--- trunk/Sources/filtrez/inifilr.f 2015/06/05 18:58:06 140 +++ trunk/Sources/filtrez/inifilr.f 2015/08/24 16:30:33 167 @@ -2,313 +2,115 @@ IMPLICIT NONE - INTEGER jfiltnu, jfiltsu, jfiltnv, jfiltsv - ! jfiltn index of the last scalar line filtered in NH - ! jfilts index of the first line filtered in SH - ! North: - real, allocatable:: matriceun(:, :, :), matrinvn(:, :, :) - ! (iim, iim, 2:jfiltnu) - real, allocatable:: matricevn(:, :, :) ! (iim, iim, jfiltnv) + INTEGER jfiltnu, jfiltnv + ! index of the last scalar line filtered in northern hemisphere + + real, pointer:: matriceun(:, :, :) ! (iim, iim, jfiltnu - 1) + ! matrice filtre pour les champs situes sur la grille scalaire + + real, pointer:: matrinvn(:, :, :) ! (iim, iim, jfiltnu - 1) + ! matrice filtre pour les champs situes sur la grille scalaire, pour + ! le filtre inverse + + real, pointer:: matricevn(:, :, :) ! (iim, iim, jfiltnv) + ! matrice filtre pour les champs situes sur la grille de V ou de Z ! South: - real, allocatable:: matriceus(:, :, :), matrinvs(:, :, :) - ! (iim, iim, jfiltsu:jjm) - real, allocatable:: matricevs(:, :, :) ! (iim, iim, jfiltsv:jjm) + integer jfiltsu, jfiltsv + ! index of the first line filtered in southern hemisphere + + real, pointer:: matriceus(:, :, :) ! (iim, iim, jjm - jfiltsu + 1) + ! matrice filtre pour les champs situes sur la grille scalaire + + real, pointer:: matrinvs(:, :, :) ! (iim, iim, jjm - jfiltsu + 1) + ! matrice filtre pour les champs situes sur la grille scalaire, pour + ! le filtre inverse + + real, pointer:: matricevs(:, :, :) ! (iim, iim, jjm - jfiltsv + 1) + ! matrice filtre pour les champs situes sur la grille de V ou de Z contains SUBROUTINE inifilr - ! From filtrez/inifilr.F, version 1.1.1.1 2004/05/19 12:53:09 + ! From filtrez/inifilr.F, version 1.1.1.1, 2004/05/19 12:53:09 ! H. Upadhyaya, O. Sharma - ! This routine computes the eigenfunctions of the laplacian on the - ! stretched grid, and the filtering coefficients. The modes are - ! filtered from modfrst to iim. + ! This procedure computes the filtering coefficients for scalar + ! lines and meridional wind v lines. The modes are filtered from + ! modfrst to iim. We filter all those latitude lines where coefil + ! < 1. No filtering at poles. colat0 is to be used when alpha + ! (stretching coefficient) is set equal to zero for the regular + ! grid case. USE dimens_m, ONLY : iim, jjm USE dynetat0_m, ONLY : rlatu, rlatv, xprimu, grossismx - use inifgn_m, only: inifgn, eignfnu, eignfnv - use nr_util, only: pi + use inifgn_m, only: inifgn + use inifilr_hemisph_m, only: inifilr_hemisph + use jumble, only: new_unit + use nr_util, only: pi, ifirstloc ! Local: + REAL dlatu(jjm) - REAL rlamda(2: iim) - real eignvl(iim) ! eigenvalues - REAL lamdamax, cof - INTEGER i, j, k, kf - REAL dymin, colat0 - REAL eignft(iim, iim), coff - - ! Filtering coefficients (lamda_max * cos(rlat) / lamda): - real coefilu(iim, jjm), coefilv(iim, jjm) - real coefilu2(iim, jjm), coefilv2(iim, jjm) + REAL rlamda(2:iim) ! > 0, in descending order + real eignvl(iim) ! eigenvalues sorted in descending order (<= 0) + INTEGER j, unit + REAL colat0 ! > 0 + integer j1 ! index of smallest positive latitude - integer modfrstu(jjm), modfrstv(jjm) - ! index of the mode from where modes are filtered + real eignfnu(iim, iim), eignfnv(iim, iim) + ! eigenvectors of the discrete second derivative with respect to longitude !