
12        ! Intégration temporelle du modèle : Matsuno-leapfrog scheme.
13    
14        use addfi_m, only: addfi
15        use bilan_dyn_m, only: bilan_dyn
16        use caladvtrac_m, only: caladvtrac
17        use caldyn_m, only: caldyn
18      USE calfis_m, ONLY: calfis      USE calfis_m, ONLY: calfis
19      USE com_io_dyn, ONLY: histaveid      USE comconst, ONLY: daysec, dtvr
     USE comconst, ONLY: daysec, dtphys, dtvr  
20      USE comgeom, ONLY: aire_2d, apoln, apols      USE comgeom, ONLY: aire_2d, apoln, apols
21      USE comvert, ONLY: ap, bp      USE disvert_m, ONLY: ap, bp
22      USE conf_gcm_m, ONLY: day_step, iconser, iperiod, iphysiq, nday, offline, &      USE conf_gcm_m, ONLY: day_step, iconser, iperiod, iphysiq, nday, offline, &
23           periodav           iflag_phys, iecri
24        USE conf_guide_m, ONLY: ok_guide
25      USE dimens_m, ONLY: iim, jjm, llm, nqmx      USE dimens_m, ONLY: iim, jjm, llm, nqmx
26        use dissip_m, only: dissip
27      USE dynetat0_m, ONLY: day_ini      USE dynetat0_m, ONLY: day_ini
28      use dynredem1_m, only: dynredem1      use dynredem1_m, only: dynredem1
29      USE exner_hyb_m, ONLY: exner_hyb      USE exner_hyb_m, ONLY: exner_hyb
30      use filtreg_m, only: filtreg      use filtreg_scal_m, only: filtreg_scal
31        use fluxstokenc_m, only: fluxstokenc
32        use geopot_m, only: geopot
33      USE guide_m, ONLY: guide      USE guide_m, ONLY: guide
34      use inidissip_m, only: idissip      use inidissip_m, only: idissip
35      USE logic, ONLY: iflag_phys, ok_guide      use integrd_m, only: integrd
36      USE paramet_m, ONLY: ip1jmp1      use nr_util, only: assert
     USE pression_m, ONLY: pression  
37      USE pressure_var, ONLY: p3d      USE pressure_var, ONLY: p3d
38      USE temps, ONLY: itau_dyn      USE temps, ONLY: itau_dyn
39        use writedynav_m, only: writedynav
40        use writehist_m, only: writehist
41    
42      ! Variables dynamiques:      ! Variables dynamiques:
43      REAL vcov((iim + 1) * jjm, llm), ucov(ip1jmp1, llm) ! vents covariants      REAL, intent(inout):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm) vent covariant
44      REAL, intent(inout):: teta(iim + 1, jjm + 1, llm) ! potential temperature      REAL, intent(inout):: vcov(:, :, :) ! (iim + 1, jjm, llm) ! vent covariant
45      REAL ps(iim + 1, jjm + 1) ! pression au sol, en Pa  
46        REAL, intent(inout):: teta(:, :, :) ! (iim + 1, jjm + 1, llm)
47      REAL masse(ip1jmp1, llm) ! masse d'air      ! potential temperature
48      REAL phis(ip1jmp1) ! geopotentiel au sol  
49      REAL q(ip1jmp1, llm, nqmx) ! mass fractions of advected fields      REAL, intent(inout):: ps(:, :) ! (iim + 1, jjm + 1) pression au sol, en Pa
