--- trunk/libf/dyn3d/calfis.f90 2008/04/18 14:45:53 10 +++ trunk/libf/dyn3d/calfis.f90 2011/04/13 12:29:18 44 @@ -1,465 +1,379 @@ module calfis_m - ! Clean: no C preprocessor directive, no include line - IMPLICIT NONE contains - SUBROUTINE calfis(nq, lafin, rdayvrai, heure, pucov, pvcov, pteta, pq, & - pmasse, pps, ppk, pphis, pphi, pducov, pdvcov, pdteta, pdq, pw, & - clesphy0, pdufi, pdvfi, pdhfi, pdqfi, pdpsfi) - - ! From dyn3d/calfis.F,v 1.3 2005/05/25 13:10:09 - - ! Auteurs : P. Le Van, F. Hourdin - - ! 1. rearrangement des tableaux et transformation - ! variables dynamiques > variables physiques - ! 2. calcul des termes physiques - ! 3. retransformation des tendances physiques en tendances dynamiques - - ! remarques: - ! ---------- - - ! - les vents sont donnes dans la physique par leurs composantes - ! naturelles. - ! - la variable thermodynamique de la physique est une variable - ! intensive : T - ! pour la dynamique on prend T * (preff / p(l)) **kappa - ! - les deux seules variables dependant de la geometrie necessaires - ! pour la physique sont la latitude pour le rayonnement et - ! l'aire de la maille quand on veut integrer une grandeur - ! horizontalement. - - ! Input : - ! ------- - ! pucov covariant zonal velocity - ! pvcov covariant meridional velocity - ! pteta potential temperature - ! pps surface pressure - ! pmasse masse d'air dans chaque maille - ! pts surface temperature (K) - ! callrad clef d'appel au rayonnement - - ! Output : - ! -------- - ! pdufi tendency for the natural zonal velocity (ms-1) - ! pdvfi tendency for the natural meridional velocity - ! pdhfi tendency for the potential temperature - ! pdtsfi tendency for the surface temperature + SUBROUTINE calfis(rdayvrai, heure, pucov, pvcov, teta, q, pmasse, pps, & + ppk, pphis, pphi, pducov, pdvcov, pdq, pw, pdufi, pdvfi, pdhfi, pdqfi, & + pdpsfi, lafin) + + ! From dyn3d/calfis.F, version 1.3 2005/05/25 13:10:09 + ! Authors: P. Le Van, F. Hourdin + + ! 1. Réarrangement des tableaux et transformation variables + ! dynamiques en variables physiques + ! 2. Calcul des termes physiques + ! 3. Retransformation des tendances physiques en tendances dynamiques + + ! Remarques: + + ! - Les vents sont donnés dans la physique par leurs composantes + ! naturelles. + + ! - La variable thermodynamique de la physique est une variable + ! intensive : T. + ! Pour la dynamique on prend T * (preff / p(l)) **kappa + + ! - Les deux seules variables dépendant de la géométrie + ! nécessaires pour la physique sont la latitude pour le + ! rayonnement et l'aire de la maille quand on veut intégrer une + ! grandeur horizontalement. + + ! Input : + ! pucov covariant zonal velocity + ! pvcov covariant meridional velocity + ! teta potential temperature + ! pps surface pressure + ! pmasse masse d'air dans chaque maille + ! pts surface temperature (K) + ! callrad clef d'appel au rayonnement + + ! Output : + ! pdufi tendency for the natural zonal velocity (ms-1) + ! pdvfi tendency for the natural meridional velocity + ! pdhfi tendency for the potential temperature + ! pdtsfi tendency for the surface temperature - ! pdtrad radiative tendencies \ both input - ! pfluxrad radiative fluxes / and output + ! pdtrad radiative tendencies \ input and output + ! pfluxrad radiative fluxes / input and output + use comconst, only: kappa, cpp, dtphys, g + use comvert, only: preff + use comgeom, only: apoln, cu_2d, cv_2d, unsaire_2d, apols, rlonu, rlonv use dimens_m, only: iim, jjm, llm, nqmx use dimphy, only: klon - use comconst, only: kappa, cpp, dtphys, g, pi - use comvert, only: preff, presnivs - use comgeom, only: apoln, cu_2d, cv_2d, unsaire_2d, apols, rlonu, rlonv - use advtrac_m, only: niadv use grid_change, only: dyn_phy, gr_fi_dyn + use iniadvtrac_m, only: niadv + use nr_util, only: pi use physiq_m, only: physiq use pressure_var, only: p3d, pls - ! 0. Declarations : - - INTEGER nq - - ! Arguments : + ! Arguments : LOGICAL, intent(in):: lafin REAL, intent(in):: heure ! heure de la journée en fraction de jour - REAL pvcov(iim + 1,jjm,llm) - REAL pucov(iim + 1,jjm + 1,llm) - REAL pteta(iim + 1,jjm + 1,llm) - REAL pmasse(iim + 1,jjm + 1,llm) + REAL pvcov(iim + 1, jjm, llm) + REAL pucov(iim + 1, jjm + 1, llm) + REAL, intent(in):: teta(iim + 1, jjm + 1, llm) + REAL pmasse(iim + 1, jjm + 1, llm) - REAL, intent(in):: pq(iim + 1,jjm + 1,llm,nqmx) + REAL, intent(in):: q(iim + 1, jjm + 1, llm, nqmx) ! (mass fractions of advected fields) - REAL pphis(iim + 1,jjm + 1) - REAL pphi(iim + 1,jjm + 1,llm) + REAL pphis(iim + 1, jjm + 1) + REAL pphi(iim + 1, jjm + 1, llm) - REAL pdvcov(iim + 1,jjm,llm) - REAL pducov(iim + 1,jjm + 1,llm) - REAL pdteta(iim + 1,jjm + 1,llm) - REAL pdq(iim + 1,jjm + 1,llm,nqmx) + REAL pdvcov(iim + 1, jjm, llm) + REAL pducov(iim + 1, jjm + 1, llm) + REAL pdq(iim + 1, jjm + 1, llm, nqmx) - REAL pw(iim + 1,jjm + 1,llm) + REAL, intent(in):: pw(iim + 1, jjm + 1, llm) - REAL pps(iim + 1,jjm + 1) - REAL, intent(in):: ppk(iim + 1,jjm + 1,llm) + REAL pps(iim + 1, jjm + 1) + REAL, intent(in):: ppk(iim + 1, jjm + 1, llm) - REAL pdvfi(iim + 1,jjm,llm) - REAL pdufi(iim + 1,jjm + 1,llm) - REAL pdhfi(iim + 1,jjm + 1,llm) - REAL pdqfi(iim + 1,jjm + 1,llm,nqmx) - REAL pdpsfi(iim + 1,jjm + 1) + REAL pdvfi(iim + 1, jjm, llm) + REAL pdufi(iim + 1, jjm + 1, llm) + REAL, intent(out):: pdhfi(iim + 1, jjm + 1, llm) + REAL pdqfi(iim + 1, jjm + 1, llm, nqmx) + REAL pdpsfi(iim + 1, jjm + 1) - INTEGER, PARAMETER:: longcles = 20 - REAL clesphy0(longcles) + ! Local variables : - ! Local variables : - - INTEGER i,j,l,ig0,ig,iq,iiq + INTEGER i, j, l, ig0, ig, iq, iiq REAL zpsrf(klon) - REAL zplev(klon,llm+1),zplay(klon,llm) - REAL zphi(klon,llm),zphis(klon) - - REAL zufi(klon,llm), zvfi(klon,llm) - REAL ztfi(klon,llm) ! temperature - real zqfi(klon,llm,nqmx) ! mass fractions of advected fields - - REAL pcvgu(klon,llm), pcvgv(klon,llm) - REAL pcvgt(klon,llm), pcvgq(klon,llm,2) + REAL zplev(klon, llm+1), zplay(klon, llm) + REAL zphi(klon, llm), zphis(klon) - REAL pvervel(klon,llm) + REAL zufi(klon, llm), v(klon, llm) + real zvfi(iim + 1, jjm + 1, llm) + REAL ztfi(klon, llm) ! temperature + real qx(klon, llm, nqmx) ! mass fractions of advected fields + REAL pvervel(klon, llm) - REAL zdufi(klon,llm),zdvfi(klon,llm) - REAL zdtfi(klon,llm),zdqfi(klon,llm,nqmx) + REAL zdufi(klon, llm), zdvfi(klon, llm) + REAL zdtfi(klon, llm), zdqfi(klon, llm, nqmx) REAL zdpsrf(klon) - REAL zsin(iim),zcos(iim),z1(iim) - REAL zsinbis(iim),zcosbis(iim),z1bis(iim) - REAL pksurcp(iim + 1,jjm + 1) + REAL z1(iim) + REAL pksurcp(iim + 1, jjm + 1) ! I. Musat: diagnostic PVteta, Amip2 INTEGER, PARAMETER:: ntetaSTD=3 REAL:: rtetaSTD(ntetaSTD) = (/350., 380., 405./) - REAL PVteta(klon,ntetaSTD) + REAL PVteta(klon, ntetaSTD) - REAL SSUM - - LOGICAL:: firstcal = .true. REAL, intent(in):: rdayvrai !----------------------------------------------------------------------- !!print *, "Call sequence information: calfis" - ! 1. Initialisations : - ! latitude, longitude et aires des mailles pour la physique: + ! 1. Initialisations : + ! latitude, longitude et aires des mailles pour la physique: - ! 40. transformation des variables dynamiques en variables physiques: - ! 41. pressions au sol (en Pascals) + ! 40. transformation des variables dynamiques en variables physiques: + ! 41. pressions au sol (en Pascals) - zpsrf(1) = pps(1,1) + zpsrf(1) = pps(1, 1) - ig0 = 2 - DO j = 2,jjm - CALL SCOPY(iim,pps(1,j),1,zpsrf(ig0), 1) + ig0 = 2 + DO j = 2, jjm + CALL SCOPY(iim, pps(1, j), 1, zpsrf(ig0), 1) ig0 = ig0+iim ENDDO - zpsrf(klon) = pps(1,jjm + 1) + zpsrf(klon) = pps(1, jjm + 1) - ! 42. pression intercouches : + ! 42. pression intercouches : - ! .... zplev definis aux (llm +1) interfaces des couches .... - ! .... zplay definis aux (llm) milieux des couches .... + ! zplev defini aux (llm +1) interfaces des couches + ! zplay defini aux (llm) milieux des couches - ! ... Exner = cp * (p(l) / preff) ** kappa .... + ! Exner = cp * (p(l) / preff) ** kappa forall (l = 1: llm+1) zplev(:, l) = pack(p3d(:, :, l), dyn_phy) - ! 