----------------------------------------------------------- print *, "Call sequence information: inifilr" - CALL inifgn(eignvl) - - PRINT *, 'EIGNVL ' - PRINT "(1X, 5E13.6)", eignvl - - ! compute eigenvalues and eigenfunctions - ! compute the filtering coefficients for scalar lines and - ! meridional wind v-lines - ! we filter all those latitude lines where coefil < 1 - ! NO FILTERING AT POLES - ! colat0 is to be used when alpha (stretching coefficient) - ! is set equal to zero for the regular grid case + CALL inifgn(eignvl, eignfnu, eignfnv) ! Calcul de colat0 - - DO j = 1, jjm - dlatu(j) = rlatu(j) - rlatu(j + 1) - END DO - - dymin = dlatu(1) - DO j = 2, jjm - dymin = min(dymin, dlatu(j)) - END DO - - colat0 = min(0.5, dymin / minval(xprimu(:iim))) - + forall (j = 1:jjm) dlatu(j) = rlatu(j) - rlatu(j + 1) + colat0 = min(0.5, minval(dlatu) / minval(xprimu(:iim))) PRINT *, 'colat0 = ', colat0 - lamdamax = iim / (pi * colat0 / grossismx) - rlamda = lamdamax / sqrt(abs(eignvl(2: iim))) - - DO j = 1, jjm - DO i = 1, iim - coefilu(i, j) = 0. - coefilv(i, j) = 0. - coefilu2(i, j) = 0. - coefilv2(i, j) = 0. - end DO - END DO - - ! Determination de jfiltnu, jfiltnv, jfiltsu, jfiltsv - - PRINT *, 'TRUNCATION AT ', iim - - DO j = 2, jjm / 2 + 1 - IF (cos(rlatu(j)) / colat0 < 1. & - .and. rlamda(iim) * cos(rlatu(j)) < 1.) jfiltnu = j - - IF (cos(rlatu(jjm - j + 2)) / colat0 < 1. & - .and. rlamda(iim) * cos(rlatu(jjm - j + 2)) < 1.) & - jfiltsu = jjm - j + 2 - END DO - - DO j = 1, jjm / 2 - IF (cos(rlatv(j)) / colat0 < 1. .and. rlamda(iim) * cos(rlatv(j)) < 1.) & - jfiltnv = j - - IF (cos(rlatv(jjm - j + 1)) / colat0 < 1. .and. rlamda(iim) & - * cos(rlatv(jjm - j + 1)) < 1.) jfiltsv = jjm - j + 1 - END DO - - IF (jfiltnu <= 0) jfiltnu = 1 - IF (jfiltnu > jjm / 2 + 1) THEN - PRINT *, 'jfiltnu en dehors des valeurs acceptables ', jfiltnu - STOP 1 - END IF - - IF (jfiltsu <= 0) jfiltsu = 1 - IF (jfiltsu > jjm + 1) THEN - PRINT *, 'jfiltsu en dehors des valeurs acceptables ', jfiltsu - STOP 1 - END IF - - IF (jfiltnv <= 0) jfiltnv = 1 - IF (jfiltnv > jjm / 2) THEN - PRINT *, 'jfiltnv en dehors des valeurs acceptables ', jfiltnv - STOP 1 - END IF - - IF (jfiltsv <= 0) jfiltsv = 1 - IF (jfiltsv > jjm) THEN - PRINT *, 'jfiltsv en dehors des valeurs acceptables ', jfiltsv - STOP 1 - END IF - - PRINT *, 'jfiltnv jfiltsv jfiltnu jfiltsu ', jfiltnv, jfiltsv, jfiltnu, & - jfiltsu - - ! Determination de coefilu, coefilv, n=modfrstu, modfrstv - - DO j = 1, jjm - modfrstu(j) = iim - modfrstv(j) = iim - END DO - - DO j = 2, jfiltnu - DO k = 2, iim - IF (rlamda(k) * cos(rlatu(j)) < 1.) exit - end DO - if (k == iim + 1) cycle - modfrstu(j) = k - - kf = modfrstu(j) - DO k = kf, iim - cof = rlamda(k) * cos(rlatu(j)) - coefilu(k, j) = cof - 1. - coefilu2(k, j) = cof**2 - 1. - end DO - END DO - - DO j = 1, jfiltnv - DO k = 2, iim - IF (rlamda(k) * cos(rlatv(j)) < 1.) exit - end DO - if (k == iim + 1) cycle - modfrstv(j) = k - - kf = modfrstv(j) - DO k = kf, iim - cof = rlamda(k) * cos(rlatv(j)) - coefilv(k, j) = cof - 1. - coefilv2(k, j) = cof**2 - 1. - end DO - end DO - - DO j = jfiltsu, jjm - DO k = 2, iim - IF (rlamda(k) * cos(rlatu(j)) < 1.) exit - end DO - if (k == iim + 1) cycle - modfrstu(j) = k - - kf = modfrstu(j) - DO k = kf, iim - cof = rlamda(k) * cos(rlatu(j)) - coefilu(k, j) = cof - 1. - coefilu2(k, j) = cof**2 - 1. - end DO - end DO - - DO j = jfiltsv, jjm - DO k = 2, iim - IF (rlamda(k) * cos(rlatv(j)) < 1.) exit - end DO - if (k == iim + 1) cycle - modfrstv(j) = k - - kf = modfrstv(j) - DO k = kf, iim - cof = rlamda(k) * cos(rlatv(j)) - coefilv(k, j) = cof - 