50      REAL, intent(in):: time_0      REAL, intent(inout):: masse(:, :, :) ! (iim + 1, jjm + 1, llm) masse d'air
51        REAL, intent(in):: phis(:, :) ! (iim + 1, jjm + 1) surface geopotential
52    
53      ! Variables local to the procedure:      REAL, intent(inout):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx)
54        ! mass fractions of advected fields
55    
56        ! Local:
57    
58      ! Variables dynamiques:      ! Variables dynamiques:
59    
60      REAL pks(ip1jmp1) ! exner au sol      REAL pks(iim + 1, jjm + 1) ! exner au sol
61      REAL pk(iim + 1, jjm + 1, llm) ! exner au milieu des couches      REAL pk(iim + 1, jjm + 1, llm) ! exner au milieu des couches
62      REAL pkf(ip1jmp1, llm) ! exner filt.au milieu des couches      REAL pkf(iim + 1, jjm + 1, llm) ! exner filtr\'e au milieu des couches
63      REAL phi(ip1jmp1, llm) ! geopotential      REAL phi(iim + 1, jjm + 1, llm) ! geopotential
64      REAL w(ip1jmp1, llm) ! vitesse verticale      REAL w(iim + 1, jjm + 1, llm) ! vitesse verticale
65    
66      ! variables dynamiques intermediaire pour le transport      ! Variables dynamiques intermediaire pour le transport
67      REAL pbaru(ip1jmp1, llm), pbarv((iim + 1) * jjm, llm) !flux de masse      ! Flux de masse :
68        REAL pbaru(iim + 1, jjm + 1, llm), pbarv(iim + 1, jjm, llm)
69    
70      ! variables dynamiques au pas - 1      ! Variables dynamiques au pas - 1
71      REAL vcovm1((iim + 1) * jjm, llm), ucovm1(ip1jmp1, llm)      REAL vcovm1(iim + 1, jjm, llm), ucovm1(iim + 1, jjm + 1, llm)
72      REAL tetam1(iim + 1, jjm + 1, llm), psm1(iim + 1, jjm + 1)      REAL tetam1(iim + 1, jjm + 1, llm), psm1(iim + 1, jjm + 1)
73      REAL massem1(ip1jmp1, llm)      REAL massem1(iim + 1, jjm + 1, llm)
74    
75      ! tendances dynamiques      ! Tendances dynamiques
76      REAL dv((iim + 1) * jjm, llm), du(ip1jmp1, llm)      REAL dv((iim + 1) * jjm, llm), dudyn(iim + 1, jjm + 1, llm)
77      REAL dteta(ip1jmp1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1)      REAL dteta(iim + 1, jjm + 1, llm)
78        real dp((iim + 1) * (jjm + 1))
79    
80      ! tendances de la dissipation      ! Tendances de la dissipation :
81      REAL dvdis((iim + 1) * jjm, llm), dudis(ip1jmp1, llm)      REAL dvdis(iim + 1, jjm, llm), dudis(iim + 1, jjm + 1, llm)
82      REAL dtetadis(iim + 1, jjm + 1, llm)      REAL dtetadis(iim + 1, jjm + 1, llm)
83    
84      ! tendances physiques      ! Tendances physiques
85      REAL dvfi((iim + 1) * jjm, llm), dufi(ip1jmp1, llm)      REAL dvfi(iim + 1, jjm, llm), dufi(iim + 1, jjm + 1, llm)
86      REAL dtetafi(ip1jmp1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1)      REAL dtetafi(iim + 1, jjm + 1, llm), dqfi(iim + 1, jjm + 1, llm, nqmx)
   
