--- trunk/libf/dyn3d/leapfrog.f90 2008/03/03 16:32:04 5 +++ trunk/Sources/dyn3d/leapfrog.f 2015/07/24 14:27:59 161 @@ -1,361 +1,229 @@ module leapfrog_m - ! This module is clean: no C preprocessor directive, no include line. - IMPLICIT NONE contains - SUBROUTINE leapfrog(ucov, vcov, teta, ps, masse, phis, nq, q, clesphy0, & - time_0) + SUBROUTINE leapfrog(ucov, vcov, teta, ps, masse, phis, q) - ! From dyn3d/leapfrog.F, version 1.6 2005/04/13 08:58:34 + ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 revision 616 + ! Authors: P. Le Van, L. Fairhead, F. Hourdin - ! Version du 10/01/98, avec coordonnees verticales hybrides, avec - ! nouveaux operat. dissipation * (gradiv2, divgrad2, nxgraro2) + ! IntĂ©gration temporelle du modèle : Matsuno-leapfrog scheme. - ! Auteur: P. Le Van /L. Fairhead/F.Hourdin - ! Objet: - ! GCM LMD nouvelle grille - - ! ... Dans inigeom, nouveaux calculs pour les elongations cu, cv - ! et possibilite d'appeler une fonction f(y) a derivee tangente - ! hyperbolique a la place de la fonction a derivee sinusoidale. - - ! ... Possibilite de choisir le shema pour l'advection de - ! q, en modifiant iadv dans "traceur.def" (10/02) . - - ! Pour Van-Leer + Vapeur d'eau saturee, iadv(1)=4. (F.Codron, 10/99) - ! Pour Van-Leer iadv=10 - - use dimens_m, only: iim, llm, nqmx - use paramet_m, only: ip1jmp1, ip1jm, llmp1, ijmllm, ijp1llm, jjp1, iip1, & - iip2 - use comconst, only: dtvr, daysec, dtphys - use comvert, only: ap, bp - use conf_gcm_m, only: day_step, iconser, idissip, iphysiq, iperiod, nday, & - offline, periodav - use logic, only: ok_guide, apdiss, apphys, conser, forward, iflag_phys, & - leapf, statcl - use comgeom - use serre - use temps, only: itaufin, day_ini, dt - use iniprint, only: prt_level - use com_io_dyn - use abort_gcm_m, only: abort_gcm - use ener - use calfis_m, only: calfis - use exner_hyb_m, only: exner_hyb - use guide_m, only: guide - use pression_m, only: pression - - integer nq - - INTEGER longcles - PARAMETER (longcles = 20) - REAL clesphy0(longcles) - - ! variables dynamiques - REAL vcov(ip1jm, llm), ucov(ip1jmp1, llm) ! vents covariants - REAL teta(ip1jmp1, llm) ! temperature potentielle - REAL q(ip1jmp1, llm, nqmx) ! mass fractions of advected fields - REAL ps(ip1jmp1) ! pression au sol - REAL p(ip1jmp1, llmp1) ! pression aux interfac.des couches - REAL pks(ip1jmp1) ! exner au sol - REAL pk(ip1jmp1, llm) ! exner au milieu des couches - REAL pkf(ip1jmp1, llm) ! exner filt.au milieu des couches - REAL masse(ip1jmp1, llm) ! masse d'air - REAL phis(ip1jmp1) ! geopotentiel au sol - REAL phi(ip1jmp1, llm) ! geopotential - REAL w(ip1jmp1, llm) ! vitesse verticale - - ! variables dynamiques intermediaire pour le transport - REAL pbaru(ip1jmp1, llm), pbarv(ip1jm, llm) !flux de masse - - ! variables dynamiques au pas - 1 - REAL vcovm1(ip1jm, llm), ucovm1(ip1jmp1, llm) - REAL tetam1(ip1jmp1, llm), psm1(ip1jmp1) - REAL massem1(ip1jmp1, llm) - - ! tendances dynamiques - REAL dv(ip1jm, llm), du(ip1jmp1, llm) - REAL dteta(ip1jmp1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) - - ! tendances de la dissipation - REAL dvdis(ip1jm, llm), dudis(ip1jmp1, llm) - REAL dtetadis(ip1jmp1, llm) - - ! tendances physiques - REAL dvfi(ip1jm, llm), dufi(ip1jmp1, llm) - REAL dtetafi(ip1jmp1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) - - ! variables pour le fichier histoire - - REAL tppn(iim), tpps(iim), tpn, tps - - INTEGER itau, itaufinp1 - INTEGER iday ! jour julien - REAL time ! Heure de la journee en fraction d'1 jour - - REAL SSUM - REAL time_0, finvmaold(ip1jmp1, llm) - - LOGICAL :: lafin=.false. - INTEGER ij, l - - REAL rdayvrai, rdaym_ini - LOGICAL callinigrads - - data callinigrads/.true./ - - !