43. temperature naturelle (en K) et pressions milieux couches . - DO l=1,llm - pksurcp = ppk(:, :, l) / cpp + ! 43. temperature naturelle (en K) et pressions milieux couches + DO l=1, llm + pksurcp = ppk(:, :, l) / cpp pls(:, :, l) = preff * pksurcp**(1./ kappa) zplay(:, l) = pack(pls(:, :, l), dyn_phy) - ztfi(:, l) = pack(pteta(:, :, l) * pksurcp, dyn_phy) - pcvgt(:, l) = pack(pdteta(:, :, l) * pksurcp / pmasse(:, :, l), dyn_phy) + ztfi(:, l) = pack(teta(:, :, l) * pksurcp, dyn_phy) ENDDO - ! 43.bis traceurs - - DO iq=1,nq + ! 43.bis traceurs + DO iq=1, nqmx iiq=niadv(iq) - DO l=1,llm - zqfi(1,l,iq) = pq(1,1,l,iiq) - ig0 = 2 - DO j=2,jjm + DO l=1, llm + qx(1, l, iq) = q(1, 1, l, iiq) + ig0 = 2 + DO j=2, jjm DO i = 1, iim - zqfi(ig0,l,iq) = pq(i,j,l,iiq) - ig0 = ig0 + 1 + qx(ig0, l, iq) = q(i, j, l, iiq) + ig0 = ig0 + 1 ENDDO ENDDO - zqfi(ig0,l,iq) = pq(1,jjm + 1,l,iiq) + qx(ig0, l, iq) = q(1, jjm + 1, l, iiq) ENDDO ENDDO - ! convergence dynamique pour les traceurs "EAU" - - DO iq=1,2 - DO l=1,llm - pcvgq(1,l,iq)= pdq(1,1,l,iq) / pmasse(1,1,l) - ig0 = 2 - DO j=2,jjm - DO i = 1, iim - pcvgq(ig0,l,iq) = pdq(i,j,l,iq) / pmasse(i,j,l) - ig0 = ig0 + 1 - ENDDO - ENDDO - pcvgq(ig0,l,iq)= pdq(1,jjm + 1,l,iq) / pmasse(1,jjm + 1,l) - ENDDO - ENDDO - - ! Geopotentiel calcule par rapport a la surface locale: - + ! Geopotentiel calcule par rapport a la surface locale: forall (l = 1:llm) zphi(:, l) = pack(pphi(:, :, l), dyn_phy) zphis = pack(pphis, dyn_phy) - DO l=1,llm - DO ig=1,klon - zphi(ig,l)=zphi(ig,l)-zphis(ig) + DO l=1, llm + DO ig=1, klon + zphi(ig, l)=zphi(ig, l)-zphis(ig) ENDDO ENDDO - ! .... Calcul de la vitesse verticale (en Pa*m*s ou Kg/s) .... - - DO l=1,llm - pvervel(1,l)=pw(1,1,l) * g /apoln + ! Calcul de la vitesse verticale (en Pa*m*s ou Kg/s) + DO l=1, llm + pvervel(1, l)=pw(1, 1, l) * g /apoln ig0=2 - DO j=2,jjm + DO j=2, jjm DO i = 1, iim - pvervel(ig0,l) = pw(i,j,l) * g * unsaire_2d(i,j) + pvervel(ig0, l) = pw(i, j, l) * g * unsaire_2d(i, j) ig0 = ig0 + 1 ENDDO ENDDO - pvervel(ig0,l)=pw(1,jjm + 1,l) * g /apols + pvervel(ig0, l)=pw(1, jjm + 1, l) * g /apols ENDDO - ! 45. champ u: + ! 45. champ u: - DO l=1,llm - - DO j=2,jjm + DO l=1, llm + DO j=2, jjm ig0 = 1+(j-2)*iim - zufi(ig0+1,l)= 0.5 * & - (pucov(iim,j,l)/cu_2d(iim,j) + pucov(1,j,l)/cu_2d(1,j)) - pcvgu(ig0+1,l)= 0.5 * & - (pducov(iim,j,l)/cu_2d(iim,j) + pducov(1,j,l)/cu_2d(1,j)) - DO i=2,iim - zufi(ig0+i,l)= 0.5 * & - (pucov(i-1,j,l)/cu_2d(i-1,j) & - + pucov(i,j,l)/cu_2d(i,j)) - pcvgu(ig0+i,l)= 0.5 * & - (pducov(i-1,j,l)/cu_2d(i-1,j) & - + pducov(i,j,l)/cu_2d(i,j)) + zufi(ig0+1, l)= 0.5 * & + (pucov(iim, j, l)/cu_2d(iim, j) + pucov(1, j, l)/cu_2d(1, j)) + DO i=2, iim + zufi(ig0+i, l)= 0.5 * & + (pucov(i-1, j, l)/cu_2d(i-1, j) & + + pucov(i, j, l)/cu_2d(i, j)) end DO end DO - end DO - ! 