     ! variables pour le fichier histoire  
87    
88        ! Variables pour le fichier histoire
89      INTEGER itau ! index of the time step of the dynamics, starts at 0      INTEGER itau ! index of the time step of the dynamics, starts at 0
90      INTEGER itaufin      INTEGER itaufin
91      INTEGER iday ! jour julien      real finvmaold(iim + 1, jjm + 1, llm)
92      REAL time ! time of day, as a fraction of day length      INTEGER l
     real finvmaold(ip1jmp1, llm)  
     LOGICAL:: lafin=.false.  
     INTEGER i, j, l  
93    
94      REAL rdayvrai, rdaym_ini      ! Variables test conservation \'energie
   
     ! Variables test conservation energie  
95      REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm)      REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm)
96      ! Tendance de la temp. potentiel d (theta) / d t due a la  
97      ! tansformation d'energie cinetique en energie thermique      REAL vcont((iim + 1) * jjm, llm), ucont((iim + 1) * (jjm + 1), llm)
98      ! cree par la dissipation      logical leapf
99      REAL dtetaecdt(iim + 1, jjm + 1, llm)      real dt ! time step, in s
     REAL vcont((iim + 1) * jjm, llm), ucont(ip1jmp1, llm)  
     logical forward, leapf  
     REAL dt  
100    
101      !---------------------------------------------------      !---------------------------------------------------
102    
103      print *, "Call sequence information: leapfrog"      print *, "Call sequence information: leapfrog"
104        call assert(shape(ucov) == (/iim + 1, jjm + 1, llm/), "leapfrog")
105    
106      itaufin = nday * day_step      itaufin = nday * day_step
107      ! "day_step" is a multiple of "iperiod", therefore "itaufin" is one too      ! "day_step" is a multiple of "iperiod", therefore so is "itaufin".
108    
     itau = 0  
     iday = day_ini  
     time = time_0  
     dq = 0.  
109      ! On initialise la pression et la fonction d'Exner :      ! On initialise la pression et la fonction d'Exner :
110      CALL pression(ip1jmp1, ap, bp, ps, p3d)      forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps
111      CALL exner_hyb(ps, p3d, pks, pk, pkf)      CALL exner_hyb(ps, p3d, pks, pk)
112        pkf = pk
113      ! Début de l'integration temporelle :      CALL filtreg_scal(pkf, direct = .true., intensive = .true.)
114      outer_loop:do i = 1, itaufin / iperiod  
115         ! {itau is a multiple of iperiod}      time_integration: do itau = 0, itaufin - 1
116           leapf = mod(itau, iperiod) /= 0
117         ! 1. Matsuno forward:         if (leapf) then
118              dt = 2 * dtvr
119         if (ok_guide .and. (itaufin - itau - 1) * dtvr > 21600.) &         else
120              call guide(itau, ucov, vcov, teta, q, masse, ps)            ! Matsuno
121         vcovm1 = vcov            dt = dtvr
122         ucovm1 = ucov            if (ok_guide) call guide(itau, ucov, vcov, teta, q(:, :, :, 1), ps)
123         tetam1 = teta            vcovm1 = vcov
124         massem1 = masse            ucovm1 = ucov
125         psm1 = ps            tetam1 = teta
126         finvmaold = masse            massem1 = masse
127         CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1)            psm1 = ps
128              finvmaold = masse
129              CALL filtreg_scal(finvmaold, direct = .false., intensive = .false.)
130           end if
131    
132         ! Calcul des tendances dynamiques:         ! Calcul des tendances dynamiques:
133         CALL geopot(ip1jmp1, teta, pk, pks, phis, phi)         CALL geopot(teta, pk, pks, phis, phi)
134         CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, &         CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, &
135              MOD(itau, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, &              dudyn, dv, dteta, dp, w, pbaru, pbarv, &
136              time + iday - day_ini)              conser = MOD(itau, iconser) == 0)
137    
138           CALL caladvtrac(q, pbaru, pbarv, p3d, masse, teta, pk)
139    
        ! Calcul des tendances advection des traceurs (dont l'humidité)  
        CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk)  
140         ! Stokage du flux de masse pour traceurs offline:         ! Stokage du flux de masse pour traceurs offline:
141         IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, &         IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, &
142              dtvr, itau)              dtvr, itau)
143    
144         ! integrations dynamique et traceurs:         ! Int\'egrations dynamique et traceurs:
145         CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, &         CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, dteta, &
146              dq, dp, vcov, ucov, teta, q, ps, masse, phis, finvmaold, .false., &              dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, dt, &
147              dtvr)              leapf)
148    
149         CALL pression(ip1jmp1, ap, bp, ps, p3d)         forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps
150         CALL exner_hyb(ps, p3d, pks, pk, pkf)         CALL exner_hyb(ps, p3d, pks, pk)
151           pkf = pk
152         ! 2. Matsuno backward:         CALL filtreg_scal(pkf, direct = .true., intensive = .true.)
   
