--- trunk/libf/dyn3d/leapfrog.f90 2010/04/09 10:56:14 33 +++ trunk/libf/dyn3d/leapfrog.f90 2011/07/01 15:00:48 47 @@ -8,8 +8,12 @@ ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 ! Authors: P. Le Van, L. Fairhead, F. Hourdin - ! schema matsuno + leapfrog + ! Matsuno-leapfrog scheme. + use addfi_m, only: addfi + use bilan_dyn_m, only: bilan_dyn + use caladvtrac_m, only: caladvtrac + use caldyn_m, only: caldyn USE calfis_m, ONLY: calfis USE com_io_dyn, ONLY: histaveid USE comconst, ONLY: daysec, dtphys, dtvr @@ -18,28 +22,34 @@ USE conf_gcm_m, ONLY: day_step, iconser, iperiod, iphysiq, nday, offline, & periodav USE dimens_m, ONLY: iim, jjm, llm, nqmx + use dissip_m, only: dissip USE dynetat0_m, ONLY: day_ini use dynredem1_m, only: dynredem1 USE exner_hyb_m, ONLY: exner_hyb use filtreg_m, only: filtreg + use geopot_m, only: geopot USE guide_m, ONLY: guide use inidissip_m, only: idissip use integrd_m, only: integrd USE logic, ONLY: iflag_phys, ok_guide USE paramet_m, ONLY: ip1jmp1 - USE pression_m, ONLY: pression USE pressure_var, ONLY: p3d USE temps, ONLY: itau_dyn ! Variables dynamiques: - REAL, intent(inout):: vcov((iim + 1) * jjm, llm) ! vent covariant REAL, intent(inout):: ucov(ip1jmp1, llm) ! vent covariant - REAL, intent(inout):: teta(iim + 1, jjm + 1, llm) ! potential temperature - REAL ps(iim + 1, jjm + 1) ! pression au sol, en Pa + REAL, intent(inout):: vcov((iim + 1) * jjm, llm) ! vent covariant + REAL, intent(inout):: teta(:, :, :) ! (iim + 1, jjm + 1, llm) + ! potential temperature + + REAL, intent(inout):: ps(:, :) ! (iim + 1, jjm + 1) pression au sol, en Pa REAL masse(ip1jmp1, llm) ! masse d'air REAL phis(ip1jmp1) ! geopotentiel au sol - REAL q(ip1jmp1, llm, nqmx) ! mass fractions of advected fields + + REAL, intent(inout):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) + ! mass fractions of advected fields + REAL, intent(in):: time_0 ! Variables local to the procedure: @@ -49,7 +59,7 @@ REAL pks(ip1jmp1) ! exner au sol REAL pk(iim + 1, jjm + 1, llm) ! exner au milieu des couches REAL pkf(ip1jmp1, llm) ! exner filt.au milieu des couches - REAL phi(ip1jmp1, llm) ! geopotential + REAL phi(iim + 1, jjm + 1, llm) ! geopotential REAL w(ip1jmp1, llm) ! vitesse verticale ! variables dynamiques intermediaire pour le transport @@ -61,8 +71,8 @@ REAL massem1(ip1jmp1, llm) ! tendances dynamiques - REAL dv((iim + 1) * jjm, llm), du(ip1jmp1, llm) - REAL dteta(ip1jmp1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) + REAL dv((iim + 1) * jjm, llm), dudyn(ip1jmp1, llm) + REAL dteta(iim + 1, jjm + 1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) ! tendances de la dissipation REAL dvdis((iim + 1) * jjm, llm), dudis(ip1jmp1, llm) @@ -70,7 +80,7 @@ ! tendances physiques REAL dvfi((iim + 1) * jjm, llm), dufi(ip1jmp1, llm) - REAL dtetafi(ip1jmp1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) + REAL dtetafi(iim + 1, jjm + 1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) ! variables pour le fichier histoire @@ -83,10 +93,11 @@ ! Variables test conservation energie REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm) - ! Tendance de la temp. potentiel d (theta) / d t due a la - ! tansformation d'energie cinetique en energie thermique - ! cree par la dissipation + REAL dtetaecdt(iim + 1, jjm + 1, llm) + ! tendance de la température potentielle due à la tansformation + ! d'énergie cinétique en énergie thermique créée par la dissipation + REAL vcont((iim + 1) * jjm, llm), ucont(ip1jmp1, llm) logical leapf real dt @@ -101,11 +112,10 @@ dq = 0. ! On initialise la pression et la fonction d'Exner : - CALL pression(ip1jmp1, ap, bp, ps, p3d) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps CALL exner_hyb(ps, p3d, pks, pk, pkf) - ! Début