+jld variables test conservation energie - REAL ecin(ip1jmp1, llm), ecin0(ip1jmp1, llm) - ! Tendance de la temp. potentiel d (theta) / d t due a la - ! tansformation d'energie cinetique en energie thermique - ! cree par la dissipation - REAL dtetaecdt(ip1jmp1, llm) - REAL vcont(ip1jm, llm), ucont(ip1jmp1, llm) - CHARACTER*15 ztit - INTEGER ip_ebil_dyn ! PRINT level for energy conserv. diag. - SAVE ip_ebil_dyn - DATA ip_ebil_dyn /0/ - - character(len=*), parameter:: modname = "leapfrog" - character*80 abort_message - - logical dissip_conservative - save dissip_conservative - data dissip_conservative /.true./ - - LOGICAL prem - save prem - DATA prem /.true./ + use addfi_m, only: addfi + use bilan_dyn_m, only: bilan_dyn + use caladvtrac_m, only: caladvtrac + use caldyn_m, only: caldyn + USE calfis_m, ONLY: calfis + USE comconst, ONLY: daysec, dtvr + USE comgeom, ONLY: aire_2d, apoln, apols + use covcont_m, only: covcont + USE disvert_m, ONLY: ap, bp + USE conf_gcm_m, ONLY: day_step, iconser, iperiod, iphysiq, nday, offline, & + iflag_phys, iecri + USE conf_guide_m, ONLY: ok_guide + USE dimens_m, ONLY: iim, jjm, llm, nqmx + use dissip_m, only: dissip + USE dynetat0_m, ONLY: day_ini + use dynredem1_m, only: dynredem1 + USE exner_hyb_m, ONLY: exner_hyb + use filtreg_scal_m, only: filtreg_scal + use fluxstokenc_m, only: fluxstokenc + use geopot_m, only: geopot + USE guide_m, ONLY: guide + use inidissip_m, only: idissip + use integrd_m, only: integrd + use nr_util, only: assert + USE pressure_var, ONLY: p3d + USE temps, ONLY: itau_dyn + use writedynav_m, only: writedynav + use writehist_m, only: writehist + + ! Variables dynamiques: + REAL, intent(inout):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm) vent covariant + REAL, intent(inout):: vcov(:, :, :) ! (iim + 1, jjm, llm) ! vent covariant + + REAL, intent(inout):: teta(:, :, :) ! (iim + 1, jjm + 1, llm) + ! potential temperature + + REAL, intent(inout):: ps(:, :) ! (iim + 1, jjm + 1) pression au sol, en Pa + REAL, intent(inout):: masse(:, :, :) ! (iim + 1, jjm + 1, llm) masse d'air + REAL, intent(in):: phis(:, :) ! (iim + 1, jjm + 1) surface geopotential + + REAL, intent(inout):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) + ! mass fractions of advected fields + + ! Local: + + ! Variables dynamiques: + + REAL pks(iim + 1, jjm + 1) ! exner au sol + REAL pk(iim + 1, jjm + 1, llm) ! exner au milieu des couches + REAL pkf(iim + 1, jjm + 1, llm) ! exner filtr\'e au milieu des couches + REAL phi(iim + 1, jjm + 1, llm) ! geopotential + REAL w(iim + 1, jjm + 1, llm) ! vitesse verticale + + ! Variables dynamiques intermediaire pour le transport + ! Flux de masse : + REAL pbaru(iim + 1, jjm + 1, llm), pbarv(iim + 1, jjm, llm) + + ! Variables dynamiques au pas - 1 + REAL vcovm1(iim + 1, jjm, llm), ucovm1(iim + 1, jjm + 1, llm) + REAL tetam1(iim + 1, jjm + 1, llm), psm1(iim + 1, jjm + 1) + REAL massem1(iim + 1, jjm + 1, llm) + + ! Tendances dynamiques + REAL dv((iim + 1) * jjm, llm), dudyn(iim + 1, jjm + 1, llm) + REAL dteta(iim + 1, jjm + 1, llm) + real dp((iim + 1) * (jjm + 1)) + + ! Tendances de la dissipation : + REAL dvdis(iim + 1, jjm, llm), dudis(iim + 1, jjm + 1, llm) + REAL