        itau = itau + 1  
        iday = day_ini + itau / day_step  
        time = REAL(itau - (iday - day_ini) * day_step) / day_step + time_0  
        IF (time > 1.) THEN  
           time = time - 1.  
           iday = iday + 1  
        ENDIF  
153    
154         ! Calcul des tendances dynamiques:         if (.not. leapf) then
155         CALL geopot(ip1jmp1, teta, pk, pks, phis, phi)            ! Matsuno backward
156         CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, &            ! Calcul des tendances dynamiques:
157              .false., du, dv, dteta, dp, w, pbaru, pbarv, time + iday - day_ini)            CALL geopot(teta, pk, pks, phis, phi)
158              CALL caldyn(itau + 1, ucov, vcov, teta, ps, masse, pk, pkf, phis, &
159                   phi, dudyn, dv, dteta, dp, w, pbaru, pbarv, conser = .false.)
160    
161         ! integrations dynamique et traceurs:            ! integrations dynamique et traceurs:
162         CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, &            CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, &
163              dq, dp, vcov, ucov, teta, q, ps, masse, phis, finvmaold, .false., &                 dteta, dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, &
164              dtvr)                 finvmaold, dtvr, leapf=.false.)
165    
166              forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps
167              CALL exner_hyb(ps, p3d, pks, pk)
168              pkf = pk
169              CALL filtreg_scal(pkf, direct = .true., intensive = .true.)
170           end if
171    
172           IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN
173              CALL calfis(itau / day_step + day_ini, &
174                   REAL(mod(itau, day_step)) / day_step, ucov, vcov, teta, q, pk, &
175                   phis, phi, w, dufi, dvfi, dtetafi, dqfi, &
176                   lafin = itau + 1 == itaufin)
177    
178         CALL pression(ip1jmp1, ap, bp, ps, p3d)            CALL addfi(ucov, vcov, teta, q, dufi, dvfi, dtetafi, dqfi)
179         CALL exner_hyb(ps, p3d, pks, pk, pkf)         ENDIF
180    
181         ! 3. Leapfrog:         IF (MOD(itau + 1, idissip) == 0) THEN
182              ! Dissipation horizontale et verticale des petites \'echelles
183    
184         do j = 1, iperiod - 1            ! calcul de l'\'energie cin\'etique avant dissipation
185            ! Calcul des tendances dynamiques:            call covcont(llm, ucov, vcov, ucont, vcont)
186            CALL geopot(ip1jmp1, teta, pk, pks, phis, phi)            call enercin(vcov, ucov, vcont, ucont, ecin0)
187            CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, &  
188                 .false., du, dv, dteta, dp, w, pbaru, pbarv, &            ! dissipation
189                 time + iday - day_ini)            CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis)
190              ucov = ucov + dudis
191            ! Calcul des tendances advection des traceurs (dont l'humidité)            vcov = vcov + dvdis
192            CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk)  
193            ! Stokage du flux de masse pour traceurs off-line:            ! On ajoute la tendance due \`a la transformation \'energie
194            IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, &            ! cin\'etique en \'energie thermique par la dissipation
195                 dtvr, itau)            call covcont(llm, ucov, vcov, ucont, vcont)
196              call enercin(vcov, ucov, vcont, ucont, ecin)
197              dtetadis = dtetadis + (ecin0 - ecin) / pk
198              teta = teta + dtetadis
199    
200              ! Calcul de la valeur moyenne aux p\^oles :
201              forall (l = 1: llm)
202                 teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) &
203                      / apoln
204                 teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) &
205                      * teta(:iim, jjm + 1, l)) / apols
206              END forall
207           END IF
208    
209           IF (MOD(itau + 1, iperiod) == 0) THEN
210              ! \'Ecriture du fichier histoire moyenne:
211              CALL writedynav(vcov, ucov, teta, pk, phi, q, masse, ps, phis, &
212                   time = itau + 1)
213              call bilan_dyn(ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, &
214                   q(:, :, :, 1))
215           ENDIF
216    
217            ! integrations dynamique et traceurs:         IF (MOD(itau + 1, iecri * day_step) == 0) THEN
218            CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, &            CALL geopot(teta, pk, pks, phis, phi)
219                 dteta, dq, dp, vcov, ucov, teta, q, ps, masse, phis, &            CALL writehist(itau, vcov, ucov, teta, phi, masse, ps)
220                 finvmaold, .true., 2 * dtvr)         END IF
221        end do time_integration
           IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN  
              ! calcul des tendances physiques:  
              IF (itau + 1 == itaufin) lafin = .TRUE.  
   