46.champ v: - - DO l=1,llm - DO j=2,jjm - ig0=1+(j-2)*iim - DO i=1,iim - zvfi(ig0+i,l)= 0.5 * & - (pvcov(i,j-1,l)/cv_2d(i,j-1) & - + pvcov(i,j,l)/cv_2d(i,j)) - pcvgv(ig0+i,l)= 0.5 * & - (pdvcov(i,j-1,l)/cv_2d(i,j-1) & - + pdvcov(i,j,l)/cv_2d(i,j)) - ENDDO - ENDDO - ENDDO - - ! 47. champs de vents aux pole nord - ! U = 1 / pi * integrale [ v * cos(long) * d long ] - ! V = 1 / pi * integrale [ v * sin(long) * d long ] + ! 46.champ v: - DO l=1,llm + forall (j = 2: jjm, l = 1: llm) zvfi(:iim, j, l)= 0.5 & + * (pvcov(:iim, j-1, l) / cv_2d(:iim, j-1) & + + pvcov(:iim, j, l) / cv_2d(:iim, j)) + zvfi(iim + 1, 2:jjm, :) = zvfi(1, 2:jjm, :) - z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1,1,l)/cv_2d(1,1) - z1bis(1)=(rlonu(1)-rlonu(iim)+2.*pi)*pdvcov(1,1,l)/cv_2d(1,1) - DO i=2,iim - z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i,1,l)/cv_2d(i,1) - z1bis(i)=(rlonu(i)-rlonu(i-1))*pdvcov(i,1,l)/cv_2d(i,1) - ENDDO + ! 47. champs de vents au pôle nord + ! U = 1 / pi * integrale [ v * cos(long) * d long ] + ! V = 1 / pi * integrale [ v * sin(long) * d long ] - DO i=1,iim - zcos(i) = COS(rlonv(i))*z1(i) - zcosbis(i)= COS(rlonv(i))*z1bis(i) - zsin(i) = SIN(rlonv(i))*z1(i) - zsinbis(i)= SIN(rlonv(i))*z1bis(i) + DO l=1, llm + z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1, 1, l)/cv_2d(1, 1) + DO i=2, iim + z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i, 1, l)/cv_2d(i, 1) ENDDO - zufi(1,l) = SSUM(iim,zcos,1)/pi - pcvgu(1,l) = SSUM(iim,zcosbis,1)/pi - zvfi(1,l) = SSUM(iim,zsin,1)/pi - pcvgv(1,l) = SSUM(iim,zsinbis,1)/pi - + zufi(1, l) = SUM(COS(rlonv(:iim)) * z1) / pi + zvfi(:, 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi ENDDO - ! 48. champs de vents aux pole sud: - ! U = 1 / pi * integrale [ v * cos(long) * d long ] - ! V = 1 / pi * integrale [ v * sin(long) * d long ] + ! 48. champs de vents au pôle sud: + ! U = 1 / pi * integrale [ v * cos(long) * d long ] + ! V = 1 / pi * integrale [ v * sin(long) * d long ] - DO l=1,llm - - z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1,jjm,l) & - /cv_2d(1,jjm) - z1bis(1)=(rlonu(1)-rlonu(iim)+2.*pi)*pdvcov(1,jjm,l) & - /cv_2d(1,jjm) - DO i=2,iim - z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i,jjm,l)/cv_2d(i,jjm) - z1bis(i)=(rlonu(i)-rlonu(i-1))*pdvcov(i,jjm,l)/cv_2d(i,jjm) - ENDDO - - DO i=1,iim - zcos(i) = COS(rlonv(i))*z1(i) - zcosbis(i) = COS(rlonv(i))*z1bis(i) - zsin(i) = SIN(rlonv(i))*z1(i) - zsinbis(i) = SIN(rlonv(i))*z1bis(i) + DO l=1, llm + z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1, jjm, l) & + /cv_2d(1, jjm) + DO