dtetadis(iim + 1, jjm + 1, llm) + + ! Tendances physiques + REAL dvfi(iim + 1, jjm, llm), dufi(iim + 1, jjm + 1, llm) + REAL dtetafi(iim + 1, jjm + 1, llm), dqfi(iim + 1, jjm + 1, llm, nqmx) + + ! Variables pour le fichier histoire + INTEGER itau ! index of the time step of the dynamics, starts at 0 + INTEGER itaufin + INTEGER l + + ! Variables test conservation \'energie + REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm) + + REAL vcont((iim + 1) * jjm, llm), ucont((iim + 1) * (jjm + 1), llm) + logical leapf + real dt ! time step, in s !--------------------------------------------------- print *, "Call sequence information: leapfrog" + call assert(shape(ucov) == (/iim + 1, jjm + 1, llm/), "leapfrog") itaufin = nday * day_step - itaufinp1 = itaufin + 1 - - itau = 0 - iday = day_ini - time = time_0 - IF (time > 1.) THEN - time = time - 1. - iday = iday + 1 - ENDIF + ! "day_step" is a multiple of "iperiod", therefore so is "itaufin". ! On initialise la pression et la fonction d'Exner : - dq=0. - CALL pression(ip1jmp1, ap, bp, ps, p) - CALL exner_hyb(ps, p, pks, pk, pkf) - - ! Debut de l'integration temporelle: - do - if (ok_guide.and.(itaufin - itau - 1) * dtvr > 21600) then - call guide(itau, ucov, vcov, teta, q, masse, ps) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk) + pkf = pk + CALL filtreg_scal(pkf, direct = .true., intensive = .true.) + + time_integration: do itau = 0, itaufin - 1 + leapf = mod(itau, iperiod) /= 0 + if (leapf) then + dt = 2 * dtvr else - IF (prt_level > 9) print *, & - 'Attention : on ne guide pas les 6 dernieres heures.' - endif - - CALL SCOPY(ijmllm, vcov, 1, vcovm1, 1) - CALL SCOPY(ijp1llm, ucov, 1, ucovm1, 1) - CALL SCOPY(ijp1llm, teta, 1, tetam1, 1) - CALL SCOPY(ijp1llm, masse, 1, massem1, 1) - CALL SCOPY(ip1jmp1, ps, 1, psm1, 1) - - forward = .TRUE. - leapf = .FALSE. - dt = dtvr - - CALL SCOPY(ijp1llm, masse, 1, finvmaold, 1) - CALL filtreg(finvmaold, jjp1, llm, - 2, 2, .TRUE., 1) - - do - ! gestion des appels de la physique et des dissipations: - - apphys = .FALSE. - statcl = .FALSE. - conser = .FALSE. - apdiss = .FALSE. - - IF (MOD(itau, iconser) == 0) conser = .TRUE. - IF (MOD(itau + 1, idissip) == 0) apdiss = .TRUE. - IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) apphys=.TRUE. - - ! calcul des tendances dynamiques: - - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) - - CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - conser, du, dv, dteta, dp, w, pbaru, pbarv, & - time + iday - day_ini) - - ! calcul des tendances advection des traceurs (dont l'humidite) - - IF (forward .OR. leapf) THEN - CALL caladvtrac(q, pbaru, pbarv, p, masse, dq, teta, pk) - IF (offline) THEN - !maf stokage du flux de masse pour traceurs OFF-LINE - CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, dtvr, & - itau) - ENDIF - ENDIF + ! Matsuno + dt = dtvr + if (ok_guide) call guide(itau, ucov, vcov, teta, q(:, :, :, 1), ps) + vcovm1 = vcov + ucovm1 = ucov + tetam1 = teta + massem1 = masse + psm1 = ps + end if + + ! Calcul des tendances dynamiques: + CALL geopot(teta, pk, pks, phis, phi) + CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & + dudyn, dv, dteta, dp, w, pbaru, pbarv, & + conser = MOD(itau, iconser) == 0) + + CALL caladvtrac(q, pbaru, pbarv, p3d, masse, teta, pk) + + ! Stokage du flux de masse pour traceurs offline: + IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, & + dtvr, itau) + + ! Int\'egrations dynamique et