              CALL pression(ip1jmp1, ap, bp, ps, p3d)  
              CALL exner_hyb(ps, p3d, pks, pk, pkf)  
   
              rdaym_ini = itau * dtvr / daysec  
              rdayvrai = rdaym_ini + day_ini  
   
              CALL calfis(nqmx, lafin, rdayvrai, time, ucov, vcov, teta, q, &  
                   masse, ps, pk, phis, phi, du, dv, dteta, dq, w, &  
                   dufi, dvfi, dtetafi, dqfi, dpfi)  
   
              ! ajout des tendances physiques:  
              CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, &  
                   dtetafi, dqfi, dpfi)  
           ENDIF  
   
           CALL pression(ip1jmp1, ap, bp, ps, p3d)  
           CALL exner_hyb(ps, p3d, pks, pk, pkf)  
   
           IF (MOD(itau + 1, idissip) == 0) THEN  
              ! dissipation horizontale et verticale des petites echelles:  
   
              ! calcul de l'energie cinetique avant dissipation  
              call covcont(llm, ucov, vcov, ucont, vcont)  
              call enercin(vcov, ucov, vcont, ucont, ecin0)  
   
              ! dissipation  
              CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis)  
              ucov=ucov + dudis  
              vcov=vcov + dvdis  
   
              ! On rajoute la tendance due à la transformation Ec -> E  
              ! thermique créée lors de la dissipation  
              call covcont(llm, ucov, vcov, ucont, vcont)  
              call enercin(vcov, ucov, vcont, ucont, ecin)  
              dtetaecdt= (ecin0 - ecin) / pk  
              dtetadis=dtetadis + dtetaecdt  
              teta=teta + dtetadis  
   
              ! Calcul de la valeur moyenne unique de h aux pôles  
              forall (l = 1: llm)  
                 teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) &  
                      / apoln  
                 teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) &  
                      * teta(:iim, jjm + 1, l)) / apols  
              END forall  
   
              ps(:, 1) = SUM(aire_2d(:iim, 1) * ps(:iim, 1)) / apoln  
              ps(:, jjm + 1) = SUM(aire_2d(:iim, jjm+1) * ps(:iim, jjm + 1)) &  
                   / apols  
           END IF  
   
           itau = itau + 1  
           iday = day_ini + itau / day_step  
           time = REAL(itau - (iday - day_ini) * day_step) / day_step + time_0  
           IF (time > 1.) THEN  
              time = time - 1.  
              iday = iday + 1  
           ENDIF  
   
           IF (MOD(itau, iperiod) == 0) THEN  
              ! ecriture du fichier histoire moyenne:  
              CALL writedynav(histaveid, nqmx, itau, vcov, &  
                   ucov, teta, pk, phi, q, masse, ps, phis)  
              call bilan_dyn(2, dtvr * iperiod, dtvr * day_step * periodav, &  
                   ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, q)  
           ENDIF  
        end do  
     end do outer_loop  
222    
     ! {itau == itaufin}  
223      CALL dynredem1("restart.nc", vcov, ucov, teta, q, masse, ps, &      CALL dynredem1("restart.nc", vcov, ucov, teta, q, masse, ps, &
224           itau=itau_dyn+itaufin)           itau = itau_dyn + itaufin)
   
     vcovm1 = vcov  
     ucovm1 = ucov  
     tetam1 = teta  
     massem1 = masse  
     psm1 = ps  
     finvmaold = masse  
     CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1)  
225    
226      ! Calcul des tendances dynamiques:      ! Calcul des tendances dynamiques:
227      CALL geopot(ip1jmp1, teta, pk, pks, phis, phi)      CALL geopot(teta, pk, pks, phis, phi)
228      CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, &      CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, &
229           MOD(itaufin, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, &           dudyn, dv, dteta, dp, w, pbaru, pbarv, &
230           time + iday - day_ini)           conser = MOD(itaufin, iconser) == 0)
   
     ! Calcul des tendances advection des traceurs (dont l'humidité)  
     CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk)  
     ! Stokage du flux de masse pour traceurs off-line:  
     IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, dtvr, &  
          itaufin)  
   
     ! integrations dynamique et traceurs:  
     CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, dq, &  
          dp, vcov, ucov, teta, q, ps, masse, phis, finvmaold, .false., dtvr)  
       
     CALL pression(ip1jmp1, ap, bp, ps, p3d)  
     CALL exner_hyb(ps, p3d, pks, pk, pkf)  
231    
232    END SUBROUTINE leapfrog    END SUBROUTINE leapfrog
233    

Legend:
Removed from v.30  
changed lines
  Added in v.138

  ViewVC Help
Powered by ViewVC 1.1.21