1. - coefilv2(k, j) = cof**2 - 1. - end DO - END DO - - IF (jfiltnv>=jjm / 2 .OR. jfiltnu>=jjm / 2) THEN - IF (jfiltnv == jfiltsv) jfiltsv = 1 + jfiltnv - IF (jfiltnu == jfiltsu) jfiltsu = 1 + jfiltnu - - PRINT *, 'jfiltnv jfiltsv jfiltnu jfiltsu', jfiltnv, jfiltsv, jfiltnu, & - jfiltsu - END IF - - PRINT *, 'Modes premiers v ' - PRINT 334, modfrstv - PRINT *, 'Modes premiers u ' - PRINT 334, modfrstu - - allocate(matriceun(iim, iim, 2:jfiltnu), matrinvn(iim, iim, 2:jfiltnu)) - allocate(matricevn(iim, iim, jfiltnv)) - allocate(matricevs(iim, iim, jfiltsv:jjm)) - allocate(matriceus(iim, iim, jfiltsu:jjm), matrinvs(iim, iim, jfiltsu:jjm)) - - ! Calcul de la matrice filtre 'matriceu' pour les champs situes - ! sur la grille scalaire - - DO j = 2, jfiltnu - DO i = 1, iim - IF (i < modfrstu(j)) then - coff = 0. - else - coff = coefilu(i, j) - end IF - eignft(i, :) = eignfnv(:, i) * coff - END DO - matriceun(:, :, j) = matmul(eignfnv, eignft) - END DO - - DO j = jfiltsu, jjm - DO i = 1, iim - IF (i < modfrstu(j)) then - coff = 0. - else - coff = coefilu(i, j) - end IF - eignft(i, :) = eignfnv(:, i) * coff - END DO - matriceus(:, :, j) = matmul(eignfnv, eignft) - END DO - - ! Calcul de la matrice filtre 'matricev' pour les champs situes - ! sur la grille de V ou de Z - - DO j = 1, jfiltnv - DO i = 1, iim - IF (i < modfrstv(j)) then - coff = 0. - else - coff = coefilv(i, j) - end IF - eignft(i, :) = eignfnu(:, i) * coff - END DO - matricevn(:, :, j) = matmul(eignfnu, eignft) - END DO - - DO j = jfiltsv, jjm - DO i = 1, iim - IF (i < modfrstv(j)) then - coff = 0. - else - coff = coefilv(i, j) - end IF - eignft(i, :) = eignfnu(:, i) * coff - END DO - matricevs(:, :, j) = matmul(eignfnu, eignft) - END DO - - ! Calcul de la matrice filtre 'matrinv' pour les champs situes - ! sur la grille scalaire , pour le filtre inverse - - DO j = 2, jfiltnu - DO i = 1, iim - IF (i < modfrstu(j)) then - coff = 0. - else - coff = coefilu(i, j) / (1. + coefilu(i, j)) - end IF - eignft(i, :) = eignfnv(:, i) * coff - END DO - matrinvn(:, :, j) = matmul(eignfnv, eignft) - END DO - - DO j = jfiltsu, jjm - DO i = 1, iim - IF (i < modfrstu(j)) then - coff = 0. - else - coff = coefilu(i, j) / (1. + coefilu(i, j)) - end IF - eignft(i, :) = eignfnv(:, i) * coff - END DO - matrinvs(:, :, j) = matmul(eignfnv, eignft) - END DO - -334 FORMAT (1X, 24I3) + rlamda = iim / (pi * colat0 / grossismx) / sqrt(- eignvl(2: iim)) + call new_unit(unit) + open(unit, file = "modfrst.csv", status = "replace", action = "write") + write(unit, fmt = *) '"rlat (degrees)" modfrst' ! title line + + ! D\'etermination de jfilt[ns][uv] : + + j1 = ifirstloc(rlatu <= 0.) + + call inifilr_hemisph(rlatu(j1 - 1:2:- 1), colat0, rlamda, unit, eignfnv, & + jfiltnu, matriceun, matrinvn) + jfiltnu = j1 - jfiltnu + matriceun = matriceun(:, :, jfiltnu - 1:1:- 1) + matrinvn = matrinvn(:, :, jfiltnu - 1:1:- 1) + + call inifilr_hemisph(- rlatu(j1:jjm), colat0, rlamda, unit, eignfnv, & + jfiltsu, matriceus, matrinvs) + jfiltsu = j1 - 1 + jfiltsu + + j1 = ifirstloc(rlatv <= 0.) + + call inifilr_hemisph(rlatv(j1 - 1:1:- 1), colat0, rlamda, unit, eignfnu, & + jfiltnv, matricevn) + jfiltnv = j1 - jfiltnv + matricevn = matricevn(:, :, jfiltnv:1:- 1) + + call inifilr_hemisph(- rlatv(j1:jjm), colat0, rlamda, unit, eignfnu, & + jfiltsv, matricevs) + jfiltsv = j1 - 1 + jfiltsv + + close(unit) + PRINT *, 'jfiltnu =', jfiltnu + PRINT *, 'jfiltsu =', jfiltsu + PRINT *, 'jfiltnv =', jfiltnv + PRINT *, 'jfiltsv =', jfiltsv END SUBROUTINE inifilr