i=2, iim + z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i, jjm, l)/cv_2d(i, jjm) ENDDO - zufi(klon,l) = SSUM(iim,zcos,1)/pi - pcvgu(klon,l) = SSUM(iim,zcosbis,1)/pi - zvfi(klon,l) = SSUM(iim,zsin,1)/pi - pcvgv(klon,l) = SSUM(iim,zsinbis,1)/pi - + zufi(klon, l) = SUM(COS(rlonv(:iim)) * z1) / pi + zvfi(:, jjm + 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi ENDDO - !IM calcul PV a teta=350, 380, 405K - CALL PVtheta(klon,llm,pucov,pvcov,pteta, & - ztfi,zplay,zplev, & - ntetaSTD,rtetaSTD,PVteta) + forall(l= 1: llm) v(:, l) = pack(zvfi(:, :, l), dyn_phy) - ! Appel de la physique: + !IM calcul PV a teta=350, 380, 405K + CALL PVtheta(klon, llm, pucov, pvcov, teta, ztfi, zplay, zplev, & + ntetaSTD, rtetaSTD, PVteta) - CALL physiq(nq, firstcal, lafin, rdayvrai, heure, dtphys, & - zplev, zplay, zphi, zphis, presnivs, clesphy0, zufi, zvfi, & - ztfi, zqfi, pvervel, zdufi, zdvfi, zdtfi, zdqfi, zdpsrf, pducov, & - PVteta) ! IM diagnostique PVteta, Amip2 + ! Appel de la physique : + CALL physiq(lafin, rdayvrai, heure, dtphys, zplev, zplay, zphi, & + zphis, zufi, v, ztfi, qx, pvervel, zdufi, zdvfi, & + zdtfi, zdqfi, zdpsrf, pducov, PVteta) ! diagnostic PVteta, Amip2 - ! transformation des tendances physiques en tendances dynamiques: + ! transformation des tendances physiques en tendances dynamiques: - ! tendance sur la pression : + ! tendance sur la pression : pdpsfi = gr_fi_dyn(zdpsrf) - ! 62. enthalpie potentielle + ! 62. enthalpie potentielle - DO l=1,llm + DO l=1, llm - DO i=1,iim + 1 - pdhfi(i,1,l) = cpp * zdtfi(1,l) / ppk(i, 1 ,l) - pdhfi(i,jjm + 1,l) = cpp * zdtfi(klon,l)/ ppk(i,jjm + 1,l) + DO i=1, iim + 1 + pdhfi(i, 1, l) = cpp * zdtfi(1, l) / ppk(i, 1 , l) + pdhfi(i, jjm + 1, l) = cpp * zdtfi(klon, l)/ ppk(i, jjm + 1, l) ENDDO - DO j=2,jjm + DO j=2, jjm ig0=1+(j-2)*iim - DO i=1,iim - pdhfi(i,j,l) = cpp * zdtfi(ig0+i,l) / ppk(i,j,l) + DO i=1, iim + pdhfi(i, j, l) = cpp * zdtfi(ig0+i, l) / ppk(i, j, l) ENDDO - pdhfi(iim + 1,j,l) = pdhfi(1,j,l) + pdhfi(iim + 1, j, l) = pdhfi(1, j, l) ENDDO ENDDO - ! 62. humidite specifique + ! 62. humidite specifique - DO iq=1,nqmx - DO l=1,llm - DO i=1,iim + 1 - pdqfi(i,1,l,iq) = zdqfi(1,l,iq) - pdqfi(i,jjm + 1,l,iq) = zdqfi(klon,l,iq) + DO iq=1, nqmx + DO l=1, llm + DO i=1, iim + 1 + pdqfi(i, 1, l, iq) = zdqfi(1, l, iq) + pdqfi(i, jjm + 1, l, iq) = zdqfi(klon, l, iq) ENDDO - DO j=2,jjm + DO j=2, jjm ig0=1+(j-2)*iim - DO i=1,iim - pdqfi(i,j,l,iq) = zdqfi(ig0+i,l,iq) + DO i=1, iim + pdqfi(i, j, l, iq) = zdqfi(ig0+i, l, iq) ENDDO - pdqfi(iim + 1,j,l,iq) = pdqfi(1,j,l,iq) + pdqfi(iim + 1, j, l, iq) = pdqfi(1, j, l, iq) ENDDO ENDDO ENDDO - ! 63. traceurs + ! 