traceurs: + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, dteta, & + dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, dt, leapf) + + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk) + pkf = pk + CALL filtreg_scal(pkf, direct = .true., intensive = .true.) + + if (.not. leapf) then + ! Matsuno backward + ! Calcul des tendances dynamiques: + CALL geopot(teta, pk, pks, phis, phi) + CALL caldyn(itau + 1, ucov, vcov, teta, ps, masse, pk, pkf, phis, & + phi, dudyn, dv, dteta, dp, w, pbaru, pbarv, conser = .false.) ! integrations dynamique et traceurs: - CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, & - dteta, dq, dp, vcov, ucov, teta, q, ps, masse, phis, finvmaold) - - ! calcul des tendances physiques: - - IF (apphys) THEN - IF (itau + 1 == itaufin) lafin = .TRUE. - - CALL pression(ip1jmp1, ap, bp, ps, p) - CALL exner_hyb(ps, p, pks, pk, pkf) - - rdaym_ini = itau * dtvr / daysec - rdayvrai = rdaym_ini + day_ini - - ! Interface avec les routines de phylmd (phymars ...) - - ! Diagnostique de conservation de l'énergie : initialisation - IF (ip_ebil_dyn >= 1) THEN - ztit='bil dyn' - CALL diagedyn(ztit, 2, 1, 1, dtphys & - , ucov, vcov, ps, p, pk, teta, q(:, :, 1), q(:, :, 2)) - ENDIF - - CALL calfis(nq, lafin, rdayvrai, time, ucov, vcov, teta, q, & - masse, ps, p, pk, phis, phi, du, dv, dteta, dq, w, & - clesphy0, dufi, dvfi, dtetafi, dqfi, dpfi) - - ! ajout des tendances physiques: - CALL addfi(nqmx, dtphys, & - ucov, vcov, teta, q, ps, & - dufi, dvfi, dtetafi, dqfi, dpfi) - - ! Diagnostique de conservation de l'énergie : difference - IF (ip_ebil_dyn >= 1) THEN - ztit = 'bil phys' - CALL diagedyn(ztit, 2, 1, 1, dtphys, ucov, vcov, ps, p, pk, & - teta, q(:, :, 1), q(:, :, 2)) - ENDIF - ENDIF - - CALL pression(ip1jmp1, ap, bp, ps, p) - CALL exner_hyb(ps, p, pks, pk, pkf) - - ! dissipation horizontale et verticale des petites echelles: - - IF (apdiss) THEN - ! calcul de l'energie cinetique avant dissipation - call covcont(llm, ucov, vcov, ucont, vcont) - call enercin(vcov, ucov, vcont, ucont, ecin0) - - ! dissipation - CALL dissip(vcov, ucov, teta, p, dvdis, dudis, dtetadis) - ucov=ucov + dudis - vcov=vcov + dvdis - - if (dissip_conservative) then - ! On rajoute la tendance due a la transform. Ec -> E - ! therm. cree lors de la dissipation - call covcont(llm, ucov, vcov, ucont, vcont) - call enercin(vcov, ucov, vcont, ucont, ecin) - dtetaecdt= (ecin0 - ecin) / pk - dtetadis=dtetadis + dtetaecdt - endif - teta=teta + dtetadis - - ! Calcul de la valeur moyenne, unique de h aux poles ..... - - DO l = 1, llm - DO ij = 1, iim - tppn(ij) = aire(ij) * teta(ij, l) - tpps(ij) = aire(ij + ip1jm) * teta(ij + ip1jm, l) - ENDDO - tpn = SSUM(iim, tppn, 1) / apoln - tps = SSUM(iim, tpps, 1) / apols - - DO ij = 1, iip1 - teta(ij, l) = tpn - teta(ij + ip1jm, l) = tps - ENDDO - ENDDO - - DO ij = 1, iim - tppn(ij) = aire(ij) * ps(ij) - tpps(ij) = aire(ij + ip1jm) * ps(ij + ip1jm) - ENDDO - tpn = SSUM(iim, tppn, 1) / apoln - tps = SSUM(iim, tpps, 1) / apols - - DO ij = 1, iip1 - ps(ij) = tpn - ps(ij + ip1jm) = tps - ENDDO - - END IF - - ! fin de l'intégration dynamique et physique pour le pas "itau" - ! préparation du pas d'intégration suivant - - ! schema matsuno + leapfrog - IF (forward .OR. leapf) THEN - itau = itau + 1 - iday = day_ini + itau / day_step - time = REAL(itau - (iday - day_ini) * day_step) / day_step & - + time_0 - IF (time > 1.) THEN - time = time - 1. - iday = iday + 1 - ENDIF - ENDIF - - IF (itau == itaufinp1) then - abort_message = 'Simulation finished' - call abort_gcm(modname, abort_message, 0) - ENDIF - - ! ecriture du fichier histoire moyenne: - - ! Comment out the following calls when you do not want the output - ! files "dyn_hist_ave.nc" and "dynzon.nc" - IF (MOD(itau, iperiod) == 0 .OR. itau == itaufin) THEN - CALL writedynav(histaveid, nqmx, itau, vcov, & - ucov, teta, pk, phi, q, masse, ps, phis) - call bilan_dyn(2, dtvr * iperiod, dtvr * day_step * periodav, & - ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, q) - ENDIF - - IF (itau == itaufin) THEN - CALL dynredem1("restart.nc", 0., vcov, ucov, teta, q, masse, ps) - CLOSE(99) - ENDIF - - ! gestion de l'integration temporelle: - - IF (MOD(itau, iperiod) == 0) exit - IF (MOD(itau - 1, iperiod) == 0) THEN - IF (forward) THEN - ! fin du pas forward et debut du pas backward - forward = .FALSE. - leapf = .FALSE. - ELSE - ! fin du pas backward et debut du premier pas leapfrog - leapf = .TRUE. - dt = 2. * dtvr - END IF - ELSE - ! ...... pas leapfrog ..... - leapf = .TRUE. - dt = 2. * dtvr - END IF - end do - end do + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, & + dteta, dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, dtvr, & + leapf=.false.) + + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk) + pkf = pk + CALL filtreg_scal(pkf, direct = .true., intensive = .true.) + end if + + IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN + CALL calfis(ucov, vcov, teta, q, pk, phis, phi, w, dufi, dvfi, & + dtetafi, dqfi, dayvrai = itau / day_step + day_ini, & + time = REAL(mod(itau, day_step)) / day_step, & + lafin = itau + 1 == itaufin) + + CALL addfi(ucov, vcov, teta, q, dufi, dvfi, dtetafi, dqfi) + ENDIF + + IF (MOD(itau + 1, idissip) == 0) THEN + ! Dissipation horizontale et verticale des petites \'echelles + + ! calcul de l'\'energie cin\'etique avant dissipation + call covcont(llm, ucov, vcov, ucont, vcont) + call enercin(vcov, ucov, vcont, ucont, ecin0) + + ! dissipation + CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis) + ucov = ucov + dudis + vcov = vcov + dvdis + + ! On ajoute la tendance due \`a la transformation \'energie + ! cin\'etique en \'energie thermique par la dissipation + call covcont(llm, ucov, vcov, ucont, vcont) + call enercin(vcov, ucov, vcont, ucont, ecin) + dtetadis = dtetadis + (ecin0 - ecin) / pk + teta = teta + dtetadis + + ! Calcul de la valeur moyenne aux p\^oles : + forall (l = 1: llm) + teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) & + / apoln + teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) & + * teta(:iim, jjm + 1, l)) / apols + END forall + END IF + + IF (MOD(itau + 1, iperiod) == 0) THEN + ! \'Ecriture du fichier histoire moyenne: + CALL writedynav(vcov, ucov, teta, pk, phi, q, masse, ps, phis, & + time = itau + 1) + call bilan_dyn(ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, & + q(:, :, :, 1)) + ENDIF + + IF (MOD(itau + 1, iecri * day_step) == 0) THEN + CALL geopot(teta, pk, pks, phis, phi) + CALL writehist(itau, vcov, ucov, teta, phi, masse, ps) + END IF + end do time_integration + + CALL dynredem1(vcov, ucov, teta, q, masse, ps, itau = itau_dyn + itaufin) + + ! Calcul des tendances dynamiques: + CALL geopot(teta, pk, pks, phis, phi) + CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & + dudyn, dv, dteta, dp, w, pbaru, pbarv, & + conser = MOD(itaufin, iconser) == 0) END SUBROUTINE leapfrog