--- trunk/libf/dyn3d/leapfrog.f90 2010/03/30 10:44:42 29 +++ trunk/libf/dyn3d/leapfrog.f90 2011/05/16 14:52:30 46 @@ -8,7 +8,12 @@ ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 ! Authors: P. Le Van, L. Fairhead, F. Hourdin + ! Matsuno-leapfrog scheme. + use addfi_m, only: addfi + use bilan_dyn_m, only: bilan_dyn + use caladvtrac_m, only: caladvtrac + use caldyn_m, only: caldyn USE calfis_m, ONLY: calfis USE com_io_dyn, ONLY: histaveid USE comconst, ONLY: daysec, dtphys, dtvr @@ -21,22 +26,29 @@ use dynredem1_m, only: dynredem1 USE exner_hyb_m, ONLY: exner_hyb use filtreg_m, only: filtreg + use geopot_m, only: geopot USE guide_m, ONLY: guide use inidissip_m, only: idissip + use integrd_m, only: integrd USE logic, ONLY: iflag_phys, ok_guide USE paramet_m, ONLY: ip1jmp1 - USE pression_m, ONLY: pression USE pressure_var, ONLY: p3d USE temps, ONLY: itau_dyn ! Variables dynamiques: - REAL vcov((iim + 1) * jjm, llm), ucov(ip1jmp1, llm) ! vents covariants - REAL, intent(inout):: teta(iim + 1, jjm + 1, llm) ! potential temperature - REAL ps(iim + 1, jjm + 1) ! pression au sol, en Pa + REAL, intent(inout):: ucov(ip1jmp1, llm) ! vent covariant + REAL, intent(inout):: vcov((iim + 1) * jjm, llm) ! vent covariant + REAL, intent(inout):: teta(:, :, :) ! (iim + 1, jjm + 1, llm) + ! potential temperature + + REAL, intent(inout):: ps(:, :) ! (iim + 1, jjm + 1) pression au sol, en Pa REAL masse(ip1jmp1, llm) ! masse d'air REAL phis(ip1jmp1) ! geopotentiel au sol - REAL q(ip1jmp1, llm, nqmx) ! mass fractions of advected fields + + REAL, intent(inout):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) + ! mass fractions of advected fields + REAL, intent(in):: time_0 ! Variables local to the procedure: @@ -59,7 +71,7 @@ ! tendances dynamiques REAL dv((iim + 1) * jjm, llm), du(ip1jmp1, llm) - REAL dteta(ip1jmp1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) + REAL dteta(iim + 1, jjm + 1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) ! tendances de la dissipation REAL dvdis((iim + 1) * jjm, llm), dudis(ip1jmp1, llm) @@ -67,182 +79,166 @@ ! tendances physiques REAL dvfi((iim + 1) * jjm, llm), dufi(ip1jmp1, llm) - REAL dtetafi(ip1jmp1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) + REAL dtetafi(iim + 1, jjm + 1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) ! variables pour le fichier histoire INTEGER itau ! index of the time step of the dynamics, starts at 0 INTEGER itaufin - INTEGER iday ! jour julien REAL time ! time of day, as a fraction of day length real finvmaold(ip1jmp1, llm) - LOGICAL:: lafin=.false. INTEGER l - REAL rdayvrai, rdaym_ini ! Variables test conservation energie REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm) - ! Tendance de la temp. potentiel d (theta) / d t due a la - ! tansformation d'energie cinetique en energie thermique - ! cree par la dissipation + REAL dtetaecdt(iim + 1, jjm + 1, llm) + ! tendance de la température potentielle due à la tansformation + ! d'énergie cinétique en énergie thermique créée par la dissipation + REAL vcont((iim + 1) * jjm, llm), ucont(ip1jmp1, llm) - logical forward, leapf - REAL dt + logical leapf + real dt !--------------------------------------------------- print *, "Call sequence information: leapfrog" itaufin = nday * day_step - itau = 0 - iday = day_ini - time = time_0 + ! "day_step" is a multiple of "iperiod", therefore "itaufin" is one too + dq = 0. + ! On initialise la pression et la fonction d'Exner : - CALL pression(ip1jmp1, ap, bp, ps, p3d) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps CALL exner_hyb(ps, p3d, pks, pk, pkf) - ! Début de l'integration temporelle : - outer_loop:do - if (ok_guide .and. (itaufin - itau - 1) * dtvr > 21600.) & - call guide(itau, ucov, vcov, teta, q, masse, ps) - vcovm1 = vcov - ucovm1 = ucov - tetam1 = teta - massem1 = masse - psm1 = ps - forward = .TRUE. - leapf = .FALSE. - dt = dtvr - finvmaold = masse - CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1) + time_integration: do itau = 0, itaufin - 1 + leapf = mod(itau, iperiod) /= 0 + if (leapf) then + dt = 2 * dtvr + else + ! Matsuno + dt = dtvr + if (ok_guide .and. (itaufin - itau - 1) * dtvr > 21600.) & + call guide(itau, ucov, vcov, teta, q, masse, ps) + vcovm1 = vcov + ucovm1 = ucov + tetam1 = teta + massem1 = masse + psm1 = ps + finvmaold = masse + CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1) + end if + + ! Calcul des tendances dynamiques: + CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & + MOD(itau, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & + time_0) + + ! Calcul des tendances advection des traceurs (dont l'humidité) + CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk) + + ! Stokage du flux de masse pour traceurs offline: + IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, & + dtvr, itau) + + ! Integrations dynamique et traceurs: + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, dp, & + vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, dt, leapf) + + if (.not. leapf) then + ! Matsuno backward + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk, pkf) - do ! Calcul des tendances dynamiques: CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) - CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itau, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time + iday - day_ini) - - IF (forward .OR. leapf) THEN - ! Calcul des tendances advection des traceurs (dont l'humidité) - CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk) - IF (offline) THEN - ! Stokage du flux de masse pour traceurs off-line - CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, dtvr, & - itau) - ENDIF - ENDIF + CALL caldyn(itau + 1, ucov, vcov, teta, ps, masse, pk, pkf, phis, & + phi, .false., du, dv, dteta, dp, w, pbaru, pbarv, time_0) ! integrations dynamique et traceurs: - CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, & - dteta, dq, dp, vcov, ucov, teta, q, ps, masse, phis, & - finvmaold, leapf, dt) - - IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN - ! calcul des tendances physiques: - IF (itau + 1 == itaufin) lafin = .TRUE. - - CALL pression(ip1jmp1, ap, bp, ps, p3d) - CALL exner_hyb(ps, p3d, pks, pk, pkf) - - rdaym_ini = itau * dtvr / daysec - rdayvrai = rdaym_ini + day_ini - - CALL calfis(nqmx, lafin, rdayvrai, time, ucov, vcov, teta, q, & - masse, ps, pk, phis, phi, du, dv, dteta, dq, w, & - dufi, dvfi, dtetafi, dqfi, dpfi) - - ! ajout des tendances physiques: - CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, & - dtetafi, dqfi, dpfi) - ENDIF + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, & + dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, & + dtvr, leapf=.false.) + end if - CALL pression(ip1jmp1, ap, bp, ps, p3d) - CALL exner_hyb(ps, p3d, pks, pk, pkf) + IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN + ! calcul des tendances physiques: - IF (MOD(itau + 1, idissip) == 0) THEN - ! dissipation horizontale et verticale des petites echelles: + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk, pkf) - ! calcul de l'energie cinetique avant dissipation - call covcont(llm, ucov, vcov, ucont, vcont) - call enercin(vcov, ucov, vcont, ucont, ecin0) - - ! dissipation - CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis) - ucov=ucov + dudis - vcov=vcov + dvdis - - ! On rajoute la tendance due à la transformation Ec -> E - ! thermique créée lors de la dissipation - call covcont(llm, ucov, vcov, ucont, vcont) - call enercin(vcov, ucov, vcont, ucont, ecin) - dtetaecdt= (ecin0 - ecin) / pk - dtetadis=dtetadis + dtetaecdt - teta=teta + dtetadis - - ! Calcul de la valeur moyenne unique de h aux pôles - forall (l = 1: llm) - teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) & - / apoln - teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) & - * teta(:iim, jjm + 1, l)) / apols - END forall - - ps(:, 1) = SUM(aire_2d(:iim, 1) * ps(:iim, 1)) / apoln - ps(:, jjm + 1) = SUM(aire_2d(:iim, jjm+1) * ps(:iim, jjm + 1)) & - / apols - END IF - - ! fin de l'intégration dynamique et physique pour le pas "itau" - ! préparation du pas d'intégration suivant - - ! schema matsuno + leapfrog - IF (forward .OR. leapf) THEN - itau = itau + 1 - iday = day_ini + itau / day_step - time = REAL(itau - (iday - day_ini) * day_step) / day_step & - + time_0 - IF (time > 1.) THEN - time = time - 1. - iday = iday + 1 - ENDIF - ENDIF - - IF (itau == itaufin + 1) exit outer_loop - - IF (MOD(itau, iperiod) == 0 .OR. itau == itaufin) THEN - ! ecriture du fichier histoire moyenne: - CALL writedynav(histaveid, nqmx, itau, vcov, & - ucov, teta, pk, phi, q, masse, ps, phis) - call bilan_dyn(2, dtvr * iperiod, dtvr * day_step * periodav, & - ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, q) - ENDIF - - IF (itau == itaufin) CALL dynredem1("restart.nc", vcov, ucov, teta, & - q, masse, ps, itau=itau_dyn+itaufin) - - ! gestion de l'integration temporelle: - IF (MOD(itau, iperiod) == 0) exit - IF (MOD(itau - 1, iperiod) == 0) THEN - IF (forward) THEN - ! fin du pas forward et debut du pas backward - forward = .FALSE. - leapf = .FALSE. - ELSE - ! fin du pas backward et debut du premier pas leapfrog - leapf = .TRUE. - dt = 2. * dtvr - END IF - ELSE - ! pas leapfrog - leapf = .TRUE. - dt = 2. * dtvr - END IF - end do - end do outer_loop + rdaym_ini = itau * dtvr / daysec + rdayvrai = rdaym_ini + day_ini + time = REAL(mod(itau, day_step)) / day_step + time_0 + IF (time > 1.) time = time - 1. + + CALL calfis(rdayvrai, time, ucov, vcov, teta, q, masse, ps, pk, & + phis, phi, du, dv, dq, w, dufi, dvfi, dtetafi, dqfi, dpfi, & + lafin=itau+1==itaufin) + + ! ajout des tendances physiques: + CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, & + dtetafi, dqfi, dpfi) + ENDIF + + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk, pkf) + + IF (MOD(itau + 1, idissip) == 0) THEN + ! dissipation horizontale et verticale des petites echelles: + + ! calcul de l'energie cinetique avant dissipation + call covcont(llm, ucov, vcov, ucont, vcont) + call enercin(vcov, ucov, vcont, ucont, ecin0) + + ! dissipation + CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis) + ucov=ucov + dudis + vcov=vcov + dvdis + + ! On rajoute la tendance due à la transformation Ec -> E + ! thermique créée lors de la dissipation + call covcont(llm, ucov, vcov, ucont, vcont) + call enercin(vcov, ucov, vcont, ucont, ecin) + dtetaecdt= (ecin0 - ecin) / pk + dtetadis=dtetadis + dtetaecdt + teta=teta + dtetadis + + ! Calcul de la valeur moyenne aux pôles : + forall (l = 1: llm) + teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) & + / apoln + teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) & + * teta(:iim, jjm + 1, l)) / apols + END forall + + ps(:, 1) = SUM(aire_2d(:iim, 1) * ps(:iim, 1)) / apoln + ps(:, jjm + 1) = SUM(aire_2d(:iim, jjm+1) * ps(:iim, jjm + 1)) & + / apols + END IF + + IF (MOD(itau + 1, iperiod) == 0) THEN + ! Écriture du fichier histoire moyenne: + CALL writedynav(histaveid, nqmx, itau + 1, vcov, ucov, teta, pk, & + phi, q, masse, ps, phis) + call bilan_dyn(ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, & + q(:, :, :, 1), dt_app = dtvr * iperiod, & + dt_cum = dtvr * day_step * periodav) + ENDIF + end do time_integration + + CALL dynredem1("restart.nc", vcov, ucov, teta, q, masse, ps, & + itau=itau_dyn+itaufin) + + ! Calcul des tendances dynamiques: + CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & + MOD(itaufin, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & + time_0) END SUBROUTINE leapfrog