--- trunk/libf/dyn3d/leapfrog.f90 2011/04/13 12:29:18 44 +++ trunk/Sources/dyn3d/leapfrog.f 2015/07/24 14:27:59 161 @@ -4,115 +4,113 @@ contains - SUBROUTINE leapfrog(ucov, vcov, teta, ps, masse, phis, q, time_0) + SUBROUTINE leapfrog(ucov, vcov, teta, ps, masse, phis, q) - ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 + ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 revision 616 ! Authors: P. Le Van, L. Fairhead, F. Hourdin - ! Matsuno-leapfrog scheme. + + ! Intégration temporelle du modèle : Matsuno-leapfrog scheme. use addfi_m, only: addfi use bilan_dyn_m, only: bilan_dyn use caladvtrac_m, only: caladvtrac use caldyn_m, only: caldyn USE calfis_m, ONLY: calfis - USE com_io_dyn, ONLY: histaveid - USE comconst, ONLY: daysec, dtphys, dtvr + USE comconst, ONLY: daysec, dtvr USE comgeom, ONLY: aire_2d, apoln, apols - USE comvert, ONLY: ap, bp + use covcont_m, only: covcont + USE disvert_m, ONLY: ap, bp USE conf_gcm_m, ONLY: day_step, iconser, iperiod, iphysiq, nday, offline, & - periodav + iflag_phys, iecri + USE conf_guide_m, ONLY: ok_guide USE dimens_m, ONLY: iim, jjm, llm, nqmx + use dissip_m, only: dissip USE dynetat0_m, ONLY: day_ini use dynredem1_m, only: dynredem1 USE exner_hyb_m, ONLY: exner_hyb - use filtreg_m, only: filtreg + use filtreg_scal_m, only: filtreg_scal + use fluxstokenc_m, only: fluxstokenc use geopot_m, only: geopot USE guide_m, ONLY: guide use inidissip_m, only: idissip use integrd_m, only: integrd - USE logic, ONLY: iflag_phys, ok_guide - USE paramet_m, ONLY: ip1jmp1 + use nr_util, only: assert USE pressure_var, ONLY: p3d USE temps, ONLY: itau_dyn + use writedynav_m, only: writedynav + use writehist_m, only: writehist ! Variables dynamiques: - REAL, intent(inout):: ucov(ip1jmp1, llm) ! vent covariant - REAL, intent(inout):: vcov((iim + 1) * jjm, llm) ! vent covariant + REAL, intent(inout):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm) vent covariant + REAL, intent(inout):: vcov(:, :, :) ! (iim + 1, jjm, llm) ! vent covariant REAL, intent(inout):: teta(:, :, :) ! (iim + 1, jjm + 1, llm) ! potential temperature - REAL, intent(inout):: ps(iim + 1, jjm + 1) ! pression au sol, en Pa - REAL masse(ip1jmp1, llm) ! masse d'air - REAL phis(ip1jmp1) ! geopotentiel au sol + REAL, intent(inout):: ps(:, :) ! (iim + 1, jjm + 1) pression au sol, en Pa + REAL, intent(inout):: masse(:, :, :) ! (iim + 1, jjm + 1, llm) masse d'air + REAL, intent(in):: phis(:, :) ! (iim + 1, jjm + 1) surface geopotential REAL, intent(inout):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) ! mass fractions of advected fields - REAL, intent(in):: time_0 - - ! Variables local to the procedure: + ! Local: ! Variables dynamiques: - REAL pks(ip1jmp1) ! exner au sol + REAL pks(iim + 1, jjm + 1) ! exner au sol REAL pk(iim + 1, jjm + 1, llm) ! exner au milieu des couches - REAL pkf(ip1jmp1, llm) ! exner filt.au milieu des couches - REAL phi(ip1jmp1, llm) ! geopotential - REAL w(ip1jmp1, llm) ! vitesse verticale - - ! variables dynamiques intermediaire pour le transport - REAL pbaru(ip1jmp1, llm), pbarv((iim + 1) * jjm, llm) !flux de masse + REAL pkf(iim + 1, jjm + 1, llm) ! exner filtr\'e au milieu des couches + REAL phi(iim + 1, jjm + 1, llm) ! geopotential + REAL w(iim + 1, jjm + 1, llm) ! vitesse verticale + + ! Variables dynamiques intermediaire pour le transport + ! Flux de masse : + REAL pbaru(iim + 1, jjm + 1, llm), pbarv(iim + 1, jjm, llm) - ! variables dynamiques au pas - 1 - REAL vcovm1((iim + 1) * jjm, llm), ucovm1(ip1jmp1, llm) + ! Variables dynamiques au pas - 1 + REAL vcovm1(iim + 1, jjm, llm), ucovm1(iim + 1, jjm + 1, llm) REAL tetam1(iim + 1, jjm + 1, llm), psm1(iim + 1, jjm + 1) - REAL massem1(ip1jmp1, llm) + REAL massem1(iim + 1, jjm + 1, llm) - ! tendances dynamiques - REAL dv((iim + 1) * jjm, llm), du(ip1jmp1, llm) - REAL dteta(iim + 1, jjm + 1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) + ! Tendances dynamiques + REAL dv((iim + 1) * jjm, llm), dudyn(iim + 1, jjm + 1, llm) + REAL