de l'integration temporelle : - do itau = 0, itaufin - 1 + time_integration: do itau = 0, itaufin - 1 leapf = mod(itau, iperiod) /= 0 if (leapf) then dt = 2 * dtvr @@ -126,8 +136,8 @@ ! Calcul des tendances dynamiques: CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itau, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time_0) + dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=MOD(itau, iconser)==0) ! Calcul des tendances advection des traceurs (dont l'humidité) CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk) @@ -136,30 +146,32 @@ IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, & dtvr, itau) - ! integrations dynamique et traceurs: - CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, & - dp, vcov, ucov, teta, q, ps, masse, finvmaold, leapf, dt) + ! Integrations dynamique et traceurs: + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, dteta, & + dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, dt, & + leapf) if (.not. leapf) then ! Matsuno backward - CALL pression(ip1jmp1, ap, bp, ps, p3d) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps CALL exner_hyb(ps, p3d, pks, pk, pkf) ! Calcul des tendances dynamiques: CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) CALL caldyn(itau + 1, ucov, vcov, teta, ps, masse, pk, pkf, phis, & - phi, .false., du, dv, dteta, dp, w, pbaru, pbarv, time_0) + phi, dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=.false.) ! integrations dynamique et traceurs: - CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, & - dteta, dp, vcov, ucov, teta, q, ps, masse, finvmaold, .false., & - dtvr) + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, & + dteta, dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, & + finvmaold, dtvr, leapf=.false.) end if IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN ! calcul des tendances physiques: - CALL pression(ip1jmp1, ap, bp, ps, p3d) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps CALL exner_hyb(ps, p3d, pks, pk, pkf) rdaym_ini = itau * dtvr / daysec @@ -167,16 +179,16 @@ time = REAL(mod(itau, day_step)) / day_step + time_0 IF (time > 1.) time = time - 1. - CALL calfis(nqmx, itau + 1 == itaufin, rdayvrai, time, ucov, vcov, & - teta, q, masse, ps, pk, phis, phi, du, dv, dteta, dq, w, dufi, & - dvfi, dtetafi, dqfi, dpfi) + CALL calfis(rdayvrai, time, ucov, vcov, teta, q, masse, ps, pk, & + phis, phi, dudyn, dv, dq, w, dufi, dvfi, dtetafi, dqfi, dpfi, & + lafin=itau+1==itaufin) ! ajout des tendances physiques: CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, & dtetafi, dqfi, dpfi) ENDIF - CALL pression(ip1jmp1, ap, bp, ps, p3d) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps CALL exner_hyb(ps, p3d, pks, pk, pkf) IF (MOD(itau + 1, idissip) == 0) THEN @@ -213,13 +225,14 @@ END IF IF (MOD(itau + 1, iperiod) == 0) THEN - ! ecriture du fichier histoire moyenne: + ! Écriture du fichier histoire moyenne: CALL writedynav(histaveid, nqmx, itau + 1, vcov, ucov, teta, pk, & phi, q, masse, ps, phis) - call bilan_dyn(2, dtvr * iperiod, dtvr * day_step * periodav, ps, & - masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, q) + call bilan_dyn(ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, & + q(:, :, :, 1), dt_app = dtvr * iperiod, & + dt_cum = dtvr * day_step * periodav) ENDIF - end do + end do time_integration CALL dynredem1("restart.nc", vcov, ucov, teta, q, masse, ps, & itau=itau_dyn+itaufin) @@ -227,9 +240,8 @@ ! Calcul des tendances dynamiques: CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itaufin, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time_0) - + dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=MOD(itaufin, iconser)==0) END SUBROUTINE leapfrog end module leapfrog_m