63. traceurs - ! initialisation des tendances + ! initialisation des tendances pdqfi=0. - DO iq=1,nq + DO iq=1, nqmx iiq=niadv(iq) - DO l=1,llm - DO i=1,iim + 1 - pdqfi(i,1,l,iiq) = zdqfi(1,l,iq) - pdqfi(i,jjm + 1,l,iiq) = zdqfi(klon,l,iq) + DO l=1, llm + DO i=1, iim + 1 + pdqfi(i, 1, l, iiq) = zdqfi(1, l, iq) + pdqfi(i, jjm + 1, l, iiq) = zdqfi(klon, l, iq) ENDDO - DO j=2,jjm + DO j=2, jjm ig0=1+(j-2)*iim - DO i=1,iim - pdqfi(i,j,l,iiq) = zdqfi(ig0+i,l,iq) + DO i=1, iim + pdqfi(i, j, l, iiq) = zdqfi(ig0+i, l, iq) ENDDO - pdqfi(iim + 1,j,l,iiq) = pdqfi(1,j,l,iq) + pdqfi(iim + 1, j, l, iiq) = pdqfi(1, j, l, iq) ENDDO ENDDO ENDDO - ! 65. champ u: + ! 65. champ u: - DO l=1,llm + DO l=1, llm - DO i=1,iim + 1 - pdufi(i,1,l) = 0. - pdufi(i,jjm + 1,l) = 0. + DO i=1, iim + 1 + pdufi(i, 1, l) = 0. + pdufi(i, jjm + 1, l) = 0. ENDDO - DO j=2,jjm + DO j=2, jjm ig0=1+(j-2)*iim - DO i=1,iim-1 - pdufi(i,j,l)= & - 0.5*(zdufi(ig0+i,l)+zdufi(ig0+i+1,l))*cu_2d(i,j) + DO i=1, iim-1 + pdufi(i, j, l)= & + 0.5*(zdufi(ig0+i, l)+zdufi(ig0+i+1, l))*cu_2d(i, j) ENDDO - pdufi(iim,j,l)= & - 0.5*(zdufi(ig0+1,l)+zdufi(ig0+iim,l))*cu_2d(iim,j) - pdufi(iim + 1,j,l)=pdufi(1,j,l) + pdufi(iim, j, l)= & + 0.5*(zdufi(ig0+1, l)+zdufi(ig0+iim, l))*cu_2d(iim, j) + pdufi(iim + 1, j, l)=pdufi(1, j, l) ENDDO ENDDO - ! 67. champ v: + ! 67. champ v: - DO l=1,llm + DO l=1, llm - DO j=2,jjm-1 + DO j=2, jjm-1 ig0=1+(j-2)*iim - DO i=1,iim - pdvfi(i,j,l)= & - 0.5*(zdvfi(ig0+i,l)+zdvfi(ig0+i+iim,l))*cv_2d(i,j) + DO i=1, iim + pdvfi(i, j, l)= & + 0.5*(zdvfi(ig0+i, l)+zdvfi(ig0+i+iim, l))*cv_2d(i, j) ENDDO - pdvfi(iim + 1,j,l) = pdvfi(1,j,l) + pdvfi(iim + 1, j, l) = pdvfi(1, j, l) ENDDO ENDDO - ! 68. champ v pres des poles: - ! v = U * cos(long) + V * SIN(long) - - DO l=1,llm + ! 68. champ v pres des poles: + ! v = U * cos(long) + V * SIN(long) - DO i=1,iim - pdvfi(i,1,l)= & - zdufi(1,l)*COS(rlonv(i))+zdvfi(1,l)*SIN(rlonv(i)) - pdvfi(i,jjm,l)=zdufi(klon,l)*COS(rlonv(i)) & - +zdvfi(klon,l)*SIN(rlonv(i)) - pdvfi(i,1,l)= & - 0.5*(pdvfi(i,1,l)+zdvfi(i+1,l))*cv_2d(i,1) - pdvfi(i,jjm,l)= & - 0.5*(pdvfi(i,jjm,l)+zdvfi(klon-iim-1+i,l))*cv_2d(i,jjm) + DO l=1, llm + DO i=1, iim + pdvfi(i, 1, l)= & + zdufi(1, l)*COS(rlonv(i))+zdvfi(1, l)*SIN(rlonv(i)) + pdvfi(i, jjm, l)=zdufi(klon, l)*COS(rlonv(i)) & + +zdvfi(klon, l)*SIN(rlonv(i)) + pdvfi(i, 1, l)= & + 0.5*(pdvfi(i, 1, l)+zdvfi(i+1, l))*cv_2d(i, 1) + pdvfi(i, jjm, l)= & + 0.5*(pdvfi(i, jjm, l)+zdvfi(klon-iim-1+i, l))*cv_2d(i, jjm) ENDDO - pdvfi(iim + 1,1,l) = pdvfi(1,1,l) - pdvfi(iim + 1,jjm,l)= pdvfi(1,jjm,l) - + pdvfi(iim + 1, 1, l) = pdvfi(1, 1, l) + pdvfi(iim + 1, jjm, l)= pdvfi(1, jjm, l) ENDDO - firstcal = .FALSE. - END SUBROUTINE calfis end module calfis_m