dteta(iim + 1, jjm + 1, llm) + real dp((iim + 1) * (jjm + 1)) - ! tendances de la dissipation - REAL dvdis((iim + 1) * jjm, llm), dudis(ip1jmp1, llm) + ! Tendances de la dissipation : + REAL dvdis(iim + 1, jjm, llm), dudis(iim + 1, jjm + 1, llm) REAL dtetadis(iim + 1, jjm + 1, llm) - ! tendances physiques - REAL dvfi((iim + 1) * jjm, llm), dufi(ip1jmp1, llm) - REAL dtetafi(iim + 1, jjm + 1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) - - ! variables pour le fichier histoire + ! Tendances physiques + REAL dvfi(iim + 1, jjm, llm), dufi(iim + 1, jjm + 1, llm) + REAL dtetafi(iim + 1, jjm + 1, llm), dqfi(iim + 1, jjm + 1, llm, nqmx) + ! Variables pour le fichier histoire INTEGER itau ! index of the time step of the dynamics, starts at 0 INTEGER itaufin - REAL time ! time of day, as a fraction of day length - real finvmaold(ip1jmp1, llm) INTEGER l - REAL rdayvrai, rdaym_ini - ! Variables test conservation energie + ! Variables test conservation \'energie REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm) - REAL dtetaecdt(iim + 1, jjm + 1, llm) - ! tendance de la température potentielle due à la tansformation - ! d'énergie cinétique en énergie thermique créée par la dissipation - - REAL vcont((iim + 1) * jjm, llm), ucont(ip1jmp1, llm) + REAL vcont((iim + 1) * jjm, llm), ucont((iim + 1) * (jjm + 1), llm) logical leapf - real dt + real dt ! time step, in s !--------------------------------------------------- print *, "Call sequence information: leapfrog" + call assert(shape(ucov) == (/iim + 1, jjm + 1, llm/), "leapfrog") itaufin = nday * day_step - ! "day_step" is a multiple of "iperiod", therefore "itaufin" is one too - - dq = 0. + ! "day_step" is a multiple of "iperiod", therefore so is "itaufin". ! On initialise la pression et la fonction d'Exner : forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps - CALL exner_hyb(ps, p3d, pks, pk, pkf) + CALL exner_hyb(ps, p3d, pks, pk) + pkf = pk + CALL filtreg_scal(pkf, direct = .true., intensive = .true.) time_integration: do itau = 0, itaufin - 1 leapf = mod(itau, iperiod) /= 0 @@ -121,124 +119,111 @@ else ! Matsuno dt = dtvr - if (ok_guide .and. (itaufin - itau - 1) * dtvr > 21600.) & - call guide(itau, ucov, vcov, teta, q, masse, ps) + if (ok_guide) call guide(itau, ucov, vcov, teta, q(:, :, :, 1), ps) vcovm1 = vcov ucovm1 = ucov tetam1 = teta massem1 = masse psm1 = ps - finvmaold = masse - CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1) end if ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot(teta, pk, pks, phis, phi) CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itau, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time_0) + dudyn, dv, dteta, dp, w, pbaru, pbarv, & + conser = MOD(itau, iconser) == 0) - ! Calcul des tendances advection des traceurs (dont l'humidité) - CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk) + CALL caladvtrac(q, pbaru, pbarv, p3d, masse, teta, pk) ! Stokage du flux de masse pour traceurs offline: IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, & dtvr, itau) - ! integrations dynamique et traceurs: - CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, dp, & - vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, dt, leapf) + ! Int\'egrations dynamique et traceurs: + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, dteta, & + dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, dt, leapf) + + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk) + pkf = pk + CALL filtreg_scal(pkf, direct = .true., intensive = .true.) if (.not. leapf) then ! Matsuno backward - forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps - CALL exner_hyb(ps, p3d, pks, pk, pkf) - ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot(teta, pk, pks, phis, phi) CALL caldyn(itau + 1, ucov, vcov, teta, ps, masse, pk, pkf, phis, & - phi, .false., du, dv, dteta, dp, w, pbaru, pbarv, time_0) + phi, dudyn, dv, dteta, dp, w, pbaru, pbarv, conser = .false.) ! integrations dynamique et traceurs: - CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, & - dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, & - dtvr, leapf=.false.) + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, & + dteta, dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, dtvr, & + leapf=.false.) + + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk) + pkf = pk + CALL filtreg_scal(pkf, direct = .true., intensive = .true.) end if IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN - ! calcul des tendances physiques: + CALL calfis(ucov, vcov, teta, q, pk, phis, phi, w, dufi, dvfi, & + dtetafi, dqfi, dayvrai = itau / day_step + day_ini, & + time = REAL(mod(itau, day_step)) / day_step, & + lafin = itau + 1 == itaufin) - forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps - CALL exner_hyb(ps, p3d, pks, pk, pkf) - - rdaym_ini = itau * dtvr / daysec - rdayvrai = rdaym_ini + day_ini - time = REAL(mod(itau, day_step)) / day_step + time_0 - IF (time > 1.) time = time - 1. - - CALL calfis(rdayvrai, time, ucov, vcov, teta, q, masse, ps, pk, & - phis, phi, du, dv, dq, w, dufi, dvfi, dtetafi, dqfi, dpfi, & - lafin=itau+1==itaufin) - - ! ajout des tendances physiques: - CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, & - dtetafi, dqfi, dpfi) + CALL addfi(ucov, vcov, teta, q, dufi, dvfi, dtetafi, dqfi) ENDIF - forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps - CALL exner_hyb(ps, p3d, pks, pk, pkf) - IF (MOD(itau + 1, idissip) == 0) THEN - ! dissipation horizontale et verticale des petites echelles: + ! Dissipation horizontale et verticale des petites \'echelles - ! calcul de l'energie cinetique avant dissipation + ! calcul de l'\'energie cin\'etique avant dissipation call covcont(llm, ucov, vcov, ucont, vcont) call enercin(vcov, ucov, vcont, ucont, ecin0) ! dissipation CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis) - ucov=ucov + dudis - vcov=vcov + dvdis + ucov = ucov + dudis + vcov = vcov + dvdis - ! On rajoute la tendance due à la transformation Ec -> E - ! thermique créée lors de la dissipation + ! On ajoute la tendance due \`a la transformation \'energie + ! cin\'etique en \'energie thermique par la dissipation call covcont(llm, ucov, vcov, ucont, vcont) call enercin(vcov, ucov, vcont, ucont, ecin) - dtetaecdt= (ecin0 - ecin) / pk - dtetadis=dtetadis + dtetaecdt - teta=teta + dtetadis + dtetadis = dtetadis + (ecin0 - ecin) / pk + teta = teta + dtetadis - ! Calcul de la valeur moyenne aux pôles : + ! Calcul de la valeur moyenne aux p\^oles : forall (l = 1: llm) teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) & / apoln teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) & * teta(:iim, jjm + 1, l)) / apols END forall - - ps(:, 1) = SUM(aire_2d(:iim, 1) * ps(:iim, 1)) / apoln - ps(:, jjm + 1) = SUM(aire_2d(:iim, jjm+1) * ps(:iim, jjm + 1)) & - / apols END IF IF (MOD(itau + 1, iperiod) == 0) THEN - ! Écriture du fichier histoire moyenne: - CALL writedynav(histaveid, nqmx, itau + 1, vcov, ucov, teta, pk, & - phi, q, masse, ps, phis) + ! \'Ecriture du fichier histoire moyenne: + CALL writedynav(vcov, ucov, teta, pk, phi, q, masse, ps, phis, & + time = itau + 1) call bilan_dyn(ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, & - q(:, :, :, 1), dt_app = dtvr * iperiod, & - dt_cum = dtvr * day_step * periodav) + q(:, :, :, 1)) ENDIF + + IF (MOD(itau + 1, iecri * day_step) == 0) THEN + CALL geopot(teta, pk, pks, phis, phi) + CALL writehist(itau, vcov, ucov, teta, phi, masse, ps) + END IF end do time_integration - CALL dynredem1("restart.nc", vcov, ucov, teta, q, masse, ps, & - itau=itau_dyn+itaufin) + CALL dynredem1(vcov, ucov, teta, q, masse, ps, itau = itau_dyn + itaufin) ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot(teta, pk, pks, phis, phi) CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itaufin, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time_0) + dudyn, dv, dteta, dp, w, pbaru, pbarv, & + conser = MOD(itaufin, iconser) == 0) END SUBROUTINE leapfrog